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A recent investigation into the behavior under
homogenization of second order materials with negative
capillarity [CMM] led to the formulation of certain
questions concerning distribution functions of absolutely
continuous mappings on a real interval.none of which
appears to have been examined previously. The present
article describes and resolves one of these questions:
For a function on the unit interval possessing an
absolutely continuous first derivative, does the joint
distribution of function and first derivative already
determine the distribution of the second derivative?

Given any measurable mapping [for brevity, we will also

apply this term to I_N equivalence classes] w: Q-» (Rm,

with Cl a bounded measurable subset of [RN, the (mass)
distribution JJ. = JJ.W denotes that Borel measure on [Rm

defined by
(0) jx(B) - LN {X€Q: w(x) € B}, BcB(IRm),
where I_N denotes N-dimensional Lebesgue measure and

B(IRm) denotes the Borel a-algebra on [Rm.
Given a function ue W2>1 (0,1), where W2>1(0,1) denotes

the Sobolev space of real functions on (0,1) possessing two
summable generalized derivatives, there are several
associated (mass) distributions to be considered: one for
each of the functions u, u', u" as well as for the mappings
f = (u, uf), g = (u, u\ u"), etc. We are here interested in
the linkage between certain of these distributions, in
particular between the distribution JI := JJ.U" and the
distribution n :- ji*; n is hereafter called a joint
distribution for emphasis. Our main result shows that JJ. is
characterized by n; in particular, if u, v are such that
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ji(u,u') _ ^(v,V) t h e n jt necessarily follows that \iu" = jav".
Our arguments will utilize the following result

[F, Theorem 2.10.10].

Proposition Suppose X and Y are separable metric spaces, v
is a metric outer measure on Y, f maps X into Y, and f(A) is
v-measurable whenever A is a Borel subset of X. If

£(S) = -u[f(S)] for S c X
and i\) is the metric outer measure over X resulting from ?
by Caratheodory's construction on the family of all Borel
subsets of X, then

ijj(A) = J N(f|A, y) d-u(y) for every Borel set A c X ,

where for any mapping g: Z—»Y
N(g. y) - #{xcZ | g(x) = y} € {0, 1,...,n, .... ~}.

Theorem A For each u in W^.^o, 1), the joint distribution
7c = jx(u>u')=: jx* determines the distribution |j. = fiu ". More
precisely, for every A in B(IR) one has the line integral

formula [with y = (yrj>yi)€ [R2] :

£ [N(f, y ) / y i ]dy 0 + L1 (Z) 8 { 0 } (A) ,

where
E A = {y€f([O. 1]): y i d y i / d y 0 € A}, Z-{x€[0,1]: u'(x)-O)
and 8/Q} is the unit mass at {0}. Here n determines the
integrand in (*) through the relation

J S all BcB

where Fg=f([0, 1])nB, and ns is supported on an I_1 null set

of IRx{0} with 7cs((Rx{0}) = L-,(Z).
Remarks: The line integrals in (*) and (1) are to be

interpreted as integrals with respect to arclength, i.e.
Hausdorff 1-measure. The symbol dyi/dyn appearing in the
definition of E A refers to the slope of the (bilateral) tangent
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line to the set f([0, 1]) at the point y€f([O, 1]) (so that
formally, y-jdy-j/dyo^ u"), provided that y is a point where
the tangent ["contingent"] cone Ts(y) to S= f([0, 1])
consists of a single line. Here we are utilizing
terminology stemming from the following definition of
Bouligand [S,p263][F,p233] [MM1,p304], see also [AE].

Definition. An element vc [Rm is a bilateral unit tangent

to the closed set S of IRm at the point yeS provided that
there exist sequences {yj},{yj'} in S converging to y and
satisfying

(yj - y)/|yj-yl -» v, (yj1 - y>/|yj' - y| -» -v
The collection of all such v is denoted by Us(y), and the
cone consisting of all lines [Rvwith V€Us(y) is denoted by

and called the contingent cone to S at y.

A key feature utilized in our development is the fact

that since (u, u') = f: [0, 1] —» IR2 is an absolutely

continuous curve in [R2, the following result applies
[MM1,§3] [in what follows H-\ denotes one-dimensional

Hausdorff measure on (Rm]:

Lemma If Sc IRm is the track of an absolutely continuous
curve f then for H-|-a.e. yeS

(a) Us(y) consists of a single pair of opposing unit
vectors

(b)f~1(y) is a finite set

(c) f'(t) * 0 for all t€ f "1 (y)

(d) Us(y) - {±f'(t)/|f(t)|: t€f"1(y) }.

Furthermore, f has the following property
(N) Li(A) = 0=> H-|(f(A)) = 0, AcDom(f).

We proceed to present the proof of Theorem A.
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Proof: Note that whenever Y, Z are disjoint measurable
subsets of [0, 1] it follows from (0) that the distribution

function n.3 - p*|YuZ j s simply the sum of \i-\ =jx ' and

| i 2 = H • l n particular this holds for Y - [0, 1]\ Z, with Z
as in the statement of the theorem. Now set for each e > 0,

Y e - {x€[0,1]: |u'(x)| > e}, 7ce: = p.f |Ye, and \i£ := jxU" |Ye. Then
it follows from (0) and the Vitali-Hahn-Saks theorem that

f|Y .

in the sense that var (TCQ- ne)-* 0, and similarly,
u"|Y

Now the behavior of ja restricted to B(tR\[-e,e]) for all
positive e determines jo. since p-(IR)= 1. Thus it will suffice
for our purposes to prove that for each e > 0 |J.e is given by
the line integral formula

(2) |ie(A) = J A [N(f,y)/y i] dy0> all A€ B(R),
c e , A

with E e A = {y€f(Ye): y-|dy-|/dyo € A}, while n£

determines the integrand in (2) via

(3) 7te(B) - J [N(f,y)/y-,] dy0 , all Be B (R 2 ) ,
•"e.B

with F e B = f (Ye )HB.
In (2) and (3) we have utilized the fact that, by the

definition of Y e ,

f (Y e ) - f([0, 1]) n {ye [R2: |y-| |>e}, so that

(4) N(f|Ye,y) = N(f, y), for each y€f (Y e ) .
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We have also denoted by y-idy-j/dyg the product of y-\ with
the slope of the tangent line to the set f([0, 1]) at the
point y =(yo»y-|) [by the Lemma there is a unique tangent
line at H-\-a.e. ycf([0,1])]. The existence of the integrals in
(2) and (3) as integrals with respect to H-\ [taking

dyn - cos e(y) d/-/-j where e(y) denotes the angle with the
horizontal made by the tangent line to f([0,1]) at y]
follows by the Proposition with X = [0,1] and -v = H-\ on

Y = IR2. Namely, by the Lemma the absolute continuity of f
ensures that this mapping has the (N) property of Lusin [S]
from which it easily follows that f(S) is / - / - | - m e a s u r a b l e
for each L-j-measurable subset S of [0 ,1]. Thus on defining
the set function I I by

n(A) = H-|(f(A)) on subsets Ac[0, 1],
and letting B denote the metric (outer) measure generated
by n|B([0,1]), it follows that

(5) B(A) = J N(f|A,y) dH^y) for all Ae B([0,1 ]).

It follows from (5) that the line integral in (3) is also
well defined, for each e>0. The validity of (3) is now an
easy consequence of the formal relation dx = du/u', since
the equality is evident for B = f(J) on each component J of
the open sets
C+(e) = {x| u'(x) > e}, C.(e) = (x| u'(x) < -e}.

The validity of formula (2) utilizes the fact that the
function u" can be factored as hof where h: f[0, 1] —» IR is
the measurable mapping defined Af| -a.e. by
h(y) = yidyi/dy0. More precisely, if C,D,E denote the subsets
of [0, 1] consisting, respectively, of points x where u"(x) is
not defined as a real number, of points x in Z at which Z
doesn't have unit density, and of points x such that f([0,1])
fails to have a unique (nonvertical) tangent line.then
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L-, (C) - L! (D) - L, (E) - 0
[the validity of the last relation follows from the proof of
the Lemma, cf.e.g. [S,Ch IX Lemma 3.1]]. Hence by setting
X = [0, 1]\(CuDuE) one finds that \i = p.u"lx. Moreover
u": X-» IR can be factored as u" = h°f, where h: f(X) —» IR is
given by h(y) = y-|dy-j/dyo- It follows from this that (2) is
valid for each set AcB(IR) such that Ac IR\{0}. The validity
of (2) for all A follows immediately.

Remarks: We observe that the arguments used in the proof
of Theorem A demonstrate that n also characterizes p.9,

(u' u")where g = (u.u'.u")- So n characterizes \x , and hence if
U€W 3 ' 1 ( 0 , 1) it also characterizes f i u " , and so on.

Although Theorem A leads fairly straightforwardly
(using [MM2]) to the conclusion that for Q. c DRN and
U€W2 'P(Q), p> N, the joint distribution n = p* where

f = (u, grad u), characterizes |ij= | i . u > x ' x l , i = 1, ... ,N, as

well as ji* - | i ^ u , one has to utilize the additional fact

that TC characterizes the distributions JJ. = jr a U for all

second directional derivatives (3 a ) 2 to obtain a
multidimensional analogue of Theorem A involving
nonsymmetric differential operators. Of course the use of
rectifiable currents would be more suitable for this
multidimensional context ([F,ch 4] or [M, ch 4]). In any
event Theorem A supplies a key result for the relaxation
analysis of the second order model in [CMM], as will be
shown in a subsequent publication.
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