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Abstract

We present a new numerical method for the solution of the problem of
diffraction of light by a doubly periodic surface. This method is based on a
high order rigorous perturbative technique, whose application to singly pe-
riodic gratings was treated in the first two papers of this series. We briefly
discuss the theoretical basis of our algorithm, namely, the property of an-
alyticity of the diffracted fields with respect to variations of the interfaces.
While the algebraic derivation of some basic recursive formulae is somewhat
involved, it results in expressions which are easy to implement numerically.

We present a variety of numerical examples (for bi-sinusoidal gratings),
in order to demonstrate the accuracy exhibited by our method as well as
its limited requirements in terms of computing power. Generalization of our
computer code to crossed gratings other than bi-sinusoidal is in principle im-
mediate, but the full domain of applicability of our algorithm remains to be
explored. Comparison with results presented previously for actual experimen-
tal configurations shows a substantial improvement in the resolution of our
numerics over that given by other methods introduced in the past.
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1 Introduction

Diffraction gratings are optical devices which, due in part to their microscopic ge-
ometrical design, can produce useful patterns of diffraction of electromagnetic ra-
diation, and can exhibit good properties of absorption of electromagnetic energy.
Because of their theoretical interest, as well as their engineering and industrial ap-
plications, a great deal of effort has been devoted to theoretical and experimental
investigation of these devices. Most such investigations (including the first two
papers [5, 6] in this series) have dealt with singly periodic gratings, sometimes
called classical gratings, even though the corresponding doubly periodic structures,
or crossed gratings, hold much interest also [14, 24, 16, 8, 11, 15, 18]. Indeed, not
only can crossed gratings be used in settings in which classical gratings are em-
ployed, but they are also natural candidates as good absorbers of solar energy or as
anti-reflecting surfaces.

Diffraction gratings give rise to complicated physical phenomena, and their ex-
perimental investigation is costly. Thus, numerical methods capable of solving
Maxwell's equations and producing accurate predictions of their properties play
an important role. Methods that produce satisfactory results for classical gratings
have been introduced in the last few decades [22], see also [6]. Numerical meth-
ods for crossed gratings, based on integral or differential formalisms, have also been
given [16, 24, 8,18,19,12], and, together with some experimental research [18], have
helped gain some insight into their properties. It is recognized [15, p. 57], however,
that improvement in the numerical modeling of crossed gratings is necessary. In-
deed, the mathematical complexities introduced by the oscillatory nature of the
waves and interfaces which already exist in the singly periodic case, are amplified in
the case of crossed gratings in which a three-dimensional diffraction problem must
be solved. These difficulties lead to long computing time and limited resolution in
the computer codes produced until now.

In this paper we shall introduce a new numerical algorithm for the solution of
doubly periodic diffraction problems. This algorithm is based on a rigorous high
order perturbative technique which we introduced recently in the context of singly
periodic problems [5, 6]. For classical gratings we have shown, through applications
to sinusoidal and triangular profiles, that perturbative techniques can lead to results



of considerable better quality than the integral or differential formalisms in many

situations of interest in applications. The success of our algorithm in the singly

periodic case motivated us to extend our methods to the case of crossed gratings.

As it happens, the three dimensional version of our algorithm yields a very good

performance; some examples will be given below. Since doubt had been cast [23, p.

411] on the theoretical validity of perturbation methods, such as ours, in diffraction

problems, we produced [4] a detailed analysis establishing, in the singly periodic

case, a rigorous justification of our numerical approach. The extension of the theory

to the three dimensional problem will be briefly discussed in §3.1. It follows along

the same lines of [4], though some points of difficulty do occur. The basic formulae

of the algorithm are presented in §3.2 and numerical experiments follow in §4.

While our method applies to general bi-periodic surfaces, our numerical exper-

iments will be confined, for simplicity and following [18], to surfaces which consist

of the sum of two sinusoids. Generalization of our computer code to surfaces other

than bi-sinusoidal is in principle immediate, but the full domain of applicability of

our algorithm is yet to be explored. Comparison with previous work will show that

the use of our perturbative approach can be very advantageous. For example for a

bi-sinusoidal gold grating for which numerical and experimental data is presented

in [18], we obtain results with almost full double precision accuracy, while results

with an accuracy of eight digits are already obtained by a twenty second calculation

in a desk top computer. The accuracy of the integral method has been estimated to

be, in the same problem, of about two digits [8]. This is a particularly simple case,

and the accuracy of our algorithm, (as that given by other methods) decreases when

the height to period ratio of the grating is increased. We will demonstrate, however,

that our algorithm can be applied to wide range experimental configurations with a

rather limited computational effort, and that, at least in the cases considered here,

it yields results of substantially better definition than other methods available at

present.

2 Doubly periodic gratings

Consider a doubly periodic grating, i.e., a surface



and regions $7+ = {z > f(x,y)} and 17" = {z < f(x,y)} which are assumed to

be filled by two different materials, such as air and a metal, of respective dielectric

constants e+ and e~. The permeability of both materials is assumed to equal /i0,

the permeability of vacuum. If the function / does not depend on j/, then we have

a singly periodic grating. In this paper, however, we consider the case in which

the grating is genuinely doubly periodic, with periods d\ and d2 in the x and y

directions, respectively.

We wish to determine the pattern of diffraction that occurs when an electromag-

netic plane wave

E* = ^e
t'(

illuminates the grating. Here we have

A • k = 0 and B = —Jfc x A, (1)
UHQ

where

is the wave vector.

Dropping the factor e"*4'*, the time harmonic Maxwell equations for the total
fields read

V x E = iufx0H , V • E = 0 ,

V x f f = -ivcE , V • H = 0 . (2)

In particular, the fields v = EyH satisfy the Helmholtz equation

At; + k2v = 0 (3)

with k2 = u2€fi0

The total fields

gdown = = £J- rjdawn = TJ—



must satisfy these equations in the regions £2+ and ft", and at the interface z =
/(x, y) they must verify the transmission conditions

n x (Eup - &*"*) = 0 , n x (jfr* - tf*™) = 0 o n : = / (z ,y ) . (4)

In case the region ft~ is filled by a perfect conductor, there will only be reflected

fields. The boundary condition in this case is

nxEup = 0 on z = f{x,y) .

To complete the prescriptions, we observe that the double-periodicity of the
structure implies that the fields must be (a,/?) quasi-periodic, i.e., they must verify
equations of the form

v(x + duy,z) = eiQdlv(x,y}z) and v(x,y + d2,z) = eip*2v(x,y,z),

and, finally, that the diffracted fields must consist of outgoing waves.

By separation of variables it is easy to show that the diffracted electric field in
the regions z > max{/(x, y)} and z < min{/(x, y)} is given by the expansions

(5)

respectively.

(

where 7*, is

and

Here,

* = a + rKlt

determined by

00 00

r=—00 a=—00

A - / » + .*,

Im(7j) > 0 or

(fc*)2 = c

A : -2 7 r

0,

(7t)2 (6)

It is clear from (6) that only a finite number of modes propagate away from
the grating, the remaining modes decaying exponentially with the distance to the



surface. The quantities of interest are the grating efficiencies

7o,o

for the finitely many propagating modes, i.e. the modes (r, 5) such that 7*, is real.

In this connection, the principle of conservation of energy yields a simple and

valuable test of accuracy for numerical methods in diffraction problems in the ab-

sence of lossy materials: if we let U* denote the set of indices corresponding to the

non-evanescent modes, then

provided the dielectric constants €+ and e~ are real.

3 Solution via variation of boundaries

In §3.1 we present a brief account of the theory upon which our numerical method

is based and in §3.2 we derive the basic recursive formulae. The derivation of these

formulae is rather lengthy, but it results in expressions which are easy to implement

numerically.

3.1 Three-dimensional theory

In this section we shall describe the main theoretical results of analyticity of the

solution (E(x, y, z\ 6), H(x, y, z\ 6)) corresponding to the grating

with respect to the height 6. Proofs will only be outlined; details will appear

elsewhere. The reader can also consult our work [4] where the two-dimensional

problem was studied. Even though the proof in the three-dimensional case follows

the same lines, some points of difficulty do occur due to the higher dimensionality



and the vector-valued character of Maxwell's equations (in contrast with the scalar

Helmholtz equation of the two-dimensional case). As in [4], the basic idea is to study

a holomorphic formulation of the problem using surface potentials. The first step

consists of showing that the densities entering the potential theoretic formulation

are analytic in the parameter 6 as well as in the spatial variables. The analyticity

of the densities allows us then to show that, for sufficiently small 6, the solutions

(E+(xyy,z;6),3+(x,y,z;6)) and (E"(x,y,z;6)JH"(xJyyz;6)) extend analytically
(in (x, t/, z, 6)) to { z > zo } and { z < —ZQ } respectively, where ZQ < 0 is sufficiently

small. This, in turn gives the theoretical justification for the recursive formulae

in §3.2: the partial derivatives of (E±(x1y}z;6),H±(x^yiz;6)) with respect to 6

at 6 = 0 ("flat interface") satisfy certain boundary value problems for Maxwell's

equations, in regions with plane boundaries which can be solved in closed form.

Moreover, as a byproduct of the proof of analytic continuation of the fields we es-

tablish their analyticity away from the interface without a restriction on the size

of 6. In particular, this implies that the Rayleigh coefficients Bf8 = Bfa{6) are

analytic functions of 6 for S in a complex neighborhood of the real line. Thus, one

can use Pade approximants to extract the values of the Rayleigh coefficients from

their Taylor expansions, even beyond their radii of convergence; see §4.

As we said above, the starting point for the proofs is a potential theoretic for-

mulation, see also [9, 10]. Motivated by the representation formula ([20, p. 160])

, y, z) = / \iu>nj$ - / xV$ + —Div(j)V$] da(x\ j / , z')
JF L IW€ J

H(x, y,z) = / \iuej'$ + j x V $ + T^-Div(/) V$l da(x', y', z')
JF L tOJpl J

we seek a solution {E±,H±) in the form

(9)

IU)



where the operators Vf,Sf, T* axe defined by

VtQ'){x, y,z) = V x /* / * **(* - x', y - y1, z - 6f(x', j/))jV, if)
Jo Jo

(1 + (*/,(x',j/))2 + (6fy(x',t/))2)1/2dx'di/

SHJ)(W) = jf J^±(x-x\y-y',

(1 + (6ft(x\ j/))2 + (6fy(x\

^̂ tCx - x', y - j,' , z - «/(a/f j/))Div(J)(*',

Here j and f are quasi-periodic surface currents, i.e. if ns = n^(x, y) is the unit nor-

mal vector to { z = £/(#, j/) } at (x, y, 6/(x, y)) (directed towards { z < 6f(x, y)})

j • n* = / • n̂  = 0;

Div(j) denotes the surface divergence (see [20, pp. 154, 157]) of the function j , and

the functions $* denote the quasi-periodic fundamental solutions of Helmholtz'

equation (3). We have chosen the constants that multiply the operators in (9) in

such a way that the highest order singularity in the resulting integral equations

(equations (11) below) cancels out. As for the quasi-periodic fundamental solution,

we have, formally,

r=—oo #=—oo /r,«

Using the expansion (10) and the fact (see [4]) that



(where HQ denotes a Hankel function) together with certain symmetry related re-
lations, the existence of an (a, /?) quasi-periodic fundamental solution can rigorously
be established.

Now, using the jump relations for the operators Vf, Sf and TJj* (see [20, p.
205]), the transmission conditions (4) imply

- Mo"* x [Vfti') - VIU')] + «W»« x [«+#(i) - *"Sf(j)]

- —n* x 7^(j) = ~ns x ^ ' o n I0' rfi] x I0' ̂ 2] (11)

where

—nsy.'R.6{j') = -nsy.Hi on [0,di] x [0,d2]

Vt(j')(x,y,6f(x,y))
St(j){x,y,6f(xyy))

)(x, y) = I'1 JQ
d\j(x\y1) • V^)V^{^{x -x',y- rf,6f(x, y) - 6f(x\ y'))

- «-(* - x\ y - y\ 6f(x, y) - 6f(x\ y'))

(1 + (6f.W, y1)? + (6f,&, y1)?)1'2 dx' dy'

(In deriving the above equations we used the formula of integration by parts

/ UDiviV) + / V • Grad(C7) = 0
JF JF

where Grad(C/) denotes the surface gradient of the function U, i.e.

VU = Grad(lT) + n ^ ;
OTl£

see [20, p. 163]).



Defining

72,]
€5f) + ^n

x (e+Vf - e~V

the integral equations (11) can be written as

(J

where

A close look at the operator As reveals that the kernels are only weakly singular.

Indeed, the kernel in TZs has a singularity of the order \(x — x\ y — 2/)|~\ due to

a cancellation mentioned above, while the same is true for ns x Vf as can be seen

from the equality

x (V** x f) (x -x\y- jf% 6f(x, y) - 6f(x', tf)) =

[Ms, y) - n6{x\ j/)) • f\ V*± -

Moreover, it can shown that for each fixed So 6 R there exist positive numbers e

and v such that the operator As maps the (Banach) space

= { J(*. !/;*)=[ ^yls) 1 : J(-5 *) is (Q' P) - quasi-periodic,

analytic for |Im(x)| < v, |Im(y)J < v, |^ - So\ < € and

continuous for |Im(x)| < i/, |Im(j/)| < i/, |£ - 60\ < e \



into itself, continuously in the norm

||J||j = sup{\J(x,y;6)\ :

(Note that this says that, provided the currents are analytic, the integrals in (11)

define analytic functions of (#,y;£), even though the kernels are not themselves

analytic). Finally, for each fixed SQ € R, the operator As0 can be shown to be

compact. Thus, the operator / + As0 is invertible, provided the solution to the

problem when 6 = 6Q is unique. If this is the case, then a simple perturbation

argument shows that the operator I + As is invertible in J€^{So) for S close to 6Q.

The invertibility of I + As implies that the surface currents j and f defined by

(11) are analytic functions of (x, y; 6). This, in turn, allows us to prove the following

Theorem.

Theorem 1 Fix 6Q 6 R and let ( ^ ( x , y, z\ #o), #*(# , y, z\ So)) denote a solution to

(2) that consists of outgoing waves and satisfies (4) on z = Sof(x,y). Assume that

this solution is unique (which implies that the solution (-^(x, y, z; 6), H±(x1 y, z\ 6))

corresponding to the grating z = 6of(x, y) is also unique for 6 near 6Q). Then

(i) If *o > ô max | / | (zo < 6omin|/|^, there exists 60 = ô(̂ o?̂ o) such that
(£+(x, y, z\ 6), H+(x, y, z; 6)) ((E~(x, y, z\ 6), J?"(x, y, z; 6))) is analytic in (x, y, z; 6)

for \6 - 60| < c0 and \z - zo | < e0.

(ii) T/ie functions n*(x, y) x -E±(x, y, 6/(x, y); 6) and n*(x, y) x /T±(x, y, <5/(x, y); 6)

are analytic in (x, y, 6) /or 6 near So.

(iii) Given So € R t/iere exists e\ > 0 stxc/i tftat ( ^ ( x ^ , z;6),H±(x,y, z;6)) are

analytic for \S - SQ\ < €\ and \z - 60/(x, y)| < €i.

Note that the last statement implies that the fields can be extended as analytic

functions of (x, y, z; S) even as the surface z = Sf(xy y) passes over the point (x, y, z)

due to variations in S. It is also to be noted that the assumed uniqueness holds

trivially for #o = 0.

3.2 Recursive Formulae

Besides its independent theoretical interest, the result quoted above has proved

significant in practice as we have found that the the analyticity properties of the

10



fields can be exploited in their numerical evaluation. In what follows we shall derive
recursive formulae for the Taylor coefficients

of the Rayleigh amplitudes Bft of E (cf. (5)):

*=0
(12)

Once E has been obtained, the magnetic field is given by

H = —̂— (V x £ ) .

The recursive formulae will be derived by differentiation of the transmission
conditions

-E~) = -(n« x

- 8-) = -(n« x

(13)

on 2 =

with respect to 6. Such diflFerentiations are justified by Theorem 1. The algebra
required by this derivation is quite involved, and we have chosen to present it in
detail. This complication can only be considered as a minor drawback, however, as
the resulting formulae are rather simple, and can easily be implemented numerically.

To obtain these formulae, first notice that, due to (2), we have that

V-^± = 0 in ±z>±6f(x,y) (14)

and that equations (13) are equivalent to

-E-) = -(n* x A)&

= 6f(x,y).

11



•(-Sfr(x,y),-6fv(x,y),l)

Now, using

ns = n((x, y) =

together with equation (1), we can rewrite (15) in the form

(-«/,(*, y), -«/„(*, y), 1) X (J+(ar, y, 6/(ar, y); *) - £"(*, y, $/(*, y);

= - ((-«/.(*, y),-«/,(*, y),l) x i ) **-+*-"»*/<•*» (16)

(-«/.(*,*),-«/,(*, »),1) x (V x E+(x,y,6f(x,y);6) - V x E-(x,y,6f(x,y);6J)

= -«• ((-«/,(*, y),-«/,(*, y),l) x tf x ̂ )) c^+^-^(^)).

Only four of the six relations (16) are independent; a set of four independent equa-
tions is

£2,+ _ £2,-

l>+ - E\n - (El>+ - El~) + 6f, [(E$+ - El>~) - (E^ -

= -i {-IA1 - aA3 + 6fy(aA2 - pA1)] c*<«+*f-7«/(*.»))

= -i [PA3 + 7A2 + 6fx(aA2 -

Together with the conditions

El* + E2
y* + E3<+ = 0

El>~ + El'~ + E3>- = 0 (cf. (14))

these relations provide us with six equations for the six unknowns

E1*]
E2>+ and E2,

E3'

12



at the boundary. Differentiating these relations n times with respect to 6 at 6 = 0,

we get, at 6 = 0, z = 0

=0 (n-Jb)!

J*(n-l)\

- El'-)) = "EKJ <&

- (E>* - IS}-)] = -

and

=

It follows from (5) and (12) that

kl

13



Thus, substitution in (17) and (18) of the quantities ^^r and their spatial deriva-

tives as calculated from (19) yields the coefficients dj^(rt,) in terms of the coefficients

< n ^ d the Fourier coefficients C/t(pW) of f!/l\

^ = E E c,^,)^^^). (20)

Indeed, since

V* x / - -lF<p,q<lF

and

ITTV = E

substitution in the first and third equations in (17) gives

14

) (21)

k,(l,m) \ l\m) ak,(l,m)J e



and

E [wAU+

(22)

- I [ - ( 7 ^ +OA»)(-I7)"

Next, we write the Fourier series expansions for the right hand sides of (21) and (22).

The right hand side of (21) is

(23)

while the right hand side of (22) has the form

15



(24)

Now, since

changing p by r — / and q by 5 — m in the inner sums in (23) and (24) gives

" E-nF<r,,<nF (^HT)" + i t W W ^ ^ *

" m))]

and

Finally, we exchange the sums in /, m and r, 5 to obtain the Fourier series for the
right hand sides of (21) and (22). It is easily checked that

41m) = 0 if |<| > kF or \m\ > kF.

Thus, the sums over (/, m) can be restricted to — kF < l,m < kF and therefore
the sums in (r, $) reduce to sums for — nF < r, s < nF. Then, equating Fourier

16



coefficients yields the recursive formulae

<& < ) C . ^ , (25)
_ / f V \n-* J2,-

) V *7/,nJ aJb,(/,m)

and

fc=0 2-/=max(-/fcF,r-(n-A)F) 2-m=max(-fcF,»-(n-Jfc)F) [7/,mVl7/,my aJb,(/,m)

4 )"-fcarrfJ;J)m) + (-i%m)n-kar4^m) (26)

A similar calculation for the second and fourth equations in (17) gives

<<;,,) - <fc,<) = - (^(-«7)" + A^-nr-^iKrv)) CnM (27)
En-1 ^min(fcF,r+(n-fc)F) ^min(A:F^+(n-A:)F) [/. + xn-ibjl^H- / • - Xn-Ar^l,-

jfc=0 ^/=max(-JkF,r-(n-ib)F) ^m=max(-ibF,«-(n-A:)F) [V l7/,m/ a*,(/,m) "" V l 7 / , m / °ik,(/,m)

and

r - 0)] ^n-*,(r-^-TO) •

On the other hand, the equations (18) are equivalent to

*k, + 7i*^, = 0 (29)

17



and

Thus, the six equations (25) to (30) allow us to compute the coefficients djj^)

in terms of dw/m\, k < n, and C;,(p,g), and therefore give us the desired recursive

formulae. Recursive formulae for a perfect conductor can be obtained from (25)-(30)

simply by setting

<*•;" m) = 0 for t = 1,2,3 and all Jfc, / and m.

4 Numerical Results

In this section we present the results produced by our algorithm in some numerical

experiments. The algorithm is fairly simple: it relies on the formulae (25)-(30) for

the computation of the Taylor coefficients of the Rayleigh amplitudes and on Pade

approximation (i.e. approximation by rational functions —see e.g. [1, 2, 3, 7, 13])

for the summation of the Taylor series, perhaps beyond their radii of convergence.

This procedure is entirely analogous to that of the singly periodic case; we refer

to [6] for details.

One point of interest in connection with our algorithm is that it produces the

diffraction efficiencies as functions of the height h/d. In other words, once the Taylor

coefficients and the Pade approximants for a particular wavelength and period have

been found, calculation of efficiencies for any particular height reduces to evaluation

of simple rational functions. This feature, of which we have taken advantage in the

examples that follow, is significant in design applications, in which many numerical

experiments must be performed in the search for a particular behavior of the device

under consideration.

As we have said, our algorithm can yield good performance with limited re-

quirements in terms of computing power. For a surface which can be represented

accurately by a double Fourier series of order mxm and if approximations of order

n are sought, the storage requirement is of the order of m2n3 locations. The cor-

responding computing time is of the order of n6. While the computing time could

seem quite elevated, it is not so in practice, as very good convergence can be ob-

tained for rather small values of n, see Tables 4 and 5. For example, a calculation

18



with n = 13 for a bi-sinusoidal grating can be performed in about 20 to 30 seconds

in a Sparc station IPX. Corresponding times for n = 17, 21, 25, 29 and 33 in the

problem of Table 4 are 1.5 min, 5 min, 14.5 min, 34.5 min, and 75 min respectively.

For simplicity, we shall restrict ourselves to sinusoidal bigratings of the form

= — COS
(2itx
XT COS (31)

i.e. F = 1 in (20). In our first example, Table 1, we present the computed values

of the reflected efficiencies (cf. (7)), as a function of the height-to-period ratio,

for a perfectly conducting grating illuminated under normal incidence with light of

wavelength-to-period ratio X/d = 0.83. The number e denotes the defect in the

energy relation (8)

(In the case of a perfectly conducting grating we have, of course, er 8 = 0.)

h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

e(-l,0)

0.018810
0.063551
0.110711
0.139786
0.134627
0.089612
0.036325
0.035293
0.097266
0.180165

e(0,-l)

0.059691
0.192968
0.308565
0.342547
0.283651
0.168376
0.068458
0.033719
0.040570
0.048574

e(0,0)

0.842996
0.486961
0.161448
0.035335
0.163443
0.484016
0.790359
0.862052
0.727476
0.557739

6

-6.6E-16
-2.5E-15
-6.0E-13
-9.2E-10
-1.6E-07
-7.1E-06
-7.1E-05
7.8E-05
3.1E-03
1.5E-02

Table 1: Efficiencies for the perfectly conducting sinusoidal grating (31) under

normal incidence with a wavelength-to-period ratio X/d = 0.83: [14/14] Pade

approximants.
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In the problem considered in Table 1 there are five propagating modes with
6(i,o) = e(-i,o) and e(o,i) = e(o,-i). We observe an excellent performance of the
method, with meaningful results for height-to-period ratios of up to h/d = 1.

Applications of other numerical methods for crossed gratings have been re-
stricted, due to constraints in computing time and storage, to cases in which only
a few non-evanescent modes occur. Our method does not seem to be affected by
such problems, and it remains accurate even in the presence of a large number of
diffracted modes. To illustrate this point, we present in Table 2 results correspond-
ing to normal incidence of light with X/d = 0.4368 (a case which has been used
repeatedly in the literature in tests of numerical methods for singly periodic grat-
ings). In this case there are 21 diffracted modes, and we have chosen to display the
efficiency in the (0,0) order only. A very good performance is still observed.

h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

eo,o
0.583991
0.086946
0.000351
0.006391
0.065342
0.087383
0.164344
0.150834

€

5.9E-15
2.1E-14
5.5E-13
1.4E-08
2.9E-06
-2.8E-04
-6.0E-03
2.6E-02

Table 2: Efficiency of order (0,0) for the perfectly conducting grating (31) under
normal incidence with a wavelength-to-period ratio X/d = 0.4368: [14/14] Pade

approximants.

In order to gain an insight on the performance of the method in transmission
problems, we present, in Table 3, data corresponding to the same case as in Table 1
except that now the grating is made from a material with a real refractive index
i/o = 2. Only the values of the efficiencies corresponding to reflected orders are
shown. We see that the accuracy in this loseless transmission problem is at most
one order of magnitude worse than in the perfect conductor case.
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h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

e(-l,0)
3.27740E-03
1.04422E-02
1.59870E-02
1.62416E-02
1.17477E-02
5.95943E-03
1.99679E-03
6.48092E-04
1.02779E-03
2.17608E-03

c(0,-l)
3.72963E-03
1.18396E-02
1.82072E-02
1.90710E-02
1.50841E-02
9.39648E-03
4.60557E-03
1.78457E-03
3.79257E-04
5.75382E-05

e(0,0)
9.62746E-02
6.17586E-02
2.77715E-02
7.76777E-03
1.97567E-03
2.96947E-03
4.12865E-03
3.45135E-03
2.02366E-03
1.05870E-03

6

1.8E-14
1.5E-14

-1.0E-11
-7.1E-09
1.7E-07
6.4E-05
1.0E-03
8.8E-03
3.8E-02
1.1E-01

Table 3: Efficiencies for the sinusoidal grating (31) with index of refraction vo = 2,

under normal incidence with a wavelength-to-period ratio X/d = 0.83: [14/14]

Pade approximants.

For comparison purposes, we now give three examples that correspond to the

lossy gratings treated in [18]. The values for the refractive indices of metals we

used were taken from [21]. The first two cases below (Figures 1 and 2) were ob-

tained in [18] as a result of a search for totally absorbing gratings. For this, the

authors considered first a bi-sinusoidal grating in gold and studied the zeroth-order

reflectance as a function of the period d (see [18, Fig. 7.17]). Only the zero order

efficiency is non-evanescent in this case.

In Figure 1 we show the results given in this case by our algorithm. Qualitative

agreement with the results in [8, 18] is observed. However, some discrepancies do

occur. For example, in contrast with Figure 7.17 of [18], our curves 2 and 3 coincide

at d = 0.62/zm. This prompted us to analyze the accuracy of our results. We found

that, for this range of parameters, our method yields extremely accurate results,

with errors in the reflected energy ("E. R.") which are better than 10~14. This

can be seen in Table 4, which contains a convergence study for the values of the

reflected energy at d = 0.62//m for the curves labeled 2 and 3 in Figure 1. We see

that, as claimed, an accuracy better than 8 digits is obtained by an approximation

of order 13. To demonstrate the range of parameters in which our method can be

applied, we include a third column in Table 4 showing the values of E. R. for a

much deeper grating profile of height h = 0.500/xm, for which h/d = 0.806. We see
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E.R.

0.61 0.62 0.63

Figure 1: Energy reflected by a sinusoidal grating in gold used with normally incident
light of wavelength 0.65/zm. 1. h = 0.040/zm; 2. h = 0.055/im; 3. h = 0.070/zm:
[6/6] Pade approximants

that even in this case, the results are quite accurate: the errors are of the order

of 10~4 for a [6/6] approximant (n = 13) and of 10~6 for a [14/14] approximant

(n = 29) (Pade approximants with n=15, 19, 23, 27 and 31 are singular for this

problem.) The computing time used for the calculation of the Taylor coefficients

and the corresponding Pade approximants with n = 13 was of about twenty seconds

in a Sparc station IPX. As pointed out above, particular calculations for several

values of the height take virtually no computer time once the Pade approximants

have been found. We find the results in the first row of Table 4 rather satisfactory,

and even more so taking into account the limited computer power they required.

The accuracy of the integral method in this problem (h = 0.055 and h = 0.070) has

been estimated to be of the order of two digits [8].
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n
13
17
21
25
29
33

h = 0.055/im
0.0227882361359963
0.0227882361334883
0.0227882361334891
0.0227882361334900
0.0227882361334896
0.0227882361334896

h = 0.070/xm
0.0226057361431067
0.0226057359874209
0.0226057359874838
0.0226057359874644
0.0226057359874220
0.0226057359874253

h = 0.500/wn
0.84146746
0.84202623
0.84219841
0.84260919
0.84197301
0.84197398

Table 4: Convergence study of the reflected energy for the example in Figure 1

(gold). The period is fixed at 0.62/xm and the wavelength at 0.65/mi.

Pade approximants.

(0,0)

0 ,65 0.75

Figure 2: Zeroth-order efficiency for a sinusoidal grating in gold having a groove
depth h = 0.080/im and a period of 0.60//m, used with normally incident light:
[6/6] Pade approximants

From Figure 1 we see that, as established in [8,18], the grating is highly absorbing

when the period d is close to d = 0.62/im. Indeed, when the period is fixed to

d = 0.62/xm our code reveals that the reflected energy attains a minimum at h =

0.0620±0.0001, where E. R.= 0.007. As mentioned above this value can be computed

with great accuracy. Such high accuracies are required in some applications [15, p.

46], [17, p. 218].

Similar values of the parameters were used to produce Figure 7.18 in [18]. The

groove depth was fixed at h = 0.080/im and the period at d = 0.60/im, while the

wavelength was varied between 0.55//m and 0.75/xm. In Figure 2 we display the

results given by our algorithm; our graph appears to coincide with [18, Fig. 7.18].
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Figure 3: The energy absorbed by a sinusoidal grating in copper having a groove
depth h = 0.20/xm as a function of the wavelength for normally incident light, (a)
d = 0.7071/im; (b) d = 0.50/im; (c) d = 0.35/im; (d) d = 0.20/zm: [6/6] Pade
approximants

Finally, Figure 3 is related to the study of the reduction of metallic reflectivity

given in [18]. The objective is to construct a solar selective grating which is highly

absorbing throughout the visible region and highly reflecting in the near infrared.

The results of our code for a sinusoidal grating in copper are plotted in Figure 3

(see [18, Fig. 7.19]). While the general features of these curves are similar to those

in [18, Fig. 7.19], comparison shows that our graphs differ from those there in a

number of important details. For example, in [18, Fig. 7.19] the absorbed energy

in Figures 3a,b is below our predictions, for the shortest wavelengths, by as much
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as 20%. This is probably due either to low accuracies in the results given by the

integral method, or to differences in the values used of the refractive index of copper.

The accuracy of our predictions is shown by the convergence study of Table 5.

n
13
17
21
25
29
33

d = 0.7071/iro
0.66407973570
0.66442364189
0.66442218058
0.66442216062
0.66442215270
0.66442215271

d = 0.5000/zm
0.73248902890
0.72911437001
0.72918754870
0.72919146502
0.72919155477
0.72919154229

Table 5: Convergence study of the absorbed energy for the example in Figures 3(a)

and 3(b) (copper). The wavelength is fixed at A = 0.3/im and the period at

d = 0.7071/xm for Figure 3(a) and at d = 0.5000/im for Figure 3(b).

I11^/21^] P&de approximants.

Conclusions:
We have introduced a new numerical method for the solution of problems of

diffraction in a doubly periodic, three dimensional structure. The method is based

on a rigorous high order perturbative technique which had proven successful in the

corresponding problems in the singly periodic case. If approximations of very high

order are sought, our method may become prohibitively expensive in terms of com-

puting time and storage. Fortunately, however, excellent convergence is observed

for approximations of relatively low orders. Furthermore, once the Pade approxi-

mants have been calculated for a particular set of parameters, the efficiencies can be

obtained for any number of different heights at virtually no cost. And, the perfor-

mance does not seem to be substantially affected by the presence of a large number

of non-evanescent modes.

We have shown through examples of varied nature that computation times of

about twenty to thirty seconds on a desk top computer suffice to give very accurate

results for bisinusoidal gratings. Generalization of our codes to surfaces other than

bi-sinusoidal is in principle immediate, but the full domain of applicability of our

algorithm is yet to be explored.
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We have compared our results with other theoretical results available in the liter-

ature. The most important features of the efficiency curves given by other methods,

such as total absorption, have been confirmed. Some rather marked differences have

been observed, however, between previous curves and ours. Thus we have performed

convergence studies which demonstrated the high accuracy of our results; graphical

differences can therefore be attributed to low accuracies of other methods, or to use

of different values for the refractive indices of the metals. In any case, the higher res-

olution of our method has been established. We believe that the improvement in the

numerical resolution given by our algorithm, accompanied by its low computational

cost, will prove significant in future design applications.
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