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variation of boundaries II. Dielectric gratings, Pade
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Abstract

We have recently introduced a method of variation of boundaries for the solution of diffrac-
tion problems. This method, which is based on a theorem of analyticity of the electromagnetic
field with respect to variations of the interfaces, has been successfully applied in problems of
diffraction of light by perfectly conducting gratings. In this paper we continue our investiga-
tion of diffraction problems. Using our previous results on analytic dependence with respect
to the grating groove-depth, we present a new numerical algorithm which applies to dielectric
gratings. We also incorporate Pade approximation in our numerics. This addition enlarges
the domain of applicability of our methods, and it results in computer codes which can predict
more accurately the response of diffraction gratings in the resonance region. In many cases,
results are obtained which are several orders of magnitude more accurate than those given by
other methods available at present, such as the integral or differential formalisms.

We present a variety of numerical applications, including examples for several types of
grating profiles and for wavelengths of light ranging from microwaves to ultraviolet, and we
compare our results with experimental data. We also use Pade approximants to gain insight
on the analytic structure and the spectrum of singularities of the fields as functions of the
groove-depth. Finally, we discuss some connections between Pade approximation and another
summation mechanism, enhanced convergence, which we introduced earlier. It is argued that,
provided certain numerical difficulties can be overcome, the performance of our algorithms
could be further improved by a combination of these summation methods.
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1 Introduction

We have recently introduced a method of variation of boundaries for the solution of diffraction
problems [5]. This method, which is based on a theorem of analyticity of the electromagnetic field
with respect to variations of the interfaces, has been successfully applied in problems of diffrac-
tion of light by perfectly conducting gratings [6]. In this paper we continue our investigation of
diffraction problems. Using our previous results on analytic dependence with respect to the grating
groove-depth, we present a new numerical algorithm which applies to dielectric gratings. We also
incorporate Pade approximation in our numerics. This addition enlarges the domain of applicability
of our methods, and it results in computer codes which can predict more accurately the response of
diffraction gratings in the resonance region. In many cases, results are obtained which are several
orders of magnitude more accurate than those given by other methods available at present, such as
the integral or differential formalisms.

For several decades perturbation methods have been considered inadequate for the treatment of
problems of wave scattering by gratings, and only few of the many discussions in this area have been
based on perturbative techniques. Low order perturbative approaches include those of Rayleigh [23]
and, much more recently, Wait [27], while, for higher order methods, the literature seems to reduce
to the work of Meecham [19]. Low order methods are only appropriate for very shallow gratings and,
in particular, they cannot be applied to gratings in the resonance region (i.e., gratings whose height
to period ratio is comparable to the wavelength to period ratio) [17, 24]. The approach of Meecham,
on the other hand, produces the solution as a Neumann series whose n-th term is given by an n-fold
convolution of the Green's function. This method, which has not been implemented numerically,
was thought to be mathematically incorrect [25], and dismissed. Attention then focused on integral,
differential and modal methods (see [22, 11, 14]).

Uretsky [25, p. 411] objected to Meecham's approach, and conjectured that the electromagnetic
fields for a grating do not continue analytically to the fields for a flat interface. Uretsky's conjecture
was based on a certain integral expression related to the fields which appears to become meaningless
as the groove depth takes complex values. As we have said, however, the fields are analytic functions
of the grating groove depth [5]. Furthermore, simple algebraic recursive formulae can be given which
permit one to calculate in closed form the diffractive amplitudes to arbitrary order in the groove
depth, without recourse to calculation of iterated integrals. An algorithm based on the analyticity
properties of the fields can, therefore, be devised. A final complication arises as the calculated power
series for the diffracted amplitudes converge for relatively shallow gratings only. This difficulty,
which is not to be confused with restrictions to shallow gratings that are inherent in low order
methods, can be circumvented as we shall show below (see also [6]). Thus, efficient algorithms
based on perturbation theory can be obtained. In fact, higher order perturbation methods can also
be applied to three dimensional biperiodic gratings, and some preliminary experiments indicate
that they can exhibit a very good performance in this problem in which other methods have had
limited success. Indeed, for sinusoidal biperiodic gratings, and for a given height to period ratio,
our methods yield results with the same order or even better accuracy than in the corresponding
singly periodic sinusoidal case. A complete discussion of our approach in a doubly periodic setting



will be presented elsewhere.

This paper is organized as follows. Section 2 contains a description of theoretical and numerical
aspects of our method; the basic recursive relations for dielectric gratings are given in §2.3. In §3 we
present a variety of numerical applications, including examples for several types of grating profiles
and for wavelengths of light ranging from microwaves to ultraviolet, and we compare our results
with experimental data. Finally, a discussion of the analytic structure of the electromagnetic field
and some remarks on the connections between the methods of Pade approximation and enhanced
convergence as they apply to our problem are presented in §4. Enhanced convergence is an alterna-
tive summation mechanism that we introduced in [6]. It uses conformal transformations to produce
a rearrangement of the singularities of the fields in the complex plane which is favorable for the
summation of a truncated series. It is argued that, provided certain numerical difficulties can be
overcome, the performance of our algorithms could be further improved by a combination of these
summation methods.

2 Analytic dependence, recursive formulae and numerics

In this section we introduce the basic elements of our algorithm. In §2.1 we set our notation, and
in §2.2 we review our results on the analyticity properties of the electromagnetic field with respect
to variations of the grating profile. In §2.3 we derive recursive formulae for the coefficients of the
power series expansion of the diffractive amplitudes. The algebra in this derivation is somewhat
involved, but it results in formulae that are easy to implement numerically. In §2.4 we indicate how
the power series can be used to extract the values of the efficiencies.

2.1 Preliminaries

Let us consider a periodic function / of period d, and the grating profile

y = /,(*) = 6f(x),

which separates the regions y > fs(x) and y < fs(x) (6 is a real number). These regions are
assumed to be filled by materials of dielectric constants e+ and c" respectively. The permeability of
the dielectrics is assumed to equal //o, the permeability of vacuum. Assume the grating is illuminated
by either a TE or TM polarized incident beam

In either case of polarization, one of the fields E or H remains parallel to the grooves, and is,
therefore, determined by a single scalar quantity u = u(x, y, 6) (equal to the transverse component



Ez of E in the TE case, and to the transverse component Hz of S in the TM case). The functions
u = u* satisfy Helmholtz equations

Aw* + (k*)2^ = 0 , in Q± = {±y > ±Sf(x)},

and the boundary conditions

ti+ - u" = - c ^ - ^ ' W , on y =

Here we have put fc* =

for TE polarization,f 1
f o r ™ Polarization,

and rts = n$(x,5/(aO)= u n ^ normal to {y = 6f(x)}.

The periodicity of the structure leads to certain properties of periodicity in the fields, which can,
therefore, be expanded in Fourier series. The resulting expansions, the so-called Rayleigh series,
incorporate also conditions of radiation at infinity. Set

where /?^ is determined by Im(/?^) > 0 or /?* > 0. The Rayleigh expansion in the region ft4", which
is necessarily convergent for y > XJM = max 6/, is given by

In ft" we have the Rayleigh expansion,

n=—oo

which converges for y < ym = min 6/. It is to be noted that these expansions can be divergent in
the region inside the grooves [20].

Only finitely many of the Rayleigh amplitudes Bn correspond to propagating modes, as the
numbers /?„ have nonzero imaginary part for n large enough. For loseless gratings, the principle of
conservation of energy yields a useful relation between the amplitudes of the propagating modes.
Indeed, in case the constants fc* are real, this "energy balance criterion" is given by

where I/* are the finite sets



Equivalently, we obtain the relation

for the efficiencies

e*«/tf|Bf
of the propagating modes. For perfectly conducting gratings, we only have reflected efficiencies,
and in this case the energy balance criterion reads

£ «. = i- (2)

2.2 The theory

As we said, our algorithm is based on a property of analyticity of the field u = u(x, y, 6) with respect
to the parameter 6. More precisely, under the assumption that the function f(x) is analytic, we
have established the following results [5]:

1. Given 50 € R and y0 above (or below) the profile y = 60f(x), the function u = u(x, t/, 6)
is an analytic function of its three variables for y sufficiently close to y0 and 6 sufficiently
close to So.

2. The functions
u±(xJSf(x)^S) and

are analytic with respect to x and S.

3. Given 6o € R the functions u^ are analytic with respect to x, y and 6 for 6 close to
So and y close to the curve y = 6of(x) (notice that this implies, in particular, that the
functions u+ and u~ can be extended analytically across the interface).

From points 1) and 3) above, it follows that the functions u* can be expanded in series in powers
of 6

(3)
n=0

which converge for 6 small enough. The functions u* satisfy Helmholtz equations

An* + (**)»»} = 0 in {(*, y) : ±y > 0 }

and conditions of radiation at infinity. They also satisfy boundary conditions at y = 0 which
are obtained recursively by differentiation of equations (1) with respect to 6 at 6 = 0. Such
differentiations and use of the chain rule are permissible, as it follows from points 2) and 3) above.



2.3 Recursive Formulae

To obtain recursive formulae for the Taylor coefficients of the diffractive amplitudes, we begin by
finding the transmission conditions the functions 11* satisfy at y = 0. Differentiation of the first
equation in (1) n times with respect to 6 at 6 = 0 yields the relation

Since

the second equation in (1) can be written in the form

= (6f'(x)ia + i0) c««

Thus, n differentiations with respect to 5 yield

£2=o # 5 ? ( £ S £ ( i W (*, 0> 0) - C^g^r (iftF) (*, 0,0))
- n S ^ g " ( 5 J ^ ^ (AW) (*.0,0) - Cl^^ [tff) (,,0,0)) (5)

FVom (3) we have

so that equations (4), (5) can be made to read

and

c 0 ^ (ian(WH/1/""1) ~ (~iP)n+1fn)eia*

J (n - fc)!1 0 2 , -

Because the functions u* in (3) are quasi-periodic solutions of the Helmholtz equation in a semi-
plane, they can be expanded in Rayleigh series

«S(*,V)= E < r ^ r i ^ » (9)



similar to those which represent the functions u±(x, j/,6) for ±y > ±6f(x):

oo

u±(x,y,«)= £ Bf
r

It is plain from (6) that

n'r n!
so that we have the Taylor series

0 0

n=0

for the Rayleigh coefficients B*. Our approach is based on evaluation of the Taylor series (10),
whose coefficients d*r can be obtained recursively. To obtain a recursive formula, let

J\x) — Z^ ^l,r€ , A — — ,
r=-F a

be the Fourier expansion of the function / (with finite or infinite F) and let C/,r denote the Fourier
coefficients of the function f(x)l/l\

f(x) _ V A PiKrx

Then, substitution in (7), (8) of u* and the spatial derivatives of u* as calculated from (9) yields
the coefficients d*r in terms of the coefficients dj£r (k < n) and C/,r. Indeed, from (7) we have

" < r y « " = -(-iPT Z^-nF Cn,^*" (11)

and, since
nF

equation (8) becomes

) ^ (12)

- C 0
2 ( - *
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We now rewrite the right hand sides of (11) and (12) so as to display the coefficient of each particular
mode. The right hand side of (11) is equal to

- UZl E£ -ooEjS[if.*,, C-*, (Wr*4« - (-W"~fc«
Since

eiKpxeia'* = e*ttF+f *,

changing p by r — q in the inner sum gives

YrZ-nF{-iP)nCn,re^ (13)

Now, it can be checked inductively that

In other words, in the last term of (13), the sum over q can be restricted to — kF < q < kF and
therefore the sum in r reduces to a sum for — nF <r< nF. Thus, (11) is equivalent to

-»7?)nCn ,r (14)

A similar calculation permits us to transform equation (12) into

T£~* (*#*£, + C*ip;d-^ <*— (15)

= YTrl-nF [CnA-iPT-1 ((ia)(iKr) - (-t/?)2)

Recursive formulae for the Taylor coefficients d*r now follow from (14), (15):

< r " < r = - ( " W C V (16)

+ ECS E S S 3 3 S M 1 2 » ) F ) ^«-*,r-, [(«-A-(r - q))(iaq) ( ( i / ^ ) - * - 1 ^ (17)



2.4 Numerical implementation

Formulae (16) and (17) allow us to calculate recursively the Taylor coefficients d%r. Note that, for
given integers n and r, only some of the coefficients dj£9 (k < n) are involved in the computation of
d*r. Indeed, to compute d*r we only need d*w for k < n and for

-fcF, r-(n- k)F) <q< min(kF, r + (n- k)F).

Thus, generation of the coefficients d%r should be restricted to those which will eventually contribute
to the calculation of the diffractive efficiencies to some prescribed order. In order to obtain further
reductions in the computation time, one can also truncate the sums by setting d^q = 0 for modes
q larger than a certain mode go- We refer to [6] for details.

There remains the problem of extracting the values of the Rayleigh coefficients from their Taylor
expansions. To do this we use Pade approximation. In our previous paper [6] we used a different
summation method, which we called enhanced convergence. This method permitted us to deal
with many practical situations, but it is apparent now that better performance results from use of
Pade approximants. In §4 we discuss the relations between Pade approximation and the method of
enhanced convergence.

The [L/M]-Pade approximant of a function

B(6) = f ) dn6n (18)
n=0

is defined (see [2]) as a rational function

[L/M] = —

whose Taylor series agrees with that of B up to order L + M +1. A particular [L/M] approximant
may fail to exist but, generically, [L/M] Pade approximants exist and are uniquely determined
by L, M and the first L + M + 1 coefficients of the Taylor series of B. Pade approximants can
be used to extract the values of a function B from its Taylor series (18) far beyond the radius of
convergence of the series. They can be calculated by first solving a set of linear equations for the
denominator coefficients 6t, and then using simple formulae to compute the numerator coefficients
a,-. For convergence studies and numerical calculation of Pade approximants see [2, 3, 4, 8, 12].

In the examples of the following section the denominator coefficients have been found by Gaus-
sian elimination with full pivoting. In all cases, in the solution of the Pade problems as well as
in the recursive calculation of the Taylor coefficients dk,r, double precision complex arithmetic was
used.

8



3 Numerical results and comparison with experimental
data

We present a number of applications, some of which have repeatedly been considered in the liter-
ature, to demonstrate the accuracy and wide applicability of our algorithms. We begin with two
perfectly conducting gratings, and then we tabulate some results for a dielectric grating with real
dielectric constant. Finally, comparisons with some experimental data for lossy metallic gratings
and for wavelengths ranging from microwaves to ultraviolet are given.

In Tables la and lb we present values for the efficiencies of a perfectly conducting sinusoidal
grating

/(*) = -cos(27ra:/d) = -cos(tfx)

for TE and TM polarization, respectively. The incoming wave is normally incident with wavelength-
to-period ratio X/d = 0.4368. In this configuration there are five propagating modes: t/+ =
{ 0 , ± l , ± 2 } . The efficiencies were computed using [32/32] Pade approximants; the computing time
in a Sparc Station IPX was of about one minute for either Table la or lb. The error in the energy
relation (2) is denoted by

€ = 1 - £ en.
n€t/+

Table la. Table lb.
h/d
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

eo
1.000
0.786
0.337
0.030
0.051
0.266
0.423
0.415
0.337
0.317
0.355
0.355
0.290
0.259
0.355

ei
0.000
0.105
0.310
0.403
0.299
0.110
0.012
0.062
0.170
0.211
0.161
0.101
0.100
0.136
0.135

e2
0.000
0.002
0.021
0.082
0.176
0.257
0.277
0.230
0.162
0.131
0.161
0.222
0.255
0.233
0.175

€

0.0E+00
2.2E-16

-5.6E-16
0.0E+00
-2.2E-16
2.0E-15
2.3E-12
3.6E-10
1.8E-08
3.5E-07
2.7E-06

-6.2E-06
-3.6E-04
-4.0E-03
-2.6E-02

h/d
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

eo
1.000
0.743
0.263
0.012
0.031
0.050
0.000
0.194
0.711
0.941
0.605
0.199
0.196
0.528
0.638

ei
0.000
0.125
0.319
0.313
0.126
0.001
0.071
0.164
0.083
0.009
0.146
0.344
0.380
0.216
0.048

e2
0.000
0.004
0.050
0.180
0.359
0.474
0.429
0.239
0.061
0.020
0.052
0.057
0.023
0.024
0.136

€

0.0E+00
4.4E-16

-2.2E-16
-7.8E-16
-7.8E-16
4.7E-15

-1.0E-13
-1.3E-10
1.6E-09
7.7E-07
2.4E-05
3.0E-04
2.0E-03
6.3E-03
5.3E-03

Table 1: Efficiencies for a perfectly conducting sinusoidal grating under normal incidence with a
wavelength-to-period ratio X/d = 0.4368: [32/32] Pade approximants. Table la.: TE polarization;

Table lb.: TM polarization.



The case treated in Table 1 has often been used as a test for diffraction problems solvers. Our
results, while more accurate, are in agreement with results presented previously. For example, Van
Den Berg [26] and Pavageau and Bousquet [21] considered this problem for values of h/d ranging,
from 0.3 to 0.56. They report errors of the order of 10"5 for a ratio of 0.3 and of order 10~3 for
ratios of 0.4 and .56. Our own integral code, which was written following prescriptions in [15, 16],
yields results of an accuracy comparable, or slightly better, to those of Van den Berg and Pavageau
and Bousquet. For very deep gratings (ratios of 0.7 and beyond) our method in its present form
breaks down due to numerical ill conditioning, while the integral method continues to give results
with a relative error of the order of a few percent. Thus, for such gratings, the integral method is
to be preferred.

Tables 2a and 2b correspond, respectively, to the TE and TM modes for the grating

where g is the echelette profile

y = -g(2*x/d)

_ 2x _ o ;f _ 7 r < x < —£

_ 2 £ + 2 i f f<X<7T.

The echelette profile (19) was approximated by its truncated Fourier series

(19)

£ CisJKrx

with F = 10. The computing time, again in a Sparc Station IPX, was of about 30 seconds for Table
2a and of 60 seconds for Table 2b.

Table 2a. Table 2b.
h/d
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

CO

1.000
0.856
0.515
0.180
0.012
0.029
0.136
0.230
0.285
0.348
0.459

ei
0.000
0.071
0.230
0.358
0.366
0.261
0.125
0.043
0.041
0.080
0.102

e2
0.000
0.001
0.012
0.052
0.128
0.224
0.307
0.342
0.316
0.246
0.167

€

0.0E+00
-2.2E-16
-2.2E-16
-5.0E-15
-1.6E-11
-5.0E-09
-3.1E-07
6.1E-07

-1.4E-05
-2.6E-04
-2.4E-03

h/d
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

eo
1.000
0.826
0.447
0.134
0.011
0.001
0.001
0.072
0.356
0.721
0.812

ei

0.000
0.085
0.241
0.296
0.195
0.049
0.002
0.070
0.114
0.059
0.044

e2
0.000
0.003
0.035
0.137
0.299
0.451
0.497
0.394
0.208
0.084
0.070

€

0.0E+00
-2.2E-16
-2.2E-16
-7.2E-15
3.1E-11
1.2E-08
8.6E-07
2.8E-05
5.4E-04
6.0E-03
3.8E-02

Table 2: Efficiencies for a perfectly conducting symmetric echelette grating under normal
incidence with a wavelength-to-period ratio \/d = 0.4368: [12/12] Pade approximants; F = 10,

qQ = 100. Table 2a.: TE polarization; Table 2b.: TM polarization.
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In Table 3 we consider a sinusoidal dielectric grating of period 1/xm. The grating has a refractive
index VQ = 2, and is illuminated, under normal incidence, with light of wavelength A = 0.83/im. In
this table, R and T represent the sums of the reflected and transmitted efficiencies, respectively.
This case was treated in [10]. There, the authors used an integral equation formulation, and report
the following values of JR and T for h = 0.2/xrn:

R = 0.117274,

T = 0.882759

and

compare Table

h/d
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

3a.

Table 3a.
R

0.111111
0.114926
0.117282
0.104871
0.080184
0.055902
0.038983
0.029619
0.024083

T
0.888889
0.885074
0.882718
0.895129
0.919816
0.944098
0.961015
0.969848
0.972233

c
-2.2E-16
0.0E+00
0.0E+00
1.6E-14
9.8E-11
1.0E-07
-1.3E-06
-5.3E-04
-3.7E-03

h/d
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

Table 3b.
R

0.111111
0.104046
0.086355
0.062807
0.039117
0.025636
0.023655
0.021333
0.016013

T
0.888889
0.895954
0.913645
0.937193
0.960883
0.974363
0.976517
0.982000
0.999951

€

-2.2E-16
-2.2E-16
O.0E+00
-1.6E-12
-1.1E-08
-6.5E-07
1.7E-04
3.3E-03
1.6E-02

Table 3: Reflected and transmitted energies for a sinusoidal grating with index of refraction
i/o = 2, under normal incidence with a wavelength-to-period ratio X/d = 0.83: [20/20] Pade

approximants. Table 3a.: TE polarization; Table 3b.: TM polarization.

In what follows we present efficiency curves that correspond to configurations for which exper-
imental data is available in the literature. For simplicity, we have used examples which have been
reported in the review article [18].

Figure 1 corresponds to early experiments of Deleuil [9] in the microwave region. The profile
is triangular, and the configuration is Littrow in order 1; the parameters are given in the caption.
We have assumed, as in [18], a perfectly conducting grating, and we have approximated the grating
profile by its Fourier series with fifteen modes. Higher order Fourier approximations lead to identical
graphs. [12/12] Pade approximants were used. We observe somewhat better agreement with the
experimental data than that reported in [18, p. 161]. Figure 2 corresponds again to a triangular
profile in Littrow mount. In this case, infrared radiation is used. The parameters used in our
numerics are identical with those in Figure 1. The Wood anomalies at X/d = .64 and X/d = .68 are
very well resolved (compare [18, p. 164]).

11
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0.8 1.2 1.4

(a)
0.6 0.8 1.2 1.4

(b)

Figure 1: Efficiency curves for a perfectly conducting ruled grating (blaze angle= 37°, included
angle= 94°, deviation angle= 8.9°) in the microwave region: (a) TE polarization; (b) TM polariza-
tion.

Figure 3 corresponds to an 830 groove/mm sinusoidal holographic silver grating in the visi-
ble range as a function of the incidence. Close agreement with the experimental curves of [13] is
observed; see also [18, p. 166], were similar agreement was found. Finally, in Figure 4 we show
experimental values and theoretical curves for a 158 groove/mm aluminum ruled (triangular) grat-
ing in near UV. Values of the refractive indices of aluminum were taken from [1]. The bottom,
intermediate and top curves in Figure 4 correspond to Fourier representation of the profile by using
15, 21 and 25 Fourier modes respectively. We note that the representation with 15 modes yields
values that match the experimental results best. Quite possibly, the actual grating profile contains
rounded rather than sharp vertices, thus explaining the better match with results obtained by as-
suming a lower order Fourier series. A theoretical curve in the region 0.2 < A < 0.6 is given in [18,
p. 170], showing qualitative agreement with these experimental results.
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(a)

(b)

1.5

Figure 2: Efficiency curves of a 26.75° blaze angle perfectly conducting echelette grating in the
infrared (angular deviation = 3.5° between incident and —1 order diffracted waves): (a) TE polar-
ization; (b) TM polarization.

4 Singularities, enhanced convergence and Pade approxi-
mants

It is well known that, rather generally, the singularities of the Pade approximants approach the
singularities of the function they approximate [2]. In Figure 5 we show the location of the zeroes
of the numerators and denominators of the [28/28] and [48/48] Pade approximants to the Rayleigh
coefficient Bi(6) for the perfectly conducting grating

fs(x) = e~i2*x) = 26COS{2TTX)

under normal incidence with wavelength A = .4368. This example was considered in Table 1; note
the correspondence

h/d = 46. (20)

In this figure, a circle (V) represents a zero of the denominator, which is a singularity of the
approximant provided it is not crossed out by a corresponding zero ('x') in the numerator. We see
that no singularities occur on the real axis, as expected from our theoretical discussion. Indeed,

13



0 . 8

0 . 6

0 . 4

0 . 2

Figure 3: Efficiency of an 830 groove/mm sinusoidal holographic silver grating in the visible (A
0.521/zm), as a function of the incidence. Dashed: TE polarization; Solid: TM polarization.

Figure 4: TE efficiency curve for a 158 I/mm aluminum ruled grating (blaze angle= 1.66°, included
angle= 90°, deviation angle= 3.5°) in near UV.

Pade approximants provide us with an approximation to the domain of analyticity of the diffracted
fields. (Figure 5 corresponds to the Rayleigh coefficients B\ = B\{JS). Very similar pictures are
obtained for the amplitudes J?2 &nd B$ and for approximants of other orders).

A domain of analyticity C which resembles the one suggested by Figure 5 was proposed in [6]
(see region C in Figure 6 below). Figure 6 lead us to devise a summation mechanism, enhanced
convergence, which is based on conformal transformations. As we have said, the method of enhanced
convergence permitted us to apply our analytic approach to many practical situations. It is apparent
now, however, that better results are to be obtained by means of Pade approximation (compare
Tables la,b of this paper and Tables 2a,b in [6]). As it will be argued below, a combination of
both summation methods could further improve the quality of our algorithms. Towards this end we
discuss, in what follows, some connections that exist among singularity distributions, such as those
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Figure 5: Poles (o) and zeros (x) of the Pade approximants of B\(6): (a) [28/28]-approximant and
(b) [48/48]-approximant.

in Figure 5, and the efficiency of the methods of enhanced convergence and Pade approximation.

Given a function B(6) and a complex number #o, the method of enhanced convergence uses
conformal transformations to produce an arrangement of the singularities of B and the point #o>
so that a truncated Taylor series can be used to calculate B(6Q). For example, we know from
the theory in §2.1 (see also Figure 5) that the electromagnetic field, and therefore, the Rayleigh
coefficients B^(6)y are analytic functions of 6 in a neighborhood of the real axis in the complex
6-plane. The width of this neighborhood is not necessarily uniform along the real axis, as suggested
by our representation C in Figure 6 of the region of analyticity of B*(6). Suppose one wishes to
compute the function B(6) at a point 6o which lies outside the circle of convergence D of the Taylor
series of B around 6 = 0 (see Figure 6). The series is divergent at 60. If we consider, however, the
composition of B with a conformal transformation,

the singularities and the point £o = p(^o) at which the function is sought will show a different
arrangement in the {-plane and, possibly, fo will lie inside the circle of convergence of the composite
function B(g~l(£)). If so, a truncated Taylor series of the composite function can be summed to
yield the value B(6Q). Even if 6Q lies inside the circle of convergence Z?, this procedure may result
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8-plane

Figure 6: The region C of analyticity of the Rayleigh coefficients Bf{6) and the lens-shaped region
L that is conformally transformed onto the right-half plane via g(6) =

in improved convergence rates [6, 7].

In [6] we used the transformation

to map the elongated region L in Figure 6, which consists of the intersection of two discs, onto the
right-half f-plane. The parameters a and A in Figure 6 control the distribution of singularities of
the composite functions

Br(g-\t)). (21)
These parameters can be chosen in such a way that the composite series about f = 1 converges at
the value of f that corresponds to any given real value of 6. Indeed, given any 6 € It, taking A
large enough we will have 6 € L. Then, taking a small enough we will have I C C , and, therefore,
the composite maps (21) will be analytic in a circle about £ = 1 that contains g(6). The optimal
value of the parameters, however, should be chosen so as to obtain the fastest convergence for the
series of (21). If the complex numbers 6j denote singularities of the functions Br(6), then A and a
should minimize, for any given 5, the expression

max (22)

see [7].
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A pair of optimal parameters A and a can be obtained, without any knowledge of the set
of singularities of Br, simply by seeking parameters that yield the fastest numerical convergence.
In [6] we observed that the convergence rates are rather insensitive to changes in the parameter Ay

provided A is large enough, say A = 9. In contrast, the convergence rates were observed to be very
sensitive even to small changes in the parameter a. In [6] we chose a = .13, as we observed that
best convergence rates were obtained for a = .13 ± .01.

0.25

Figure 7: Plot of functions of a.

On the other hand, we can calculate the optimal value of a simply by minimizing the expres-
sion (22), where Sj are the poles shown in Figure 5. It is not hard to see that only the 14 poles
which appear on the right hand plane need to be considered. In Figure 7 we show plots of j^pv^u
for j = 1 , . . . , 14 as functions of a for 6 = 0.1 (which corresponds to a height to period ratio of
h/d = 0.4, see (20)). We see that expression (22) is minimized at about a = .123, in agreement with
our previous estimates. This agreement constitutes an important consistency check in our theory.

As we have said above, enhanced convergence can be used in combination with Pade approxi-
mants. Indeed, we have shown [7] that the relative arrangement of the singularities of an analytic
function is closely related to the numerical conditioning of the corresponding Pade approximation.
A conformal change of variables on a function B(6) can lead to a dramatic improvement in the con-
ditioning of the corresponding Pade problem. And, interestingly, conformal maps which are optimal
in the context of enhanced convergence, also lead to optimal conditioning in Pade approximation.
Since the main numerical weakness of Pade approximation is its ill conditioning, it is reasonable to
expect that its use in conjunction with enhanced convergence would lead to improvement in the cal-
culation of the diffraction efficiencies. A great deal of improvement has been obtained, as a matter
of fact, by using this idea in some simple approximation problems [7]. However, there is a requisite
that needs to be met: one needs to use accurate values of the series of the composite functions.
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Composition of the corresponding series will not do, as such operation results in a loss of significant
digits which degrades the numerics and yields no substantial improvement in the calculated values.
Thus, important progress would be made if an appropriate conformal mapping g, together with an
adequate method for the calculation of the derivatives of the composite functions (21) were found.
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