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1. INTRODUCTION.
1.1. MATHEMATICAL THEORY.

In this paper we discuss the motion, in the plane, of a region Q(t)
whose boundary-curve evolves from a given region , according to an

equation
(1.1) B(8)V = G(8)K - U

with V the normal velocity and K the curvature. (Our sign
convention is such that the positive normal-direction is outward from
90Q=0Q(t), and K<0 when 9Q is a circle) Here B(8) and G(e) are given
functions of the normal-angle ©, which is the counterclockwise angle
from a fixed axis to the outward normal of 9Q2, and U is a given constant.

For B(®) and G(®) continuous and strictly positive, (1.1) is a
parabolic equation that is well understood, with fail"ly well-behaved
solutions.! There are, however, situations of physical importance for
which G(8)=0 over certain angle-intervals and for which G(8) need not be
continuous (cf. §1.2). Here we will develop a fairly complete theory of (1.1)
under the following assumptions:

(1.2a) G is piecewise continuous and 20, and continuous on any interval
of strict positivity;

1cf. Angenent [Ag); Chen, Giga, and Goto [CGG); Soner [So); Barles, Soner, and
Souganidis [BSS). Universiiy i g
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(1.2b) B is continuous and >O0.
In some instances we will add the hypothesis:

(1.3) B has polar diagram a straight line on any angle interval for which
G=0,

which is based on the underlying physics.

Because of the lack of continuity of G as well as the degeneracy of
(1.1) when G=0, it is convenient to discuss this equation within the weak
framework of viscosity solutions. This approach to geometric equations,
initiated by Evans and Spruck [ES1] and Chen, Giga, and Goto [CGG], is based
on the use of level sets to characterize evolving curves, an idea due to
Sethian [Se], Osher and Sethian [0S], and Barles [Ba]. Here — to study (1.1)
— we will use this approach as well as an intrinsic approach given by Soner
[So] and Barles, Soner, and Souganidis [BSS]. The difficulties concerning (1.1)
result from the discontinuous nature of G; the degeneracy of the equation,
at angles & with G(8)=0, causes no great difficulty; were G continuous,
most of our results would follow from those in [CGG].

Our main results, for evolution from a given compact region Q,
consist of: a theorem of existence and local uniqueness; a global comparison
theorem? for level-set solutions.

1.2. PHYSICAL BACKGROUND.

There are situations of interest in which the motion of a phase
interface is essentially independent of the behavior of the corresponding
bulk phases. One of the first models of such phenomena was proposed by
Mullins [Mu] to study the planar motion of grain boundaries; the resulting

evolution equation has the form3

(1.4) V=K

after an appropriate scaling Equation (1.4) is a parabolic PDE with a large
literature;? its major consequence ([GH], [Gr]) is that all such boundary

2This comparison theorem was established independently by Ohnuma and Sato
[0S], whose proof is different (and more concise) than ours.

SAllen and Cahn [AC] and Rubinstein, Sternberg, and Keller [RSK] deduce the
equation V=K as a formal approximation to the Landau-Ginzburg equation, a result
established rigorously in [BSS), [ESS], [Ch], and [DS]. See also [ORS], [OwS], [RS].
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curves, irrespective of their initial shape, shrink to a point in finite time,
with asymptotic shape a circle.

Mullins's theory was generalized in [G1,§8], [AG1] to include
anisotropy and the possibility of a difference in bulk energies between
phases. The resulting equation is

(1.5) b(8)V = g(8)K - U,
where g(®), the energy modulus, is given by
(1.6) g(e) = f(8) +1"(9)

with f(8)>0 the interfacial energy; U is the relative energy of the
material in Q; and b(8)>0, the kinetic modulus, is a material function.
The presence of the angle & reflects anisotropy, and the particular form in
which f appears in (1.6) is a consequence of thermodynamics. In fact, a
consequence of (1.5) and (1.6) is the thermodynamic inequality

(1.7) (d/dt){ Jf(8)ds + Uarea(Q(t))} = - [b(8)Vads.
0Q(t) 0Q(t)
When
(1.8) g(e) >0

evolution according to (1.5) is governed by a parabolic PDE and the
underlying problem is not much different than that for the equation V=K.
What makes (1.5) nonstandard is the possibility of interfacial energies that
satisfy

(1.9) g(e) <0

4cf. Brakke [Br], Sethian [Sel, Abresch and Langer [AL), Gage and Hamilton [GH),
Grayson [Gr], Osher and Sethian [0S], Evans and Spruck [ES1-3], Chen, Giga., and
Goto [CGG], Goto and Sato [GS], Almgren, Taylor, and Wang [ATW], Taylor, Cahn, and
Handwerker [TCH], and the references therein.



(1.12) G(e) = F(e) +F (o).

The next question we must answer is what is an appropriate kinetic
modulus for the infinitesimally wrinkled curve. If I'(t) is a finite wrinkling
whose facets have ©,; and 6, as normal angles, then I'(t) evolves as a
rigid body with constant velocity w defined by [AG1]

(1.16) w:N(e,) = -b(8,)"1U, w-N(8,) = -b(8,)"1U

(although TI'(t) is allowed to shrink or grow tangentially). Since w
depends on the particular wrinkling only through &; and &,, it seems
reasonable to suppose that infinitesimal wrinklings with &, and €, as
normal angles also evolve with rigid velocity w, and this is equivalent to
replacing the kinetic modulus b(8) between &, and ©, by an effective
modulus B(8) that agrees with b(®) at &; and &, and has polar

diagram between &, and €, a straight line:
(1.17) B(8)! = u,(8)b(8,)"! + p,(8)b(e,)?

This proceedure defines an effective kinetic modulus B(®) for all & [G2]:
B(8)>0 1is continuous; B(8)=b(®) for all GS angles ©; the polar diagram of
B(8) is a straight line over normal-angle intervals with f(8)>F(8).

We will refer to G and B derived in this manner as the effective
moduli corresponding to f and g.

We are therefore led to the relaxed evolution equation (1.1) with
B and G the effective moduli corresponding to f and g [G2]. It is
important to note that this relaxed equation coincides with our original
system (1.5) at all GS angles ©. Note also that, because of the construction
of G(8), no matter how smooth f(8) is,

(1.18) G(®8) will generally be discontinuous

whenever the angle © changes from GS to GUS; this property of G(9)



renders the relaxed evolution equation nonstandard. In addition, G(8)=0
whenever © is GUS, so that (1.1) degenerates to hyperbolic at GUS angles.

Our main results of physical interest are:

1° Viscosity solutions of (1.1) not only satisfy (1.5) away from
corners, but, what is most interesting, such solutions automatically satisfy
the force balance (1.11) across corners.

2° If (e,,8,) is a GUS angle-interval, then a wedge whose two sides
have normal angles &; and &, and evolve according to b(8,)V=-U and
b(8,)V=-1, respectively, is a solution of the basic equations (1.5) and (1.11)
[AG1,§9]. We show that our choice of the effective moduli G and B is the
only possible choice if all such wedges are to be viscosity solutions of (1.1).
What makes this result so interesting is that G(&) and B(e) differ from
g(®#) and b(®) only at angles © that are not globally stable, and wedges
by definition do not involve such #.

3° For U<O0 and Q, large enough, t-1Q(t) converges to a dilation
of the Wulff region for 1/B(8).°

9This result, conjectured by Angenent and Gurtin [AGl), was proved by Soner [So)
for G>0 and B with a convex polar diagram, and extended in [AG2] to éeneral B> 0.
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2. CLASSICAL EVOLUTIONS. WRINKLINGS AND WEDGES.
Throughout the paper we restrict attention to energies f(®) and
kinetic moduli b(8) that are consistent with the following hypotheses:

(2.1a) fis C?2 and >0;

(2.1b) each convexifying tangent to the Frank diagram ¥ intersects ¥ at
most at two angles, and there are at most a finite number of such
tangents;

(2.1¢c) g(8)>0 at each GS angle ¥;
(2.1d) b is continuous and strictly positive.

We begin with a discussion of regions whose boundaries evolve
according to (1.5), but with normal angles constrained to be GS, so that (1.5)
is parabolic. Such boundaries will generally contain corners - consistent
with (1.11) - for which the jump in normal angle removes angles of
backward parabolicity of (1.5).10 Not all initial data are consistent with
evolutions of this type; in particular, the initial region A must be
admissible in the sense thatll

(2.2a) A is closed with 9A piecewise C2, and at each point of smoothness
the (outward) normal angle ® is GS (so that g(8)>0);

(2.2b) (1.11) is satisfied.

For each t€(0,T), let Q(t)CR? be given. Then Q(t) is a classical
evolution in (0,T) if:

(2.3a) Q(t) is admissible at each te€(0,T);

(2.3b) the evolution equation (1.5) is satisfied on each interval of smoothness
of 9Q(t) (up to the endpoints).

If, in addition,

(2.4) QoY) = Q,,

1O'l‘he motivation for considering such regions can be found in [Aw1,§9], [AG2,§2],
[G2,§11).

11aAn assumption of piecewise smoothness for a boundary curve r will always
contain the tacit assumption that r is locally graphlike, so that, e.g., sets with

boundary a “figure 8" are ruled out.



then Qf(t) is a classical evolution from Q.

Theorem 2.1 (Existence and Uniqueness of Classical Evolutions [AG2)).
Let Q, be bounded and admissible. Then there is a unique maximal

classical evolution Q(t), t€[0,T from Q,. Moreover, 0Q(t) is

max)'
piecewise C= at each te(0,T,,,).

By definition if the boundary curve 0Q(t) of a classical evolution
Q(t) has a corner corresponding to an angle jump from #€; to ©,, then
(8,,8,) is a GUS angle-interval and C(e,)=C(®,). Suppose that &,,9, is
such a pair. Then we can construct classical evolutions, called (8;,8,)-
wrinklings (Figure 2.1), whose normal angles jump back and forth between
e, and 9, [AG1,§9]; the flat portions of the wrinkling with angle

(i=1,2) are then called 6,-facets. By (1.5), each &;-facet evolves according
to

(2.5) V = -b(8)U,

and from this we may conclude that the wrinkling itself evolves as a rigid
body with velocity w given by (1.16). A (8,,8,)-wrinkling with a single
corner is called a (8,,0,)-wedge. A (8,,8,)-wedge Q(t) is prescribed by
specifying: (i) whether Q(t) is convex or concave; (ii) the position of the
corner at some time.

Suppose that 0Q, is a piecewise flat curve whose normal angle
Jumps back and forth between &; and &,, with 0Q, the c-level set of

an auxiliary function &;; ie,
(2.6) IQy = { xeR2: Jp(x)=c}, Qp={xeR2: &y(x)2c ).
Then Q, is the initial set of a (&,,8,)-wrinkling Q(t) if and only if

(2.7) Q(t) = Qg+ tw = { xeR2: d(t,x)2c¢ }, (t,x) = y(x-tw).
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3. VISCOSITY SOLUTIONS. RELAXED EVOLUTIONS.

We will use the relaxed equation (1.1) to discuss evolution from an
initial region that has normal-angles & with g(8)<0. In the derivation of
(1.1), G and B are the effective moduli for f and b, but we will
generally require only that G and B satisfy (1.2).

a. DEFINITIONS.
We are interested in the relaxed evolution problem defined by the
relaxed equation (1.1) supplemented by the initial condition (2.4):

(E) B(e)V = G(8)K - U, Q(0%) = Q.

Suppose that B, G, and {Q, are such that (E) has a smooth solution Q(t)

with 90(t) the c-level set of an auxiliary function &:
(3.3) OQ(t) = { xeR?: B(t,x)=c }, Q) ={ xeR2: &(¢,x)2c }.

Assume further that & is a smooth function whose spatial gradient V@
has |V®(t,x)| never zero on 0Q(t). Then & satisfies the PDE

(3.4) g, = F(VE,V2D),

where V2% is the Hessian matrix of second spatial derivatives of &, while

(3.5) F(p,A) = B(8){G(e)T(8)-AT(8) - Ulpl)
= B(e) {aGa(e)tr[(I- pep)A] - Ulpl},
o = sin"}(-p,), p = p/lpl

for all vectors p=0 and all symmetric matrices A. Thus solving (E) at
least formally reduces to solving (3.4) subject to an initial condition

(3.10) B(x,0) = Fy(x)

for all xeR?, where &, is an auxiliary function satisfying
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(3.9) aQO = { XG|R2: Qo(X)zc }, QO = { X€|R2: @0(X) 2C }.

F defined by (3.5) has two chief properties upon which much of the
level - set theory of (3.4) is based: the geometric property

(3.12) F(Ap,AA+vpep) = AF(p,A)
for all 220, v€R; and the elliptic property
(3.13) F(p,A+B) > F(p,A)

whenever B is symmetric and positive semi-definite.

The level-set method is not intrinsic, since it requires data irrelevant
to the problem: namely the values of &, away from an arbitrary small
neighborhood of 9Q, A method of circumventing this is to work with the
characteristic functionl?

(3.14) u(t,x) = X..(x)

Q)
of the region Q(t). It is reasonable to expect that u should, in some sense,
satisfy (3.4), an expectation motivated by viewing u as the limit of a
sequence {&,} of functions &, consistent with (3.3) for, say, c=4{. We will
use the theory of viscosity solutions!3 to define the sense in which u
satisfies (3.4).

Let h be a bounded scalar function on a subset H of R?®; then h*
and h., respectively, denote the upper and lower semicontinuous
envelopes of h defined on cl¥# by

(3.6) h*(z) = limsup h\q), h«(2) = liminf h(q)
c- 2z q—z
12¢¢. [BsS).
13¢cf. Crandall and Lions [CL), Crandall, Evans, and Lions [CEL), Jensen [Jel. A
recent article of Crandall, Ishii, and Lions [CIL] provides an excellent survey of the

subject.
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qeH qe H

Let u be a bounded function on [0,~)xR2. Then u is a viscosity
subsolution of (3.4) if, for every (scalar) test function weC?2((0,=)xR?),

(3.7) w(tg,Xp) < T*(Vwi(ty,x,),Vewl(ty,x,))

at every local maximum of u®*-w; u is a viscosity supersolution of
(3.4) if, for every such w,

(3.8) wo(t,Xg) 2 Fu(Vwity,xg),V23w(ty,x,))

at every local minimum of ux-w; u is a viscosity solution of (3.4) if u
is both a viscosity subsolution and a viscosity supersolution of (3.4) [CGG).
We will also use viscosity subsolutions, supersolutions, and solutions on
finite time intervals (0,T).

Let Q(t), t20, be given, and define u(t,x)=XQ(t)(x). Then Q(t),
t20, is a X-subsolution or a X-supersolution of (1.1) according as u is
a Vviscosity subsolution or a viscosity supersolution of (3.4) and Q(t) is
uniformly bounded on compact time intervals; Q(t), t20, is a relaxed
evolution if it is both a X -subsolution and a X -supersolution of (1.1).

Let

Q*(0%) = { xeR?%: limsup u*(t,y)=1 J},

t— 0%, y—x

Q«(0%) = { xeR?: liminf ux(t,y)=1 3},

t— 0%, y—x

so that Q*(0+) is closed, while Q«(0+) is open. Then Q(t), t20, is:
(a) a X-subsolution of (1.1) compatible with Q, if itisa X-
subsolution and Q*(0*) &cl Qg;
(b) a X-supersolution of (1.1) compatible with Qg if itis a X-
supersolution and Q«(0%) 2 IntQ;

(c) a relaxed evolution from Q, if it is a X-subsolution of (1.1)
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compatible with Qg as well as a X -supersolution of (1.1) compatible with
Qp.

Note that, if a relaxed evolution is to take on initial data Q, in a
classical sense, then Q, must be regular (ie., ¢l Qp=cl(int Qo) ).

One should exrpect lack of (global) uniqueness for relaxed evolutions
from a given initial set;14 with this in mind, we introduce the following
definitions: the upper and lower envelopes U(t) and &I(t) for relaxed
evolutions from an initial set Q, are defined at each t20 by15

U(t) = ¢l { union of all values at t of X-subsolutions of (1.1)
compatible with Qg ),

L(t) = int { intersection of all values at t of ¥X-supersolutions of (1.1)
compatible with Qg };

the graph up to time T of a time-dependent set A(t) is defined by

graphtA = U [A()x{t}];
O<tsT

the time

Tuniq = sup { T: graphyU = cl (graph;L) and int (graph;U) = graph; L }

is the uniqueness time for relaxed evolutions from Qg and, for Tyu;q>0,
Qunig(t) = U(t) = 1 L(t),  tel0,Typiq)

is the unique relaxed evolution from Q.

b. EXISTENCE AND UNIQUENESS.
We assume throughout this subsection that

14For G continuous there are conditions that guarantee the uniqueness of solutions
[BSS], [So). For motion by mean curvature and smooth initial data (V=K)
uniqueness holds generically [ES3).

15¢f. [So, Section 11l.
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G and B satisfy (1.2);
Qo 1Is a prescribed initial domain, assumed compact.

(Note that we do not require the consistency of B with (1.3)).

Theorem 3.1 (Existence and Local Uniqueness of Relaxed Evolutions).
(a) there is at least one relaxed evolution from Q;
(b) the upper and lower envelopes are relaxed evolutions from Q.
If, in addition, 0Q, is C3, then
(c) the uniqueness time for relaxed evolutions from Qg Is strictly

positive.16

We postpone, until Section 8, the proof of this theorem and the next.

Let M([0,T]xR2) denote the set of all bounded functions on [0,T)xR2
that are equal to a constant outside of a large ball; i.e., weM([O,T]* R2) if
and only if there are constants « and R such that ¢(t,x)=o for [x|2R;
here « and R may depend on ¢. We define M(R2) similarly. Finally,

M([0,)xR2) = N M(0,TIxR2):;
T>0

i.e., ¢¢ M([0,)xR2) if and only if for every T there are constants o
and Ry satisfying ¢(t,x) =« for IxI2R; and te[O,T].

Let &, be an auxiliary function for the initial set Q,; thatis, a
continuous function &,¢ M(R2) satisfying (3.9). Then &e¢ M([0,)xR2) is a
level-set solution of (1.1) if & is a continuous viscosity solution of (3.4);
if, in addition, & satisfies the initial condition (3.10), then & corresponds
to &,.

Theorem 3.2 (Existence and Uniqueness of Level-Set Solutions).l”
There is a unique level-set solution of (1.1) corresponding to any given

16)¢ Qg is strictly star-shaped, then Typjq= (cf. [So,Section 9]; a more general
condition is given by [BSS, Section 4]).

17For G continuous and nonnegative uniqueness and existence follow from Theorem
6.8 of [CGG].
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choice of auxiliary function &, for Q,. Moreover, the upper and lower

envelopes for relaxed evolutions from Q, are given by

(5.7) Ut) = { x: 3@t,x)2c ), L(t) = { x: &(t,x)>c ).

Thus the sets {x: &(t,x)=c)}, {x: &(t,x)2c}, and {x: &(t,x)>c]
are independent of the choice of auxiliary function 3,.18

c. COMPARISON.
In this subsection we state comparison theorems related to weak
solutions of (1.1) and (3.4). We assume throughout that

G and B satisfy (1.2);

we do not require (1.3). The next theorem i> the key technical result of the
paper.

Theorem 3.3.19 Let ¢e¢M([0,TIxR2) be a viscosity subsolution
and ¢€M([O,TJXR2) a viscosity supersolution, both of (3.4) on (0,T)xRZ2.
Then

(5.1) sup (¢* - ¢,) = sup [¢*(0,y) - ¢, (0,y)]
[0.T)xR? yeR?

Suppose that Q,(t) and Q,(t) are, respectively, a X-subsolution

and a X -supersolution of (1.1) and set

uy(t, %)= X g ().

Since X-sub and supersolutions are assumed to be uniformly bounded on
compact time intervals, u;eM([0,=)xR2?). Then (5.1) with ¢=u, and y=u,
yields

18¢f Theorem 7.1 of [CGG] for the case in which G is continuous and nonnegative.
190hnuma and Sato [0S] have independently established this theorem wusing a
completely different method of proof.
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(5.2) (u)*(t,%) - (uy))(t,x) < sup [(u,)*(0,y) - (u,)(0,y)]
yeR2

and we have

Corollary 3.1 (Weak Comparison). Let Q,(t) be a X-subsolution
and Q,(t) a X-supersolution of (1.1). Suppose that, for all x,

(5.3) (uy)*(0,x) < (u,),(0,%).
Then for all 120,
(5.4) cl Q,(t) € int Q,(1).

Condition (5.3) follows if (5.4) is satisfied at t=0+. Unfortunately, (5.3)
is stronger than the requirement: Q,(0)€Q,(0).

We say that (1.1) with initial data Q, has strong comparison in
(0,T) if

(5.5a) graph; Q, = cl (int (graph; Q,))

for all te(0,T) for every X-subsolution Q,(t) of (1.1) compatible with Q,
and X-supersolution Q,(t) of (1.1) compatible with Q.

The next result follows from the definitions of the upper and lower
envelopes U(t) and &I(t) and the uniqueness time T,,;q for relaxed

evolutions from Q,.

Theorem 3.4. Let Q,(t) be a X-subsolution and Q,(t) a X-
supersolution, both of (1.1) and both compatible with Q,. Then for all
t20,

cl Q,(1) & U), int Q,(t) 2 L(1).



Thus (1.1) with initial data Q, has strong comparison in (0,Tuniq)-

17
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4. RELATION BETWEEN CLASSICAL AND RELAXED EVOLUTIONS.

Our next theorem shows that our choice of effective moduli G and
B for the relaxed problem is the only possible choice, at least if wedges are
to be relaxed evolutions; what makes this result so interesting is that G(®)
and B(e) differ from g(8) and b(8) only at angles © that are not
globally stable, and wedges by definition do not involve such é.

Theorem 4.1 (Effective Moduli are Canonical). Let f and b be
consistent with (2.1), let G and B be consistent with (1.2), and let
G(e) = f(8) +f'(8) and B(8) = b(8) for all GS angles . Then all wedges are
relaxed evolutions only if G and B are the effective moduli for f and
b.

Proof. It suffices to show that G(8)=0 and B(&) satisfies (1.17) on
any GUS angle-interval (8,,8,). Choose such an angle-interval (&,,98,).
Consider a (8,,8,)-wedge Q(t) with corner at the origin at t=1, and let
w be the corresponding rigid velocity defined by (1.16). Assume that Q(t)
is a relaxed evolution, so that u(t,x)=XQ(t)(x) is a viscosity solution of (3.4).

Let Q(t) be convex, and let
wi(t,x,8) = 1 - [x-(t-1)w]-N(e)
for all (t,x) and all ®¢(&,,8,). Then by (2.7),
Q(t) = { xeR?2: w(t,x,8)21, ©=90,,8, }
Fix ®e(e,,8,). Then,
u*(t,x) - wit,x,8) < u*(1,0) - w(1,0,8) = 0
for all (t,x) near (1,0). Thus, since u is a viscosity solution of (3.4),

w,(1,0,8) = F*(Vw(1,0,8),V2w(1,0,9)).
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Further,

w,(1,0,8) = w-N(8), Vw(1,0,8) = -N(8), V2w(1,0,8) =0,
and (3.5) yields

F*(Vw(1,0,8),V2w(1,0,8)) = -U/B(9);
hence
(4.1) B(8) = -Ulw-N(e))L.

Now let Q(t) be concave, and let
wi(t,x) = w(t,x,8) = -[x-(t-1)w]-N(9).

with © fixed. Then ux-w has a local minimum at (t,x)=(1,0), so that,
arguing as before,

B(8) 2 - Ulw-N(8)] L.
Thus, appealing to (4.1),
(4.2) B(8) = -Ulw-N(e)]"? for all ee(ey,8,),

and (1.17. follows from (1.16), (4.2), and (1.12).
N:xt, to show that G(8)=0 on (8,,8,), we again take Q(t) to be

convex, and let
wi(t,x,0) = 1 - [x-(t-1)w]-N(8) + plx- (t- 1)w)?

for all (t,x) and all 8¢(8,,8,). Fix ® and write wi(t,x)=w(t,x,8).
We first show that, given any pe¢R, u*-w has a local maximum at
(t,x)=(1,0). Choose (T,y) with u*(t,y)=1. Then
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[y - (t-1)w]-N(e) < 0,
i=1,2, and, since ©¢(8,,8,),
[y -(t-1)w)N(8) < ~x < 0,

o=ox(9). Therefore if (t,y) is close enough to (1,0) that
ly - (t-1)wlsx/2p, then

1=u*(1y) <1+laly-(r-1wl
<1-[x-(t-1DwlN(e) + plx- (t-1Dwl? = w(T,y).

Further,

wr,y) 20 if ly-(t-1Dwl+lplly-(t-1w)? <1,
and hence

u*(t,y) - wit,y) < 0 = u*(1,0) - w(1,0)

for all (7t,y) sufficiently close to (1,0); thus

A

w,(1,0) = F*(Vw(1,0),V2w(1,0)).

Further,
w,(1,0) = w-N(e), Vw(1,0) = -N(e), V2w(1,0) = 2gI,
F*(Vw(1,0),V2w(1,0)) = (2pG(8)-U)/B(8);
hence
(4.3) w-N(e) = (2pG(8)-U)/B(e),

and this must hold for all peR and &¢(8,,8,). On the other hand, by
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(4.2), w-N(8)=-U/B(8), and (4.3) can hold for all p only if G(8)=0. O

Theorem 4.2 (Classical Evolutions are Relaxed Evolutions). Let Q,
be bounded and admissible. Let G and B be the effective moduli
corresponding to f and b, with f and b consistent with (2.1). Let
Q(t), tel0,T,,.), be the maximal classical evolution from Q,. Then the
uniqueness time Ty, for relaxed evolutions from Q, satisfies
Tuniq2 Tmax and Q(t) coincides with the unique relaxed evolution
Qunig(t) for all te[0,Tyay).

Proof. Let Q(t), 0<t<T,.x be a classical evolution. We will show
only that Q(t) is a X-subsolution; the proof that Q(t) is a X -supersolution

is analogous. Let u(t,x)=%.,..(x). Suppose that for a test function w

Q(t)

u”(t,x) - wit,x) = u*(tg,xq) - wltg,xq) = 0

for all (t,x) near (tq,xg).

Case 1: Xyeint Q(ty). Then u*(t,x)=1 for all (t,x) near (ty,x,)
and

w(tg,Xg) = 0, Vwity,xy) = 0, V2wl(ty,x,) 2 0.
Hence
FX(Vwi(tg,xo),V2wl(tg,x0)) 2 0

and (3.7) is satisfied.

Case 2: x,€R2\ §_2(t0). Then u*(t,x)=0 for all (t,x) near (tg,x,)
and an analysis similar to that of Case 1 yields (3.7).

Case 3: x,€0Q(ty) and Vwl(ty,x5) =0. Then w,(ty,x,) =0, since the
normal velocity V of 9Q(t) is finite. Moreover, the definition of the upper
semicontinuous envelope Yyields
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?*(VW(to,xo),szV(to,xO)) = G(e) B(e)'l max {q°V2W(t0,xO)q . |QI=1 }.

We claim that the quantity max{...} is nonnegative. Indeed, x,€0Q(ty)
and ty<Tpax; hence x, is not an isolated point of Q(t;) and there is a
sequence {x,} with x,€0Q(t,), x,=x, and x,— X,. By choosing a
subsequence, if necessary, we may assume that (x,-X,)/Ix, - %, is
convergent, say to e. Then

Wity X,) 2 u*(ty,x,) = 1 = wity,xp),

e'V2W(to,xO)e = 2 hmn_.“ [W(to,xn) - W(to,xO)]/lxn' xolz,
so that
0 = w,(t,X,) = F(Vwilty,x,),V2w(ty,x,)).

Case 4: x, belongs to a smooth part of 9Q(ty) and [Vw(ty,x,)l=0.
Then the normal angle ©, the curvature K, and the normal velocity V
of 9Q(t) at t=t; and x, satisfy

N(G) = 'VW(tO,xO) /lVW(tO,XO)I,
K < div[Vw /IVwll(ty,x,),
V = Wt(to,xO) /|VW(t0,X0)|,

and (3.7) follows from (1.5).

Case 5: x, is a corner point of 9Q(ty) and [Vw(ty,xq)l=0. Let
(8,,9,) be the GUS angle-interval that defines the corner, and let z(t)
with 2z(ty)=x, denote the trajectory of the corner for t near t;,. Then
9Q(t) must have a "convex-type" corner of the type shown in Figure 4.1
near 2z(t) with curvature K(x,t)sO for x near but not equal to z(t).
Thus and by (1.5), for such x the normal velocity of 0Q(t). must satisfy

(4.4) V(x,t) < -U/ble(x,t)).
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On the other hand, consider the simple (8,,8,)-wedge 9A(t) which has
A(t) convex and has corner at X, at time t;, and let w be the rigid
velocity of the wedge as defined by (1.16). Then, since this wedge must
have normal velocity V=-U/b(®) on each of its facets, we may conclude
from (4.4) that there is a ball B centered at X, such that
A(t)NB € Q(t)NB for all t near t, with tst; thus

AGNBC {x: witx)21).

Further, since A(t) moves with rigid velocity w and X, is the the
corner point of Alty),

X, + (t-to)[w N(ax)IN(x) € A(t)

for all t and all «e¢[8;,8,]. Thus for such « and for t near t;, with
t<tg,

wit, xg + (t-t[w-N(x)IN(ex)) 2 1 = wilty,xg)
and it follows that
(4.5) w,(tg,x0) + [WN(c)] [Vw(ty,x5):N(ax)] < O

for all oel8,,8,].
Now let «e€[®,,8,] be the angle defined by

Vw(ty,xq) /IVw(ty,x0)| = - N(x);
then (4.5) yields
(4.6) wt(to,xO) < w‘N(aNVW(tO,xo)I,

and, by (4.2),
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(4.7) w,(tg,Xg) = -UIVwi(ty,x)|/B().

If «e€(9y,8,), then G(x)=0 and (3.5) yields

(4.8) F ¥ (Vw(ty,X0),V2w(tg,Xx0)) = -UIVwi(ty,x,) |/ Ble),

so that, by (4.7), (3.7) is satisfied. If o« equals &, or &,, then G(«) is

generally nonzero, but the definition of F* yields

F*(p,A) 2 lirasup F"(p,,A)

n — co

for any sequence p,— p. Let p=Vw(t;,x,) and choose a sequence so that
G(e,)=0 for all n, where ©, is defined by N(e,))=p_ /lIp,|l. Then (4.8) is
replaced by

(4.9) T (Vw(to, %), V2w(ty,%x,)) 2 -UlVw(tg,x) 1/ Blw),

which, with (4.7), yields (3.7).
We have only to show that

(4.10) Tuniq 2 Trmax -

Given Q, we can construct a one-parameter family of admissible initial

domains Qy(8) (I8l< 8, for some §,>0) satisfying

(4.112)Q,(8) € Q,(8)  if 8> 8,
(4.11b)lim 4 _ 5 Qo(5) = Q(8),

the limit being in the Hausdorf metric.20 Let Q(t;8), (t€[0,Tmax(8) ),
I8l < 6,) be the unique maximal evolution from the initial data Q(8) (cf.
Theorem 2.1). Since for t€(0,T,,4(8)), 0Q(t;8) is piecewise smooth, we

may use the compactness lemma [AG2, Lemma 8.3] and the uniqueness of

20r,sr bounded sets the Hausdorf metric dH(A,B) is the largest of the distances
sup { dist(x,A): xeB) and sup{dist(x,B): xeA).
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classical solutions to show that: (i) T,,,.(8) is lower semicontinuous in 6
(cf. also the proof of [AG2, Lemma 8.2]); (ii) by Corollary 3.1,
Q(t;8) c Q(t;8) if 6§28 (iii) for fixed t, the map &+~ Q(t;8) is continuous
in the Hausdorf metric. (Assertion (iii) is proved by showing that any limit
point of Q(t;6) as §—8 is a classical solution with initial data Q4(8") and
hence by uniqueness is equal to Q(t;8).

Fix T<T .y = Tpay(0).
thereis a 8(T)>0 satisfying

By the lower semicontinuity of T, ,.(8)

Trax(® 2 T for all 18] < 8(T).
For (t,x)e[0,TIxR? define
inf{8: |8l < 8(T), xeQf(t;8) },
&(t,x) =
-8(T) if the set above is empty.
Since Q(t;8) £ Q(t;8) for 8§28,
{x: 2(t,x)28) = Q(¢;8)
whenever |8| < 8(T) and t€[0,T]. Moreover, for each 8§, Q(t;8) is a
classical and therefore relaxed evolution from Q4(8). From this one can
show that & is a continuous viscosity solution of (1.1), so that, by Theorem

3.2,

U) = {x: B(t,x) 20} = Q(;0) = Q(1), L(t) = {x: &(tx)>0).

Since
lim Q(t;8) = Q(t;0)
sl0
for every xe€U(t), there are 8,>0 and x, — x such that

x,€Q(t;86,)cL(t). Hence clL(t)=U(t) for all te[0,T]. An analogous
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argument shows that intU(t)=L(t) at each t€[0,T]. Hence T
the desired conclusion follows, since T«<T

unigz 1, and

max Was chosen arbitrarily. O

Remark 4.1. For bounded, admissible initial data Q, there exist a

maximal existence time T and a classical evolution Q(t), tel0, T ,.),

max
from Q. There is also (at least one) relaxed evolution Q(t), te[0,e), from

Qy, and, by Theorem 4.2,

Q@) = Q1) for all te[O0,T

max)'

Hence the relaxed evolution represents a weak extension of the classical

evolution Q(t) after Q(t) develops a singularity at t=T,_,,.
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5. CONVERGENCE.
Throughout this section

G and B satisfy (1.2);

Q, Is a prescribed initial domain, assumed compact;
Tuniq IS the uniqueness time for relaxed evolutions from Q.

a. GENERAL RESULTS.

We say that a sequence {Q,"} of compact domains approximates Q,
provided the signed distance to Q," approaches the signed distance to Q,
uniformly on RZ2.

Theorem 5.1 (Convergence of Relaxed Evolutions). Assume that
Tunig? 0. Let {Q,"} approximate Q,. For each integer n, let Q"(1),

te[0,0), be a relaxed evolution from Q.". Then, for each t€l0,T,;.),

Q™(t) converges, in the Hausdorf topology, to the unique relaxed evolution
from Q.

We now state a result that holds for all time. The proof will be given
at the end of this section, as will the proof of the theorem just stated.

Theorem 5.2 (Convergence of Level-Set Solutions). Let & be the
unique level -set solution corresponding to an auxiliary function &, for

Q,. Let {&,)} be a sequence of level-set solutions of (1.1) such that

lim &,(0,x) = &,(x)

n= oo
uniformly on R2. Then

lim &,(t,x) = &(t,x)

nes oo

uniformly on compact subsets of [0,=)xR2,
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b. INFINITESIMALLY WRINKLED SOLUTIONS AS LIMITS OF SOLUTIONS
FROM ADMISSIBLE INITIAL DOMAINS.
If the initial domain Q, is admissible, then there is a classical

evolution from Qg up to a maximal existence time T each relaxed

max’

evolution from Qg (uniqueupto T ) supplies a weak extension

uniqZTmax
of this classical solution for times greater than T, ,,.

Suppose that Q, is not admissible (for example, suppose that 0Q,
has normal angles & for which g(8)<0). Then the notion of a classical
evolution from Q, breaks down, since classical evolutions are required to
be admissible and hence to have globally stable normal-angles. On the
other hand, there is a relaxed evolution from Qo- The derivation of the
relaxed formulation is based on allowing the boundary curve to develop
infinitesimal wrinkles whenever its normal angle is not globally stable. We
now use Theorem 6.1 to give a partial justification of this proceedure, under
> 0.

We first approximate Q, by a sequence {Q "} of admissible

the assumption that 9Q, is C! and piecewise C?, and that T,
bounded domains. We accomplish this by dividing 0Q, into curves whose
normal angles are GS, interspaced with curves whose normal angles are
GUS. We approximate 0Q, by leaving the GS curves unchanged, but
replacing each GUS curve by a wrinkled curve. If T' is such a GUS curve,
then the normal angles of T' lie in a GUS angle-interval (8,,8,) with 6,
and ©, angles for a corner consistent with (1.11). We replace ' by a
wrinkled curve W such that: the endpoints of W coincide with those of T
the facet anglés of W are &, and ©,; W lies in an arbitrary small
neighborhood of I'. The replacement for 0Q, constructed in this manner
is admissible and arbitrarily close to 9Q, in the required sense.

For each n, we let Q7(t), tel0,), be a relaxed evolution from the
admissible initial domain Q.. Then, by Theorem 6.1, for each tel0,Tyniq)s
Q™(t) converges, in the Hausdorf topology, to the unique relaxed evolution

from Q.

c. PROOFS.
Proof of Theorem 5.1.

1° Let
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dist(x,0Q4)A1, x€Q,,
io(X) =
- (dist(x,0Q4)A1), x¢Q,.

Then &, is an auxiliary function for Qg as defined in Section 3, and there
is a unique level-set solution & of (1.1) corresponding to &,. For each n,
let &p,(x) and &,(t,x) be defined in the same manner using Q," as the
initial set. Since {Q,")} approximates Q,, &p,(X) converges to &y(x),
uniformly for x€R?2. Thus Theorem 5.2, which will be proved subsequently,
implies that &,(t,x) converges to &(t,x), uniformly on compact subsets of
[0,0)xR2.

2° Let B(r) denote the (closed) ball of radius r centered at the
origin. Since Q, is compact and {Q,"} approximates Q,, thereis an
R, such that Qy,"CB(R,) for all n. Set

n o= [Ul{infB(8)}1.
Then

Bo(t) = B(Rp+ut)
is a X -supersolution of (1.1) compatible with ,, and hence

¥(t,x) =

1, xeint B, (t).

is a viscosity supersolution of (3.4) with ¥(0,x) > ,(0,x). Thus Theorem 3.3
with ¥ as supersolution and &, as subsolution yields ¥2&_ . In

particular,

®.(t,x) < -1, x¢int B, (1).
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3° By Theorem 34,
(5.1a) {x: &,(t,x)>0} € Q"(t) £ {x: 3,(t,x)20}

for t20. Therefore

(5.1b) Q1) € By(t)

for t20. Also, on [0,T,;.) the unique relaxed evolution from Q, is given
by

(5.2) Q(t) = {x: &(t,x)20).

4° For §>0, let
U(t;8) = {x: d(t,x)2-8), L(t;8) ={x: &(t,x)>8}.

Since &,(t,x) converges to &(t,x) locally uniformly, we may use (5.1b) to
conclude that there is an n(8) such that, for all n2n(8) and te[O,Tumq),

U8 2 {x: &,(t,x)20), L8 c{x: &,(t,x)>0}.
Hence (5.1a) yields
(5.3) L(4;8) € Q7(t) £ U(t;8)

for all n2n(8) and tel0,T,, ).
5° Using the arguments of step 2, we can show that

U(t;8), £(1;8) & By(t).

6° Our next step will be to show that, for every t€[0,T,,;.), the

Hausdor{ distance
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dg = dH(‘U(t;S),J:(t;S))
satisfies
(5.4) dg— 0 as &§—0.

Since &L(t;8)CU(t;8), we may use the definitions of L(t;8) and U(t;8) to
conclude that

dg = sup{d(t,x;8) : &(t,x)2-81},
d(t,x;8) = inf{ Ix-yl: &(t,x)28)}.

Choose x(8) satisfying

(t,x(8)) 2 -8,
(5.5) d(t,x(8);8) 2 dg - 6.

Since x(8)eU(t;8)CBy(t) and By(t) is compact, there is a sequence (also
denoted by 8) such that x(8) — x, as §10; hence

&(t,xy) = lim &(t,x(8)) 2 O,
840

and x,€U(t). Also, t€[0,T,,;q); hence we may conclude from the

definition of T that U(t)=clL(t), and there is a sequence y_ = X,

uniq

Ym€L(t), or equivalently, &(t,y,)>0. Thus, for all &¢ ety
d(t,x(8);8) < [x(8) -y I.

N_ow let § tend to zero and then m to infinity to obtain

lim d(t,x(6);8) = O,
sdo
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and this, with (5.5), implies (5.4).
7° By (5.2) and (5.3),

dy(Q7(t), Q(t)) = dy(U(t;8), L(t;8)) = dg
for every t€l0,T,;,), §>0, and n>n(8). Therefore, by (5.3),

lim dy(Q7(1),Q(t)) = 0

n= co

for all telO0,T ). D

uniq

Proof of Theorem 5.2.
1° Since @, is bounded and & (0,x) converges uniformly to &,(x),
there is a k>0 such that

(5.6) 18,(0,%) = K

for all xe€R2. Since ¢ =k is a solution of (3.4), the inequality (5.6) and the
comparison theorem 3.3 yield & (t,x)=<k. Similarly, ¢=-k vyields

& (t,x) 2-k. Hence
(5.7) 18,(t,%x)] < K

for all (t,x)€[0,)xR2.
2° For (t,x)el0,)xR2, define

&*(t,x) = limsup &, (sy),
n— oo
(s,y) = (t,x)
°(t,x) = liminf & (s,y).

n— co

(s, y)—(t,x)
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Then &* is a viscosity subsolution and & a viscosity supersolution of (3.4)
in (0,e0)xR2 (cf.[FS;§2.6,§7.4)).

3° Theorem 3.3 applied to the subsolution &* and the supersolution
¢" yields

&*(t,x) - &(¢,x) < sup[&*(0,x) - &7(0,x)].
y

Note that &, is locally uniformly convergent if and only if 2"=&". Also,
by construction, #*23,2& . Hence to prove local uniform convergence of

®_ it suffices to show that

n
(5.8) 27(0,x) = &,(x) = 87(0,x),

which we shall accomplish in the next three steps.
4° Let

g = sup{ G(8) : 8¢€[0,2m) }, o = |UlL
For xeR? and &>0, define (cf. (5.6))
0, Ix -yl < R(t;8),
¥(t,x;y,8) =
-2k, Ix-yl>R(t;8),

where R(t;8) is a solution of

dR(t;8)/dt = -g*R(t;8)"1 - o,  te(0,T(8)),
R(0;8) = 8,

with T(8)<+ee the first time t for which R(t;8)=0. Then
{x: Ix-yl<R(t;8)}, te(0,T(8))

is a classical subsolution of the relaxed equation (1.1), and hence ¥ is a
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viscosity subsolution of (3.4) on (0,T(8)xR2.
5° Fix yeR? andlet py=&,(y). Then, for all p<p,, there are §>0
and 7ng such that

¥(0,x;y.,8) + p < & (0,%)

for all xe€R2 and n2mn, Since ¥ is a viscosity subsolution of (3.4), it is
clear from the form of this equation that %+p is also a viscosity
subsolution of (3.4).

6° We now use Theorem 3.3 with subsolution ¢+p and
supersolution &_ to obtain

I(1,x;y,8) + g < & (t,%)
for all (t,x)e[0,T(8))xR2; hence

E(t,x;y,8) + p < &7(t,x)
for all (t,x)e[0,T(8))xR2. Applying this inequality at (t,x)=(0,y) vyields
p<&7(0,y) for all p<py=&,(y). Therefore &,(y)=2&7(0,y).

7° To show that &,(y)=8%(0,y), we follow the procedure of the

three previous steps replacing ¥ with the supersolution
0, Ix -yl <R(t;8),
T(t,x;y,8) =
2k, Ix-yl>R(t;8),

of (34). D
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6. LARGE-TIME ASYMPTOTICS.
In this section we discuss the large-time asymptotics of relaxed

evolutions, assuming throughout that:

G and B satisfy (1.2) and (1.3);
Qo Is a prescribed initial domain, assumed compact.

In particular, we will prove that, for U<0 and Q, large enough, t-1Q(t)
converges to a dilation of the Wulff region for 1/B(8). This result,
conjectured by Angenent and Gurtin [AG1], was proved by Soner [So] for
G>0 and B with a convex polar diagram, and extended in [AG2] to general
B>0. We here follow the ideas of [So, §12-13].

Let Q(t)CR2, t20, be given. Then Q(t) vanishes in finite time
if thereisa T>0 such that

Q(t) = & forall t>T.

Given a function ¢>0 on (0,%) and a set ACR?, we write

Q(t) ~ p(t)A as t = oo
if there are functions ¢;,9,>0 on (0,%) such that
9, (VA € Q) C @, (t)A
for all sufficiently large t, and
9, (t)/p(t) = 1 as t = = (i=1,2).

‘The Wulff region W(h) for a given function h(®) (cf. eg., [G2)) is
the set

W(h) = { xeR2: x-N(8) <h(e), e€[0,2n] }.
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Our main result of this section is
Theorem 6.1 (Asymptotic behavior of relaxed evolutions). Let Q(t)
be a relaxed evolution from Q.

(a) If U>0, then Q(t) vanishes in finite time.
(b) If U<O0 with |Ul sufficiently large, then

Q(t) ~ tIUIW(1/B) as t — eo.
Assertion (a) is a direct consequence of

Lemma 6.1. Let Q(t) be a X-subsolution of (1.1) compatible
with Q,. Choose o, such that

(6.1) int Q, C g W(1/B).
Then, for t>0,
(6.2) Q1) € (- Ut + o) W(1/B).

Proof. The right side of (6.2), denoted by A(t), is a X -solution of

B(e)V = -U

for t>0 [So, §12]. Since W(1/B) is convex, A(t) has curvature <0.
Thus, since G20, A(t) is a X-supersolution of (1.1); (6.2) then follows from
(6.1) and Corollary 3.1. D

Assertion (b) is more difficult to prove; for that reason we first give a

simple proof under a more stringent hypothesis on B. To state this
hypothesis, let D denote the differential operator defined on functions H(9)

by

DH=H+H"
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Then the polar diagram of H is convex at angles & for which DH(8) 20,
strictly convex at angles with DH(8) >0. We now establish (b) under the
assumption that, for some constant C»>0,

(6.3) G < CD(1/B)

on [0,2m), so that the polar diagram of 1/B is convex; in fact, strictly

convex at angles © with G(8)>0. Granted (6.3), (b) follows from Lemma
6.1 and

Lemma 6.2. Assume that (6.3) is satisfied, and that U<0 and
sufficiently large that

(6.4) o intW(1/B) € Q,, oy = ~2C/U.
Let o(t) be the solution of
x'(t) = -U - C/ax(t), x(0) = op.

Then any relaxed evolution Q(t) compatible with Q, satisfies, for t>0,
(6.5) x(t)W(1/B) € Q(t).

Proof. Let A(t)=oa(t)W(1/B). Then A(t) is a X-solution of (1.1)
with G replaced by CD(1/B) [So §12]. Since W(1/B) is smooth and
0<G=<CD(1/B), A(t) is a X-subsolution of (1.1) (with G); hence (6.5)

follows from (6.4) and Corollary 3.1. D

Proof of Theorem 6.1.
1° Let

g = sup G(98), b = sup B(8),

and assume that |U| is sufficiently large that
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xointB; € Qy, oy = -2g/U,
where B, is the unit ball in R2 Let «f(t) be the solution of

bo’(t) = -U - g/ax(t), oa(0) = o,
and let A(t)=x(t)B;. Then A(t) is a classical solution of the isotropic
equation bV=gK-U. Also, V>0, since «'(t)>0 for all t>0; consequently,
A(t) is a X-subsolution of (1.1) compatible with Qg and, by Corollary 3.1,
A(t)cQ(t). Further, af(t)— e as t—o; hence:

(6.6) as t—eo, Q(t) expands to fill the entire space.

2° Let WnCIR2 be a sequence of strictly convex, closed domains,

with smooth boundary, satisfying

(6.7) (1-n1)W(1/B) ¢ W, C W(1/B).

Further, let ¥_,(8) denote the support function of W, :
¥,(8) = sup { x-N(8) : xeW_}

(so that W_=W(¥,)). Since W, is strictly convex and OW_ is smooth, ¥,

is smooth and D¥,>0. Also,
1/B(8) 2 sup { x-N(8) : xeW(1/B) },
and hence, by (6.7),
(6.8) 1/B > ¥,.
3° Let

c, = g { inf D¥,(e) )1
)
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By 2°, cp¢e, but c, may diverge to +e as n— .
Choose t,>0 satisfying

(6.9) o, = int W, € Q(ty), oy, = -2¢,/U,
and let o,(t) be the solution of

on'(t) = ~U = cp/ap(t),  tot,

on(ty) = ag.
Then A, (t)=o,(1)W, isa X-solution of
¥,(8)°1V = ¢, D¥(8)K - U

for t>t, [So, §12]. Further, (6.8), the definition of cp, the convexity of
A1), and the positivity of V imply that

B(8)V = ¥,(8)"1V = ¢, D¥,(8)K - U = G(8)K - U;

hence A,(t) is a X-subsolution of (1.1) for tt,. By Corollary 3.1 and
(6.9), A, (1)cQ(t) for all t>t,, and using (6.7) we conclude that

(6.7) o, (1)(1 - n"1) W(1/B) € Q(1), Tt t,.
4° For t>t; define
oft) = sup { (1-nDay(t): n21, th2t)
Then o(t)W(1/B)CQ(t) for t>t;. Also, for each n,
x(t) 2 (1-n"oy(t), t 21,

Hence



liminfa(t)/t 2 (1 -n"Y) liminf a,(t)/t = -(1-n"1)U

t = oo t— oo
for every n, and consequently

(6.11) liminf «x(t)/t 2 -U.

t~s 00
5° Summarizing, in 4° and Lemma 6.1 we have shown that
a(t)W(1/B) € Q(t) € (-Ut+ g W(1/B),

which, with (6.11), yields

lim a(t)(-Ut+ag)t = 1;

t— oo

hence Q(t)~t|UIW(1/B) as t—e. O

40
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7. PROOFS OF THE COMPARISON THEOREMS.
a. SUB AND SUPERDIFFERENTIALS.

We recall several definitions from the theory of viscosity solutions.
Let ¢ be a bounded function on (0,o)xR2, and let 3 denote the set of
symmetric 2x2 matrices. Then the subdifferential D*¢(t,x) and the
superdifferential D @(t,x) of ¢ at (t,x)€(0,)xR2 are defined by

21

D*¢(t,x) = { (q,p,A)eRxR2x.8 : limsup D(¢*)(h,z) < 0 },
(h,2)—0

D (t,x) = { (q,p,A)eRxR2x3 : liminf D(p«)(h,2) 2 0 },
(h,z)— 0

where

D&(h,z) = D&(t,x;h,z;q,p,A) =
(Ihl+1212)-1{ &(t+h,x+2) - &(t,x) - hq - 2:p - {z-Az};

we close the sets D*g(t,x) as follows

cDe(t,x) = { im(q,,Pn.Ap) @ (@n.PnAn)eD@(t, x,), (t,,x,)—(1,x) },

n = co
Then?? (q,p,A)eD*¢(t,x) if and only if there is a weC!2 satisfying
wi(t,x) = q, Dw(t,x) = p, D2w(t,x) = A,

and (t,x) is a maximum of the difference (¢*-w). Hence ¢ is a viscosity
subsolution of (3.4) if and only if

qg < T*(p,A) for all (q,p,A)eD*¢(t,x)

21cs, [CIL, §21, [C], [CEL), [FS, §5.4).
22Cf.. eg., [FS, Prop. 4.1, §54]; since ¢ is not necessarily continuous, the proof given
in [FS] must be slightly modified.
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and all (t,%x)e(0,=)xR2. A limit argument then shows that
(7.1) q =< ¥*(p,A) for all (q,p,A)ecD*y(t,x).
Similarly, ¢ is a viscosity supersolution of (3.4) if and only if
(7.2) q 2 Fx(p,A) for all (q,p,A)ecD ¢(t,x)

and all (t,x)e(0,o0)xR2.

b. SEMICONVEX AND SEMICONCAVE FUNCTIONS.
Let CCRY be a convex set. We say that ¥ is semiconvex on C if
there is a constant k such that

T(Y) = T(Y) + klY2

is convex on C; ¥ is semiconcaveon C if -9 is semiconvex.
Let ¥ be semiconvex. Since %(Y) is convex, the set of

subdifferentials, standard in convex analysis [C], is given by
dT(Y) = { PeRd: (V)2 UY)+P-(Y-Y), VYeC).
In addition, wthe directional derivatives of T exist and are given by

(7.3) (9/9Z)T(Y) = lim r-1[T(Y +rZ) - T(Y)) = sup{ P-Z: PedI(Y)}
rdo

for ZeR4\{0). We now define
QT(Y) = dT(Y) + {-2kY} = {P: P=P -2«kZ, PedT(Y) }.

Then, using the formula for the directional derivative of ¥,
(0/9Z)%(Y) = sup{ P-Z: Pe d¥(Y) )

for ZeR4\{0}.
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The following properties of semiconvex functions are well known:
(74) T is differentiable at Y if and only if 9¥(Y) is a singleton.

(7.5) if there are sequences P_— P, Y _— Y and convex functions
¥ = ¥ (uniformly on C) satisfying P, ¢ 5§(Yn) for all n,
then Ped¥(Y).

Our next result is an implicit function theorem for semiccnvex
functions. Let ¢ be a semiconvex function on C, and let 0 be an interior
point of C. We assume that ¢ is differentiable?3 at 0 with a nonzero
gradient P, and, without loss in generality, we assume that Py=P,/IP,|

satisfies
P, = (0,0,....,0,1).

Let &, be a constant satisfying

(7.6a) IP-P,l < IPyl/2, VPe dT(Y), IYls28,,
(7.6b) Py 2 IP,1/2, vPe dT(Y), IYIs25,,
(7.6¢) B(25,) = {Y: IYl<25 }cC.

Note that the existence of §, follows from (7.5) (with ¥ =¥ for all n).
For Y =(Y.Y,,....Y4q.1.Yy) € R¢ we write

pY = (Yl,Yz, oo ’Yd‘l) € ‘Rd'l,
Theorem 7.1 (Implicit Function Theorem). There is a §>0 and a

unique real-valued, Lipschitz continuous function 1 on B(8) such that,
for all Y,

23We make this assumption to simplify the analysis; an analogous result holds
under the weaker assumption 2%(0)n{0) = 2.
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(7.7) T(PY,IY)) = E(Y P forall Y=(PY,Y, € B(5).

Moreover, & depends only on |Pyl, &, and the Lipschitz constant of ¥
on B(§,).

Proof.
1° For |Y¥I<8, and «xeR with lxl<8;, we define

T(o;Y) = E(PY,0) - T(YP).

By (7.3),

T(PY,x) = T(Y) + [(9/0P,) T(PY,p)dp,
Yq4

(/9P T(PY,p) = sup{ P, : PedL(PY,p) ).
Thus, by (7.6b), for |Y[l<§, and lal<8,,
(7.82) E(PY,x) 2 T(Y) + (x - Y )IPy1/2, VoazYy,
(7.8b) T(PY,x) = B(Y) + (- Y )IPyl/2, VoasYy.
2° Our next step will bg to show that thereis a 56(0,81] such that
(7.9) &(-8,;Y) < 0 < 8(8,;Y)
for all |Yl<§&. Indeed, by (7.8a),

8(5,;Y) = B(PY,5,) - T(Y) + T(Y) - T(Y,Py)
2 (81 - Yd) |p0|/2 - LlY - Ydﬁol,

where L is the Lipschitz xonstant of ¥ on B(§;). (¥ is semiconvex on
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C and hence Lipschitz continuous on every compact subset interior to C)
Let & be the lesser of 8,/2 and 8,|Pyl/4L. Then for all |Y|=<8§,

v

8(5,;Y) 2 (8,- 8)[Pyl/2 - LUYI- 1Y D,

v

The other inequality in (7.9) is proved similarly, with the same choice for 8.

3° Fix |Yl<8 and consider the map
M) = &(x;Y), oel-8,,8,].
Then ! is continuous on [-8§,,8;] with
2-8,) < 0 = 2(5,).
Also, the argument leading to (7.8a) yields, for a,B.e[- 6,,8,],
) 2 2(B) + (x - p) IPyl/2 for o 2 B.

Hence there is a unique ox€[-8;,6;] such that 2(cx)=0.
4° For each [Yl<8 set

I(Y) = O,
Then, for all [Y|<§,
0 = 2ax) = T(PY,IY)) - Y Py,

and (7.7) is satisfied.
5° Our last step will be to show that 1 is Lipschitz continuous. Let
[Yl,IXl<8 be given. Then (7.82) and the Lipschitz continuity of ¢ vyield

FIX) +p;Y) = T(PY,IX) +p) - T(YP)
T(PX,1(X) +p) - T(X Py - 2LIX - Y|
T(PX,1(X) +p) - TPX,IX)) + TPX,IX)) - B(X4P) - 2LIX - Y|

v
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> plP,1/2 + &1(X);X) - 2LIX- Y| 2 0
provided
(7.10) p 2 4LIX - YI/IPyl.
A similar argument shows that
(IX)-pY) <0
if p satisfies (7.10). Hence I(Y)ell(X)-p,I(X)+pl. D

Remark 7.1. Note that the Lipschitz constant of I is =<4L/IPgl,
with L the Lipschitz constant of ¥ on B(§,).

The next result, the key technical contribution of the paper, will be
used in an essential manner in the proof of Theorem 3.3. For p=0, let

8(p) = sin"}(-p,), p = p/lpl.

Proposition 7.1. Let v be a semiconvex function on [0,e)xR?2
(so that v(t,x)+ k(t2+]x]2) is convex for some constant k). Suppose that
v is differentiable at (t5,Xy) with

Py = Vv(tg,xy) = 0.

Then there exist (t,,x,) — (t5,X,) and (q,.Pn.Aj)ecD*v(t,,x,) such
that

(7.112) Hm (qn,Pn) = (Vi(t0.X0),Po), lpnl = O,

n=eco

(7.11b) liminf min{ 8(p,) - 8(py), T(pn,An) ¥ = 0,

n-— oo
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where
T(p,A) = trace[(l- pe®p)lA].

To motivate the proof of this proposition, assume, for the moment,
that v is smooth. For reR, let

h(r) = 8(Vv(ty,xo+rw)), w = ((py),,-(py)y).
Then
h'(0) = T(pg, V2v(ty,x,)).

Hence if T(py,V?v(ty,xy))>0 then h(r)<h(0) for r>0.

This argument works only for smooth wv. However, if v 1is
semiconvex, then its second derivative is bounded from below. We will use
this lower bound to prove (7.11b), with H playing the role of h (cf. 7°).

The argument given above indicates the possible wvalidity of the
following assertion, which is dual to (7.11b):

(7.11¢) liminf min{ e(py) - ¢(p,), T*(p,,A)) )} = O

n=—eo

Indeed, the proof of Proposition 7.1 with minor changes establishes the
existence of a sequence satisfying (7.11a) and (7.11¢c). One might believe
further that

(7.11d) liminf min{ 8(p,) - 8(py), -T(Pn.A,) ) < O,

n—ow

but (7.11d) is not valid, the reason being that, since v is assumed
semiconvex, its second derivatives are necesarily bounded only from below,
but the proof of (7.11d) requires an upper bound on the second derivatives;
in fact, (7.11d) holds for semiconcave functions.

The proof of Proposition 7.1 will utilize the following result, which
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connects the subdifferentials of convex analysis to ¢D~ and c¢D*. We omit
the proof; similar results may be found in [FS,§2.8 and Chapter 5].

Lemma 7.1. Let v be a semiconvex function on [0,e)xR2,

Then

(q,p,A) € cD*v(t,x) U cDv(t,x)
only if
(7.12) (q,p) € dv(t,x).

Conversely, (7.12) implies that
(q,p,- 2k]) € D"v(t,x),
where k 1Is the constant appearing in the definition of semiconvexity.

Proof of Proposition 7.1.
1° Let (y,z) denote a generic point of R2. Assume, without loss in
generality, that v is defined on RxR?, that (ty,x,)=1(0,0,0), and that

po = Ipol (0,1).

If

liminf inf{ T(p,A) : (q,p,A) €ecD*v(t,y,z), Itl+lyl+lzl<e } < O,
ed0

then (7.11b) follows directly; we therefore assume that there are ¥,¢;>0
such that

(7.13) T(p,A) 2 ¥, V(q,p,A) € cD*v(t,y,2), (t,y,2)eB(ey).

The semicontinuity of v yields the existence of a §;>0 satisfying
(7.6), and hence of a §;>0 such that, for all (q,p) € ov(t,y,z),



49

(t,Y,Z)€B(251)Z
(7.14a) Ip - pol = Ipyl/4,
(7.14b) P2 2 Ipgl/4.

2° Since Vv is semiconvex, VvV is locally Lipschitz continuous.
Therefore, by Rademacher's Theorem, v is differentiable almost
everywhere; we define H(t,y,z) at the points of differentiability by

H(t,y,2) = 8(Vv(t,y,2)).

3° By Theorem 7.1, there are a ©6¢(0,6;] and a function I(t,y,2)
satisfying

(7.15) v(t,y,1(t,y,2)) = v(0,0,2), Vv (t,y,z)e B(8).

Further, by Remark 7.1, I(t,y,z) is Lipschitz continuous on B(8) with
Lipschitz constant no more than 4L/Ip,l, where L is the Lipschitz
constant of v on B(§)

4° Our next step is to show that the map (t,y,z) = (t,y,I(t,y,2)) with
domain B(8) is one-to-one. Suppose (t,y,1(t,y,2))=(%,¥,1(1,¥,2)). Then
(t,y)=(t,y¥) and

v(0,0,2) = v(t,y,I(t,y,2) = v(1,¥,1(1,y,2) = v(0,0,2).
Since py=1pyl(0,1), (7.14b) yields |
(7.16) v(0,0,&) = v(0,0,&)l 2 loc = allpgl/2
for all (0,0,«),(0,0,&) € B(28,); hence z=2z.

5° The inverse of the map defined in 4° has the form (t,y,J(t,y,2))
with
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v(t,y,2) = v(0,0,J(t,y,2)),

and we may use (7.16) to show that J is Lipschitz continuous.

6° Thus the map (t,y,2)~ (t,y,1(t,y,2)) with domain B(8) is one-
to-one and Lipschitz, with Lipschitz inverse; hence it transforms null sets
into null sets.

7° In view of 6°,
Hit,y,2) = H(t,y,1(t,y,2))
is defined for almost every (t,y,z)e B(6). We now define, for 0<¢g,£<8/2,

k(e, L) = f[ﬁ(‘c,y+ £,2) - ﬁ(t,y,z)]dtdydz.
B(e)

In 9°-15° we shall show that, for sufficiently small ¢,£>0,
(7.17) k(e, ) 2 1B,l¥te3/2lpyl

with ¥ as in (7.13), where |B;| is the volume of the unit ball in R3. The
above estimate provides a weak method of proving that f—l(t,y,z) is
increasing in y. Indeed, if v were smooth, a direct calculation would yield

H,(0,0,2) = IpI"1T(py, V2v(0,0,2)) 2 ¥/Ip).

(The details are given in 9°))

We shall assume that (7.17) is valid and complete the proof of
(7.11a,b), before proving (7.17).

8° Let O denote the set of points of differentiability of v. For all
sufficiently small £,£>0 there are (t,7,2)eB(t) satisfying

,¥.2))€0, (1,7 +2.1(1,5+¢2,2))e€0,

~

,¥.1(

(7.18) AT,y +¢0.2) - HE3,2) 2 58/2lp,l.
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Moreover, by (7.5) and Lemma 7.1,

lim (sup { |H(t,y,2) - 8(py)| : (t,y,2)¢B(p)NO }) = 0.
plo

Since 1(0,0,0)=0, by choosing €>0 small we can make |H(t,y,z2)-9o(p,)l
smaller than ¥{/2lp,l. Therefore for every {=1/n there are €,{0 and

(th,¥n.2n )€ Ble,) satisfying

(th,¥n.2n) := (t—ntg’n+n-1'1(€nx?n+n-1:§n) €0,
H(tn,¥n.2n) > 8(pg).

This completes the proof of (7.11a,b), granted (7.17).

We now turn to a proof of (7.17)

9° We now assume that v is smooth, a restriction we will later
remove using mollification. Since Vv is smooth, H is defined everywhere.
Recall that

H(t,y,z) = 8(Vv(t,y,2), H(ty,2) = H(t,y,I(t,y,2),
8(p) = sin"i(-p,), P = p/lpl,
v(t,y,l(t,y,2)) = v(0,0,2).

We claim that
(7.19) Hy(t,y,2) = T(VV(E),V2V(E) v,(E)L, & = (1,y,1(t,y,2)).

This formula may be verified using a direct but tedious calculation; instead
we give an indirect derivation, which also motivates our reason for
computing ﬁy. '

For (t,2) fixed, the parametrized curve T :y = (y,I(t,y,2), lyl<§ is
a subset of the v(0,0,2) level curve of v. Hence the normal angle of I' is

o =H(t,y,2) and the curvature is given by

8 = T(Vv,V2v)/IVvl
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with s the arc length. Thus

A

Hy, = T(Vv,V2V)s, /IVVl, s, = (1+1,2)172,
By differentiating (7.15) with respect to y we obtain
vy * V1, = 0;

hence s, =1IVvl/v,, which, when substituted into the previous formula,
yields (7.19).

10° We continue to assume that v 1is smooth. The definition of
k(e,g) yields

k(e,8) = [ [ ﬁy(t,y+r§,z) drdtdydz ]¢.

[
B(e)

O “—

Let
K(t,y,2) = T(Vv(E),V2v(E)) v, (E)-1.

Then, by (7.19),

1
k(e,8) = [J [K(t,y+rg,2z)drdtdydz]¢.
B(e) 0

for all O<g,t<8/2, and (7.17) follows from (7.13) and (7.14). Thus we have
established (7.17) for v smooth. We now remove this restriction; here the
manner in which 8§ depends on v is important. The constant 8§ comes
from Theorem 7.1 and hence depends only on [Dv(0,0,0)l, 8;, and the
Lipschitz constant of v on B(§;); the constant §; is chosen in 1° and
satisfies both (7.6) and (7.14).

11° Let v, be a molification of v. Then v, converges to v
uniformly on compact sets; v,(t,y,z)+k(t2+y2+22) is convex, with k as
in the statement of the proposition; on compact sets, the Lipschitz constant
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of v, is = the Lipschitz constant of wv.
Let k, and K, be defined as in 10°, but with v replaced by wv,,.
Then 10° yields

1 .
ko(e,8) = [ [ JK,(t,y+rg,z)drdtdydz]e.
B(e) O

for all O«<e,0<8,/2.

12° Consider a sequence (t,,¥,.,2,)— (t,y,2). Since Dv,(t,,¥n.2,)
(the derivative in R3) is uniformly bounded in n, it has a subsequence,
also denoted by n, such that Dv,(t,,y,.2,) is convergent with limit
(q,p). Then, by (7.5), (q,p)¢€ 5v(t,y,z). Thus Dv,(t,,y,.2,) = Dv(t,y,2) for
any sequence (t,,y,.z2,)— (t,y,2) €9. In particular,

(7.22a) lim Dv,(0,0,0) = Dv(0,0,0)

n— co

(7.22b) limkp(e,8) = k(g,¢)

n—oco

for all O<e,<6,/2 for sufficiently large n.

13° Recall that §;>0 satisfies (7.6) and (7.14). In view of the
previous steps, we may choose §;,— §;, as n — e, satisfying (7.6) and
(7.14) with v replaced by v,. Since the Lipschitz constant of v, is <
that of v on each compact set, 12° and the discussion just before 11°
imply that 6, — 8.

14° Recall the definition of k, given in 11°. We claim that there is
a subsequence, also labeled by n, such that

(7.23) liminf k,(€,8) 2 1Byl ¥e3/2|p,l

n-—oco
for all sufficiently small 0<¢,f. Indeed, since v is semiconvex,

D2v =M + A,
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where M is an integrable matrix-valued function and A is a matrix-
valued measure orthogonal to the Lebesgue measure (cf. [J, Proposition 3.3)).
Moreover, A20 and

(7.24) v-M(t,y,2)v 2 -klvl?, VveR3

with Kk as in the statement of the proposition. Since v,=v=*m, for some
smooth mollifier m,,

D2v, = M, +A,, Mp=Mxm,, A =Axm,.

The measure A, has density with respect to Lebesgue measure. Moreover,
A,20 and M, satisfies (7.24).

The monotonicity of T(p,A) in A and the positivity of A imply
that

K, (t,y,2) = T(Vv,(E,), Vv, (E,)) /(0/2) v, (E,),
E, = (t,y,I,(t,y,2)).

Suppose E=(t,y,l(t,y,2))€0. Then, by 12°,

Vv, (E,) = Vv(E), (9/92)v,(E,) — (9/02)v(E),
Further,

Kn(t,y,2) 2 T(Vv,(E,), Mp(Ey)) 72ipl
for all (t,y,2)e B(6,) and sufficiently large n. Also M, =M in L!. Recall
that the map (t,y,z) = (t,y,1(t,y,2)), on B(8), is one-to-one and Lipschitz,
with Lipschitz inverse (cf. 6°). Let

M, (t,y,2) = Mp(6n),  Ml(ty,2) = M(&).

~

Then M,~— M in L1(B(8)). Therefore, by passing to a subsequence, also
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labeled by n,

lim M, (t,y,2) = M(t,y,2)

n—ee
for almost every (t,y,z)eB(8). Since
v-Mp(E)v 2 -«lvl?,
it follows that
T(Vva(E,), ML (EL) 2 -k.
Fatou's Lemma then yield:

liminf [T(Vv,(E,), M,(E,))dtdydz 2
n—e B(e)

JT(Vv(E), M(E))dtdy dz
B(e)

for all €< &8/2. Hence, for 0<¢g,£<8/2,

1
liminfky(e,8) 2 [ [ [T(t,y+r¢,2) drdtdydz 1¢ /2Ipy|,
n-— oo B(e) 0

where

T(t,y,2) = T(Vv(E), M(E)).
Also for E€O, Eé¢supp A,

(Dv(g), M(g)) € D*v(E).

~ -~

Let O =0ncomplement(supp A). Then O has full measure and, by 6°, so
also has {(t,y,2)eB(8) : E(t,y,2)€0 }. Moreover, by (7.13), T(t,y,2)2¥ for
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every (t,y,z)eB(sl)né. We have therefore proved (7.23).
15° The desired result (7.17) follows from (7.21), (7.22), and (7.23). O

c. SEMICONVEX AND SEMICONCAVE APPROXIMATIONS.
For €>0 and (t,x)e[0,)xR2, we define

sup { @*(s,y) - (4e)-2(lt-sl4+Ix-yl4) : (s,y)el0,)xR2 },
inf { @u(s,y)+ (4e)-2(lt-sl+Ix-yl4) : (s,y)el0,)xR2 }.

¢e(t,x)
Pe(t,x)

These definitions are similar to the sup and inf convolutions of the theory of
viscosity solutions [LL,FS,JLS,CIL], in which the second power rather than
the fourth is used in the translations. Our reasons for using the fourth
power are its simplification of our proof of comparison (cf. Lemma 7.4c).

Let ¢ be bounded. Then ¢f is semiconvex. To verify this, choose a
maximizer (sqyy,) in the definition of ¢t(ty,%xy), and set

r=to-50, wsz-yO.
Then

PE(tg,Xo) = @*(s0,yp) - (4e)2(ri+iwl4),
Pe(t,x) 2 @™ (sq,Yo) - (4e)-2(lt-sgli+1x-yql4)

for all (t,x). For O0<hst, and zeR2, we use this inequality at
(t,x) = (g2 h,xy22) to obtain

Qlty,xg;h,2) = @(tg +h,xo+2) + ¢5(t5 - h,x5-2) - 29(t4,%,)
> -(4e)-2[(r+h)4+(r-h)4-2ri+lw+zli+lw-zl4 -|z|4].

Hence

liminf [h2+1z12]-1Q(ty,x4h,2) 2 -3(4¢e)-2[r2+lwl2].
(h,2)—0

Also,
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(4e)-2[ri+lwld] = @*(sq,yp) - ¢t(ty,xy) < 2llgll,
with [l the sup norm. Therefore
D2¢e 2 - (k/e)] in D’
for some constant k depending only on ll¢ll; hence ¢¢ is semiconvex. A

similar argumen: shows that ¢, is semiconcave (cf. [CIL, §3], [FS, §5.4]).
Also, as €40,

@e(t,x) 4 ¢*(t,%), 90c(t,%) T @u(t,x)
for all (t,x)€[0,e0)xR2,
The next lemma is similar to [FS, Lemma 7.2, §5.7] (see also [CIL, §3]).
Let Ms(t,x) denote the set of all maximizers in the definition of @&(t,x)
and mét(t,x) the set of all minimizers in the definition of ¢(t,Xx).
Lemma 7.2. Fix (t,x)€(0,)xR? and €>0. Then
(7.24) lt-sld4+|x-yl4 < 8llglle2,
for every (s,y)e Mt(t,x) N m¢®(t,x). Suppose
(7.25) t >t := (8llglle2)174,
Then
D+ge(t,x) € D*¢(s,y)
for every (s, v)eMe(t,x) and

D-y¢(t,x) C D-g(s,y)

for every (s,y)e me(t,x).
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Suppose that ¢ is a viscosity solution of (3.4) in (0,)xR2. Then we
may use Lemma 7.2 and (7.1) to conclude that ¢t is a viscosity subsolution
of (3.4) in (t;,~)xR2? and that ¢, is a viscosity supersolution of (3.4) in
(te,==)xR2.

Lemma 7.3. Suppose that

(q,p,A)ecD*t(ty,x,).
Then

(7.26) A > -3(lpl/e)2/31.

Proof. We assume, without loss in generality, that
(q,p,A)eD*pt(ty,X,). Then there is a function weCl2 such that

wilteXg) = g,  Vwlty,xq) = p,  Vawl(ty,xy) = A
and (ty,X,) is a maximizer of @¢-w. Let
V(t,x;8,y) = ¢*(s,y) - (48)’2(|‘t*5|4+|X"y|4)" wi(t,x).
Choose (sg,y,) € Mt(1q,xo). Then ¢ has a maximum at (tg,X4;s,,¥o). Thus

e-2(y - %) lyo- %012 = Vwl(ty,xo) = p,
- 8-2[ |}'0'x0|21 + Z(YO’xo)e(yO'xO)] < V2W(t0,x0) = A'

and (7.25) follows. O
A similar argument yields

(7.27) B < 3(Ipl/e)2/31.
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for all (q,p,B)ecD-gpe(ty,xq).

Lemma 7.4. Let ¢,p>0 and bounded functions ¢,y on
[0,)xR2 be given. Suppose that (ty,xy)e(te,)xR? is a maximizer of t,
(cf. (7.25))

We(t,x) = @e(t,x) - ¢ (t,x) - pt.

Then:
(a) ¢t and ¢, are differentiable at (ty,X,) with

(7.28a) Ve(ty,xy) = Velty,xy) = Pe,

(7.28b) =B+ (9p8)(tg,Xg) = (Pe)olty.xg) =1 q¢;
(b) there are syminetric matrices A, <B; such that

(qe +B,Pe.A¢) € cD*@E(1y,X,), (qe,Pe.Be) € DY e(ty,%0);
(c) if p=0, then A =B.=0.

Proof. (a) Recall that ¢t and ¢, are semiconvex and
semiconcave, respectively. Thus there is a k¢ such that

?(t,x) = @e(t,x) + K (t2+]x12)
is convex and

Pe(t,x) = K (t2+]x12)

V(t,x)

i5 concave.
Let (qi,pl) € atp(to,xO), (qz,pz) € "a(" E)(to,xO) Since (to,xO) is a
maximizer of We(t,x),
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P(t,x) - P(t,x) = We(t,x) + pt + 2k (t2+1x]2)

We(ty,xo) + Bt + 2k (12 +[x[2).

A

Also, by the definition of the subdifferentials 8¢ and -9(-y),

?(t,%x) - ¢(t,x)
2 ¢(t0,x0) - J’(to,xO) + (q1 - q2)(t - to) + (P1 = P2)°(x - xo)
= WEe(tg,Xq) + Bty + 2Ke(to2+1xg1%) + (qq - q;)(t - tg) + (py - Py)-(X - X().

Thus
(g - qy =Bt =1tg) + (py = pyle(x-%p) = 2k (t2+]x12-ty2 - x,[?)
for all (t,x), so that

q; =49, *+8B, P; =P

for all (q;,p,) € 99(tg,xy), (q,,P,) € -3(-§)(ty,%,). Hence 9p(ty,x,) and
-9(- §)(ty,x,) are singletons, and ¢ and ¢ are differentiable at (ty,x).
Assertion (a) then follows from the definitions of ¢ and .

(b) Since ¢ 1is semiconvex and §, semiconcave, this assertion
follows from (7.25), (7.26), and Jensen's maximum principle [Je], [CIL, §3],
[FS, Theorem 5.1, §5.5].

(c) Using (7.26) and (7.27), we obtain

-3(lp1/e)2/31 < A, =< B, = 3(lp.l/€)2/3]. D

d. PROOF OF THEOREM 3.3.

We will prove Theorem 3.3 by contradiction. Suppose that conclusion
(5.1) is invalid.

1° By hypothesis, 9eM([0,TIxR2) and ye M([0,TIxR2); thus there
are constants «, &,R such that

et,x) = o, ¢(t,x) = « for Ixl2R, telO,T].
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Thus, by (7.24), for all sufficiently small ¢,
@E(t,%) = o, Yelt,x) = « for IxI2R+1, tel0,TI
2° Set

I =sup [¢*(0,x) - ¢,.(0,%)]
xeRz

Then l2o-&. Since (5.1) does not hold, there are (s,¥)e(0,TIxB(R) and
¥>0 such that

(7.29) 0*(s,y) - Yu(sy) 21+ ¥.
3° For ¢€,p>0 consider the function
He(t,x) = @e(t,x) - ¢ (t,x) - pt
for (t,x)€[0,TIxR2. Then, by the definitions of ¢ and yq,
He(t,x) 2 ¢o*(t,x) - ¢, (1,x) - pt
for all (t,x)e[0,TIxR%. In particular,
He(s,y) 2 1 + ¥ - pT.
Therefore, by 1° and the inequality [2oa- &, for p«< 8/'1:, He achieves its
maximum at some (t(e),x(e))e(0,TIxB(R+1).
4° Suppose t(e)<t. for all sufficiently small €>0, where t, is
defined in (7.25). Since Ix(e)l<R+1, there is a subsequence, also labeled by
€, such that (t(g),x(e)) = (0,2) as €l0, and

(7.30) I2¢*(0,2) - ¢,.(0,2).

Also,
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(7.31) ge(t(e),x(e)) - Y (tle),x(e)) - pt(e) 2 I + ¥ - pT.

Choose (s(g),y(e)) € Me(t(e),x(g)). (Recall that Me(t,x) is the set of all
maximizers in the definition of ¢¢t(t,x).) Then, by (7.24), (s(e),y(¢)) — (0,2)
as €10. Moreover,

¢e(t(e),x(€)) < @, (s(e),y(¢))
and therefore

lim sup ¢@¢(t(e),x(¢)) = ¢*(0,2).
edo

Similarly,

liminf ¢ (t(e),x(e)) 2 ¢«(0,2).
ed 0

Using (7.30), (7.31), and the inequalities above, we are led to the inequality
p2¥/T.
5° We now fix

p = ¥/2T.

Then, in view of the previous step, t(e)<t, for some small €>0. Let
(tg,%,) = (t(€),x(e)). Then, by Lemma 7.4, ¢f and ¢, are differentiable at
(ty,X,) and (7.28) are satisfied. Moreover, there are A <B. satisfying
Lemma 7.4b. We now write qg,Pg.Aq.By for q¢,pe,A¢,B¢ to emphasize
the fact that € 1is now fixed. Since ¢t and ¢, are, respectively, a
viscosity subsolution and supersolution of (3.4), Lemma 7.4, (7.1), and (7.2)

imply that

(7.32) o *+ B < F*(pg.Ap),
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(7.33) qo 2 Fu(po.By).

6° Suppose that p,=0. Then, by Lemma 7.4c, A;=B;=0 and (7.32)
and (7.33) yield

qo + B = F%(0,0) = 0 =< qq,

which contradicts the positivity of p. Hence py,=0.

7° Suppose that G is continuous at
8, = e(py).
Then for any symmetric matrix A,
F*(pg.A) = FulpgA) = F(pyA).
Since A, <B,, the ellipticity property (3.13), (7.32), and (7.33) yield
g + B = T*(pg.Ap) = FT(pg.Ap) ¢ T(py.By) = Fu(pg.By) = qp,

which again contradicts the positivity of B.
8° Suppose that G is discontinuous at 8,. Then, by (1.2), there is a
¥>0 such that G(8)=0 either for all ©¢[8,,8,+¥] or for all eelo,-¥,8,l.

We will consider only the case in which
G(e) = 0, Voelog-¥,0.;
the other case is treated similarly. Let

p = B(eo)-l, Go =p lim G(e).

ele,

Then
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F*(py,Ay)
F = (po,Bo)

'pU|P0' + Go(T(po,Ao))+,
- pU'pol h Go(T(po,Bo))—,

where (x)*=max(x,0) and ()™= (-a)*.

9° We will analyze three cases separately.

Case A,20. Since B,z A,, it follows that By20 and T(py,By)20.
Then, by (7.33),
(7.34) qo 2 ?&(po,Bo) = -pU|p0‘

We now use Proposition 7.1 to construct

(7.35) (qn.Pn,An)ecD e(t,,x,),
(qntpn) - (qo +a; po)n (tn'xn) - (to,Xo)

satisfying (7.11b). By (7.35)
q, < T*(p,.AL)
and therefore

(7.36) qo *+ B < liminf ¥™(p,,A,).

n=eo

On the other hand, (7.11b) implies that

(7.37) liminf F*(p,,A,) < -pUlp,l.

n— oo
Indeed, (7.11b) yields either ©(p,)<#8, or

(7.38) liminf T(p,,A,) = 0.

n-—eo
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In the first case G(8(p,))=0 and
F*(p,.A,) = -pUlp,|,

and hence (7.37) follows from the convergence of p, to p;. On the other
hand, (7.38) and 8° yield

F*(p,.A,) < -pUlp,| + max g [G(8)B(8) 1) (T(p,, A ",
which implies (7.37). Now combine (7.36) and (7.37) to obtain
e+ p < pUlpgl,

which, with (3.4), contradicts the positivity of p.
Case By<0. Then A,<0 and

F * (po,Ao) = - PUIPO',

and we may use Proposition 7.1 with -¢, and argue exactly as in the

previous case to obtain a contradiction.
Case Ay<0<B,. Then

qo + E < ?“(po,Ao) = "pU|p0| = ?*(po,Bo) = ?*(po,Bo) < qo,

which once again contradicts the positivity of p. D
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8. PROOF OF THEOREMS 3.1 AND 3.2.

Proof of Theorem 3.2. The uniqueness of a level-set solution of (1.1)
corresponding to an auxiliary function &, follows from Theorem 3.3.

Let (61,92,...,9M} be the set of points of discontinuity of G. For n
a sufficiently large positive integer, let G, be the continuous 2m-periodic
function with G,(8)=G(e) for le-8,l21/n, k=1,2,...M, and G,(8) linear
otherwise. Further, let ¥, denote the function defined by (3.5) with G

replaced by G,. Then ¥, approximates F in the sense of the following
lemma, whose proof we omit.

Lemma 8.1. Let (p,,A,) = (p,A)eR?°xS as n— c. Then

limsup (F,)*(p,.A,) = F*(p,A),

n-— oo

liminf (F ). (p,,A,) = F.(p,A).

N oo

Since G, is continuous, we may use [CGG, Theorem 6.8] to conclude
that there is a unique, continuous viscosity solution &_eM([0,)xR2) — of
(3.4) with F replaced by ¥F, — satisfying &_(x,0)=8,(x), and we define
®* and &  as in the proof of Theorem 5.2. Moreover, Lemma 8.1 together
with classical stability results for viscosity solutions [FS, §2.6, §7.4] imply
that ®* and &~ are, respectively, a viscosity subsolution and a viscosity
supersolution of (3.4) on (0,=)xR2. We now follow the steps 4°-8° in the
proof of Theorem 5.2 to conclude that &*=%"=%. Hence & is a level-set
solution of (1.1) corresponding to &,.

We complete the proof by establishing (5.7). Let & be a level-set
solution of (1.1) corresponding to an auxiliary function &,.

For 8>0, let ng:R— R be smooth and satisfy: (i) mng'20; (i)
Ng(r)=0 for r=sc; (iii) ng(r)=1 for r2c+8. Then the geometric property
(3.12) implies that )

Bg(t,x) = ng(d(t,x))
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is a level - set solution of (1.1).24
Next,

u+(t,x) = limsup $4(s,y)
840
(s, )= (t,x)

is a viscosity subsolution of (3.4) (cf. [FS, §2.6, §7.4)). If we let u(t,x) be the
characteristic function of

UM = { x: d(t,x)2c),

then the continuity of & and the properties of ng yield
u+(t,x) = 0*(t,x) = u(t,x),

so that ‘f.l(t) is a X -subsolution of (1.1). In fact, since

clQg = {x: 3y(x)2c} = {x: limsupul(s,y)=1},
si0, y—x

U(t) is a X -subsolution of (1.1) compatible with Q.

Similarly,

u-(t,x) = liminf &4(s,y)
8d0
(s,y)—(t,x)

is a viscosity supersolution of (3.4), and, further, u- = U«; hence Ut is
also X -supersolution of (1.1) compatible with Q,. Thus UL) is a X -
solution of (1.1) compatible with Q.

Next, in view of the definition U(t), ‘il(t);‘ll(t). In tact, they are
equal. To verify this, let Q(t) be a X -subsolution compatible with Q,
and let u(t,x) be the characteristic function of Q(t). For any d<c, let

24¢f. [CGG, Theorem 5.6] for the proof of this fact when G is continuous.
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u(t,x;d) be the characteristic function of
L(t;d) = { x: &(t,x)>d ).

Then u*(0,x) cu«(0,x;d) = u(0,x;d), since Q(t) is compatible with Q, and
®,(x) = 8(0,x) is an auxiliary function for Q,. Then, by Corollary 3.1,
Q(t) c L(t;d) for any X-subsolution Q(t) of (1.1) compatible with Q.
Hence U(t) g L(t;d) for all d<c, and, since the intersection over all such d
of L(t;d) is U(M), UM LUR). Thus U= U

The analogous assertion for L(t) is proved in the same manner. D

Proof of Theorem 3.1. Parts (a) and (b) follow from Theorem 3.2. To
prove (c) note first that, since 9Q, is C3, thereis a C® parametrization
a—~Y(x) (R—R?), periodic with period 1, such that

0Q, = { Y(x): xe€l0,1) )
and

Y'(o) /1Y ()] = T(oy(ex)),

where ©,(ax) the normal-angle at Y(x) and T(®) is defined in (1.10).
Proceeding formally, let Q(t) be a solution of (1.1) such that

X(t,) = Y(ex) + h(t,a)N(84(x))

is a parametrization?® of 9Q(t) for some real-valued function h(t,x).
Then

(8.1) h(t,«) is periodic in o« with period 1.

Assume that h is C2. Let Ky(a) denote the curvature of 9Q, at Y(«),
and let #o(t,a), V(t,x), and K(t,x) denote the normal angle, normal

255 similar parametrization was used by Chen and Reitich [CR] in their proof of
local existence for a modified Stefan problem.
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velocity, and curvature of 0Q(t) at X(t,x). Then
T(e(t,x)) = X (t,) /1X(t,00)|

(where the subscript denotes differentiation with respect to that variable),
and defining

Fi(o,h,hy) = [Fole,h)2+ h2]1/2,
Fole,h) = Y ' ()l - hKgla),

a tedious computation yields
8(t,&) = &0, h(t,) h(t,0)),

with &(o,h,h,) the solution of

(8.2) T(8(ex,h,h o)) = [Falo,h) T(84(ax)) + hyN(84(e)) 1F5(ex,h,hg )",
and
(8.3a) V(t,o) = X, (t,x):N(e(t,)) = hFyle,h)/Filex,h,h,),

(8.3b) K(t,&)

9.(t,0) /1X (t,)| = Fzlo,h,h o ,hyo)

= {Fylo,h)[hgo + hKgla)2] + Ko(a) 1Y ()13 -
hal2Kg(a)h o +Kg' () h] = T(8g(ex))- Y (o) -
N(8,(a))-Y (e)hKyle) } Fy(e,h,h )73,

(Note that ©(t,o) is well defined provided the right side of (8.2) is nonzero.)
Thus, since

B(e(t,x))V(t,x) = G(o(t,x))K(t,&x) = U,

h(t,x) satisfies
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(8.4) Blo,h,h o) hy = Glo,hhdhoe - Fle,hhy),
with
B(o,h,h,) = B(8(x,h,hy)),
G(o,h,hy) = G(8(o,h,h ))F,(o,hh )2,
F(a,hho) = Glo,h,ho) { hKgle)2 + Fplo,h) 1 Kola) 1Y ()13 «

ho[2Kg(a)h o + Ko'(ax)h] - T(8o(ex))-Y () -
N(8,(a))- Y (c)hKy(ax) ) } - UF4(o,h,h o )F 5(0,h)1.

We will complete the proof by solving (8.4) subject to h(e,0) = 0. Let
G = { (e,h) : |hls Y (a)I/21K(ex)] ).
Then
Y (o)l - hKp(ex) 2 1Y'(e)I/2 > 0.

Hence the right side of (8.2) is nonzero and #&(«,h,h,) is continuous on
GxR. Moreover, F:GxR— R is continuous; B:@xR —[0,=) is continuous
and strictly positive; G:GxR —[0,) is continuous except at finitely two-
dimensional manifolds in G@xR, and suffers at most jump discontinuities
across such manifolds.

Although G has discontinuities, one can prove a comparison result
for viscosity sub and supersolutions of (8.4) using a modification of the
analysis given in Section 7. Indeed, requisite modifications of all arguments
except Proposition 7.1 are either straightforward or minor, and Proposition
7.1 should be replaced by

Proposition 8.1. Let v(t,x) be semiconvex on [0,-)xR and
differentiable at (t5,aq) with v, (ty,0q)=0. Then there are
(t,,0,) = (t5,0¢) and (qn,Pnp.ap)ecD*vit,, o) € RS such that

lim (qp,Pn) = (Ve,vg)(tg, &) = (qg.Pg),

n—oe



71

liminf min{ 8(x,,h,,p,) - ©(og,hg,pPo), F3lon,hp,Pn.an) ) <

n= co

where hy,=v(t,,o,), hp=vity,xg), and Fz is defined in (8.3).

Once a comparison result has been obtained, the existence of a
unique viscosity solution h of (8.4), satisfying (8.1) and an initial condition
for h(t,0), can be established utilizing an approximation argument of the
type used in the proof of Theorem 3.1. This solution is defined on
(o, Tm,x]le where T,.mx is the largest time satisfying (o ,h(t,x))eQ@ for
all (t,00)€l0, Tax)*R.

Let

g = inf { [Y'(e)]/41Kq(0)] },

oxelR

and for lel<e,, let h(t,oge), (t,0)€l0, Tax(€))xR, be the unique viscosity
solution of (8.4) satisfying (8.1) and h(0,x;e) = €. The uniqueness associated
with such solutions ensures that h(t,o;€e) depends continuously on €. Our
next step will be to show that

T := inf{ Tax(e) @ lel<eg )
satisfies

0 <¢<Tw < Tuniq-
To verify this assertion, define, for (t,X)€[0,T»]xR2,

e if xeoQ(t;e), lelsey,
p(t,x) = g, if xe€dQ(t;ey),

-go if x¢9Q(t;-¢y),

where Q(t;e) is the closed region enclosed by
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(8.5) { Y(x) + hi(t,0;e)N(8,(e)) : x€[0,1] ).
(Since t=<Tx, (o,h(t,x;e))eG@ and the curve (8.5) encloses a region.)
Further, a tedious calculation shows that ¢ is a level-set solution of (1.1)

corresponding to an auxiliary function compatible with Q, By Theorem
3.2 (cf. (5.7)),

Ut) = { x: &(t,x)20 }, L(t) = { x: &(t,x)>0 }.
Since h depends continuously on ¢,
Tum'q > T™.

To establish the positivity of T*, observe that, by the maximum principle

(or comparison result for (8.4)),
Ih(t,o;€) - €l < kt

for all lelsey, tel0, T, ax(€)), where K is a suitable constant depending on

the C3 norm of 9Q,. Hence
lh(t,o;e)l < 2¢gg

for all tse,/k. Finally, the definitions of G and g, imply that T*2e¢,/k.
D

Acknowledgment. This work was supported by the Army Research Office
and the National Science Foundation.



73

REFERENCES

[AL]

[AC]

[ATW]

[Ag]

[AG1]

[AG2]

[Bal
[Br]

[BSS]

[Ch]

[CR]

[CGG)

[CH]

[Cr]

[CEL)

Abresch U. and J. Langer, The normalized curve shortening flow
and homothetic solutions, J. Diff. Geom. 23, 175-196 (1986)

Allen, S. M., and J. W. Cahn, A macroscopic theory for antiphase
boundary motion and its application to antiphase domain
coarsening, Act. Metall. 27, 1085-1098 (1979)

Almgren, F., J. E. Taylor, and L. Wang, Curvature driven flows: a
variational approach, SIAM J. Control Opt.. (issue dedicated to W.
Fleming), Forthcoming

Angenent, S., Parabolic equations for curves on surfaces. 1. Curves
with p-integrable curvature, Ann. Math. 132, 451-483 (1990); .1I.
Intersections, blowup, and generalized solutions, Ann. Math. 133,
171-217 (1991)

Angenent, S. and M. E. Gurtin, Multiphase thermomechanics with
interfacial structure. 2. Evolution of an isothermal interface, Arch.
Rational. Mech. Anal. 108, 323-391 (1989)

Angenent, S. and M. E. Gurtin, Anisotropic motion of a phase
interface. Well-posedness of the initial-value problem and qualitative
properties of the interface, J. reine angew. Math. Forthcoming
Barles, G.,, Remark on a flame propagation model, Rapport INRIA
=464 (1985)

Brakke, K. A., The Motion of a Surface by its Mean Curvature,
Princeton University Press (1978)

Barles, G., H. M. Soner, and P. E. Souganidis, Front propagation and
phase field theory, SIAM J. Cont. Optim. (issue dedicated to W.
Fleming), Forthcoming

Chen, X. Generation and propagation of the interface for reaction
diffusion equations, J. Diff. Eqts. 96, 116-141 (1992)

Chen, X. and F. Reitich, Local existence and uniqueness of solutions of
the Stefan problem with surface tension and kinetic undercooling, J.
Math. Anal. Appl. 164, 352-362 (1992)

Chen, Y.-G, Y. Giga, and S. Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow egquations, J. Diff.
Geom. 33, 749-786 (1991)

Cahn, J. W. and D. W. Hoffman, A vector thermodynamics for
anisotropic surfaces 2: curved and faceted surfaces, Act. Metall. 22,
1205-1214 (1974).

Crandall, M. G., Quadratic forms, semidifferentials and viscosity
solutions of fully nonlinear elliptic equations, Ann. IHP Anal. Nonlin.,
6, 419-435 (1989)

Crandall, M. G, Evans, L. C.,, and P.-L. Lions, Some properties of
viscosity solutions of Hamilton-Jacoby equations, Trans. AMS, 282,
487-502 (1984)



("‘“‘ .

[CIL)

[CL]
[Ds]

[DGP]

[ESS]

[ES1]
[ES2]
[ES3]
[FS]
[GH]

[GS]

[Gj]
[Gr]

[G1)

[G2]

[Je)

[LL]
[0s]

[ORS]

74

Crandall, M. G., Ishii, I, and P.-L. Lions, User's guide to
viscosity solutions of second-order partial differential equations, Bul.
AMS,27/1, 1-67 (1992)

Crandall, M. G. and P.-L. Lions, Viscosity solutions of Hamilton-Jacoby
equations, Trans. AMS, 277, 1-43 (1983)

DeMottoni, P. and M. Schatzman, Development of surfaces in RN,
Proc. Roy. Soc. Edinburgh, 116A, 207-220 (1990)

DiCarlo, A., Gurtin M. E, and P. Podio-Guidugli, A regularized equation
for anisotropic motion-by-curvature, SIAM J. Appl. Math. 52, 1111-
1119 (1992)

Evans, L. C., Soner, H. M., and P. E. Souganidis, Phase transitions and
generalized motion by mean curvature, Comm Pure Appl
Math. 45, 1097-1123 (1992)

Evans, L. C. and J. Spruck, Motion of level sets by mean curvature I,
J. Diff. Geom., 33, 635-681 (1991)

Evans, L. C. and J. Spruck, Motion of level sets by mean curvature II,
Trans. AMS, Forthcoming

Evans, L. C. and J. Spruck, Motion of level sets by mean curvature
III, J. Geom. Anal. Forthcoming

Fleming, W. and H. M. Soner, Controlled Markov Processes and
Viscosity Solutions, Springer-Verlag, Berlin (1993)

Gage, M. and R. S. Hamilton, The heat equation shrinking convex
plane curves, J. Diff. Geom. 23, 69-95 (1986)

Giga, Y. and M. H. Sato, Generalized interface condition with the
Neumann boundary condition, Proc. Japan Acad., Ser. A Math.67,
263-266 (1991)

Gjostein, N. A., Adsorption and surface energy 2: thermal faceting
from minimization of surface energy, Act. Metall. 11, 969-977 (1963).
Grayson, M. A,, The heat equation shrinks embedded plane curves

to round points, J. Diff. Geom. 26, 285-314 (1987)

Gurtin, M. E., Multiphase thermomechanics with interfacial structure.
1. Heat conduction and the capillary balance law, Arch. Rational
Mech. Anal. 104, 185-221 (1988).

Gurtin, M. E., Thermomechanics of Evolving Phase Boundaries in the
Plane,Oxford Press, Forthcoming.

Jensen, R. The maximum principle for viscosity solutions of second-
order fully nonlinear partial differential equations, Arch. Rational
Mech. Anal. 101, 1-27 (1988)

Lasry, J. M., and P.-L. Lions, A remark on regularization in Hilbert
spaces, Israel J. Math. 55, 257-266 (1986)

Osher, S. and J. A. Sethian, Fronts propagating with curvature
dependent speed, J. Comp. Phys. 79, 12-49 (1988)

Owen, N. C., Rubinstein, J., and P. Sternberg, Minimizers and
gradient flows for singularly perturbed bi-stable potentials with a



LN

[OwsS)]
[RS]
[Se)
[So)
[SZ]

[TCH]

75

Dirichlet condition, Proc. Roy. Soc. London 429, 505-532 (1989)

Owen, N. C. and P. Sternberg, Gradient flow and front propagation

with boundary contact energy, Forthcoming

Rubinstein, J. and P. Sternberg, Nonlocal reaction-diffusion equations
and nucleation, IMA J. Appl. Math., Forthcoming

Sethian, J. A., Curvature and evolution of fronts, Comm. Math.

Phys. 101, 487-499 (1985)

Soner, H. M., Motion of a set by the mean curvature of its boundary,
J. Diff. Eqts.,Forthcoming

Sternberg, P. and W. Ziemer, Generalized motion by curvature with

a Dirichlet boundary condition, Forthcoming

Taylor, J,, J. W. Cahn, and C. A. Handwerker, Geometric models of

crystal growth 1, Acta Met.40, 1443-1474 (1992)






References, continued

[BK] L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit
of Ginzburg-Landau model, Jour. Diff. Equations, 90 (1991), 211-237.

[JLS] R. Jensen, P.-L. Lions and P.E. Souganidis, A uniqueness result for vis-
cosity solutions of second order fully nonlinear partial differential equations,
Proc. AMS., 102 (1988), 975-978.

[OS] M. Ohnuma and M. Sato, Singular degenerate parabolic equations with
applications to geometric evolutions, (1992) preprint.

[RSK] J. Rubinstein, P. Sternberg and J.B. Keller, Fast reaction, slow diffusion
and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.












.-

[Ows]
[RS]
[Se]
[So]
[sZ]

[TCH]

75

Dirichlet condition, Proc. Roy. Soc. London 429, 505-532 (1989)

Owen, N. C. and P. Sternberg, Gradient flow and front propagation

with boundary contact energy, Forthcoming

Rubinstein, J. and P. Sternberg, Nonlocal reaction-diffusion equations
and nucleation, IMA J. Appl. Math., Forthcoming

Sethian, J. A., Curvature and evolution of fronts, Comm. Math.

Phys. 101, 487-499 (1985)

Soner, H. M., Motion of a set by the mean curvature of its boundary,
J. Diff. Eqts.,Forthcoming

Sternberg, P. and W. Ziemer, Generalized motion by curvature with

a Dirichlet boundary condition, Forthcoming

Taylor, J., J. W. Cahn, and C. A. Handwerker, Geometric models of

crystal growth 1, Acta Met.40, 1443-1474 (1992)



Rev1112392
Center for Nonlinear Analysis
Report Series * Complete List

Nonlinear Analysis Series

No. ‘

91-NA-001 [ ] Lions, P.L., Jacobians and Hardy spaces, June 1991

91-NA-002 [ 1 Giga,Y.and Soto, M.-H., Ceneralized interface evolution with
the Neumann boundary cundition, July 1991

91-NA-003 [ 1 Soner, HM. and Souganidis, P.E., Uniqueness and singularities
of cylindrically symmetric surfaces moving by mean curvature,
July 1991

91-NA-004 [] Coleman, B.D., Marcus, M. and Mizel, V.J., On the
Thermodynamics of periodic phases, August 1991

91-NA-005 [ ] Gurtin, M.E. and Fodio-Guidugli, P., On the formulation of
mechanical balance laws for structured continua, August 1991

91-NA-006 [ 1 Gurtin, M.E. and Voorhees, P., Two-phase continuum mechanics
with mass transport and stress, August 1991

91-NA-007 [ ] Fried, E., Non-monotonic transformation kinetics and the
morphological stability of phase boundaries in thermoelastic
materials, September 1991

91-NA-008 [ ] Gurtin, M.E., Evolving phase boundaries in deformable
continua, September 1991

91-NA-009 [ 1 DicCarlo, A, Gurtin, M.E., and Podio-Guidugli, P., A regularized
equation for anisotropic motion-by-curvature, September 1991

91-NA-010 [ ] Kinderlehrer, D. and Ou, B., Second variation of liquid crystal
energy at x/Ixl, August 1991

91-NA-011 [ ] Baughman, L. A. and Walkington, N., Co-volume methods for
degenerate parabolic problems, August 1991

91-NA-012 [ ] James, R.D. and Kinderlek.er, D., Frustration and
microstructure: An example in magnetostriction, November
1991

91-NA-013 [ ] Angenent, S.B. and Gurtin, M.E., Anisotropic motion of a phase

interface, November 1991



92-NA-001

92-NA-002

92-NA-003

92-NA-004

92-NA-005

92-NA-006

92-NA-007

92-NA-008

92-NA-009

92-NA-010

92-NA-011

92-NA-012

92-NA-013

92-NA-014

92-NA-015

92-NA-016

92-NA-017

[]

[]

[]

[]

[1]

[]

[]

(]

[]

[]

[]

[]

[]

[]

[1]

(]

[]

Nicolaides, R.A. and Walkington, N.J., Computation of
microstructure utilizing Young measure representations,
January 1992

Tartar, L., On mathematical tools for studying partial differential
equations of continuum physics: H-measures and Young
measures, January 1992

Bronsard, L. and Hilhorst, D., On the slow dynamics for the Cahn-
Hilliard equation in one space dimension, February 1992

Gurtin, M.E., Thermodynamics and the supercritical Stefan
equations with nucleations, March 1992

Antonic, N., Memory effects in homogenisation linear second order
equation, February 1992

Gurtin, M.E. and Voorhees, P.W., The continuum mechanics of
coherent two-phase elastic solids with mass transport, March 1992

Kinderlehrer, D. and Pedregal, P., Remarks about gradient Young
measures generated by sequences in Sobolev spaces, March 1992

Workshop on Shear Bands, March 23-25, 1992 (Abstracts), March
1992

Armstrong, R. W., Microstructural/Dislocation Mechanics Aspects
of Shear Banding in Polycrystals, March 1992

Soner, H. M. and Souganidis, P. E., Singularities and Uniqueness of
Cylindrically Symmetric Surfaces Moving by Mean Curvature,
April 1992

Owen, David R., Schaeffer, Jack, andWang, Keming, A Gronwall
Inequality for Weakly Lipschitzian Mappings, April 1992

Alama, Stanley and Li, Yan Yan, On "Multibump'' Bound States
for Certain Semilinear Elliptic Equations, April 1992

Olmstead, W. E., Nemat-Nasser, S., and Li, L., Shear Bands as
Discontinuities, April 1992

Agngtgnic, N., H-Measures Applied to Symmetric Systems, April
1

Barroso, Ana Cristina and Fonseca, Irene, Anisotropic Singular
Perturbations - The Vectorial Case, April 1992

Pedregal, Pablo, Jensen's Inequality in the Calculus of Variations,
May 1992

Fonseca, Irene and Muller, Stefan, Relaxation of Quasiconvex
Functionals in BV(Q,RP) for Integrands f(x,u,Vu), May 1992



92-NA-018

92-NA-019

92-NA-020

92-NA-021

92-NA-022

92-NA-023

92-NA-024

92-NA-025

92-NA-026

92-NA-027

92-NA-028

92-NA-029

92-NA-030

92-NA-031

92-NA-032

92-NA-033

[]

[]

[]

[]

[]

(]

[]

[]

[]

[]

[]

[]

[]

(1

[]

[]

Alama, Stanley and Tarantello, Gabriella, On Semilinear Elliptic
Equations with Indefinite Nonlinearities, May 1992

Owen, David R., Deformations and Stresses With and Without
Microslip, June 1992

Barles, G., Soner, H. M,, Souganidis, P. E., Front Propagation and
Phase Field Theory, June 1992

Bruno, Oscar P. and Reitich, Fernando, Approximation of Analytic
Functions: A Method of Enhanced Convergence, July 1992

Bronsard, Lia and Reitich, Fernando, On Three-Phase Boundary
Motion and the Singular Limit of a Vector-Valued Ginzburg-
Landau Equation, July 1992

Cannarsa, Piermarco, Gozzi, Fausto and Soner, H.M., A Dynamic
Programming A pproach to Nonlinear Boundary Control
Problems of Parabolic Type, July 1992

Fried, Eliot and Gurtin, Morton, Continuum Phase Transitions With
An Order Parameter; Accretion and Heat Conduction, August
1992

Swart, Pieter J. and Homes, Philip J., Energy Minimization and the
Formation of Microstructure in Dynamic Anti-Plane Shear,
August 1992

Ambrosio, 1., Cannarsa, P. and Soner, H.M., On the Propagation of
Singularities of Semi-Convex Functions, August 1992

Nicolaides, R.A. and Walkington, Noel J., Strong Convergence of
Numerical Solutions to Degenerate Varational Problems, August
1992

Tarantello, Gabriella, Multiplicity Results for an Inhomogenous
Neumann Problem with Critical Exponent, August 1992

Noll, Walter, The Geometry of Contact, Separation, and
Reformation of Continous Bodies, August 1992

Brandon, Deborah and Rogers, Robert C., Nonlocal
Superconductivity, July 1992

Yang, Yisong, An Equivalence Theorem for String Solutions of the
Einstein-Matter-Gauge Equations, September 1992

Spruck, Joel and Yang,Yisong, Cosmic String Solutions of the
Einstein-Matter-Gauge Equations, September 1992

Workshop on Computational Methods in Materials Science
(Abstracts), September 16-18, 1992.



92-NA-034 [ ]

92-NA-035 []

92-NA-036 [ ]

92-NA-037 []

92-NA-038 [ ]

92-NA-039 [ ]

92-NA-040 [ ]

92-NA-041 [ ]

092-NA-042 [ ]

Leo, Perry H. and Hemg-Jeng Jou, Shape evolution of an initially
circular precipitate growing by diffusion in an applied stress field,
October 1992

Gangbo, Wilfrid, On the weak lower semicontinuity of energies
with polyconvex integrands, October 1992

Katsoulakis, Markos, Kossioris, Georgios T. and Retich, Fernando,
Generalized motion by mean curvature with Neumann conditions
and the Allen-Cahn model for phase transitions, October 1992

Kinderlehrer, David, Some methods of analysis in the study of
microstructure, October 1992

Yang, Yisong, Self duality of the Gauge Field equations and the
Cosmological Constant, November 1992

Brandon, Deborah and Rogers, Robert, Constitutive Laws for
Pseudo-Elastic Materials, November 1992

Leo, P. H,, Shield, T. W, and Bruno, O. P., Transient Heat Transfer
Effects on the Pseudoelastic Behavior of Shape-Memory Wires,
November 1992

Gurtin, Morton E., The Dynamics of Solid-Solid Phase Transitions
1. Coherent Interfaces, November 1992

Gurtin, Morton E., Soner, H. M., and Souganidis, P. E., Anisotropic
Motion of an Interface Relaxed by the Formation of Infinitesimal
Wrinkles, December 1992

Stochastic Analysis Series

91-SA-001 []

91-SA-002 []

92-SA-001 (1]

Soner, H.M., Singular perturbations in manufacturing, November
1991

Bridge, D.S. and Shreve, S.E., Multi-dimensional finite-fuel singular
stochastic control, November 1991

Shreve, S. E. and Soner, H. M., Optimal Investment and
Consumption with Transaction Costs, September 1992



DEC 12 2003

Carn, Librari

NI

3 8482 013k0 3580




