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1. INTRODUCTION.
1.1. MATHEMATICAL THEORY.

In this paper we discuss the motion, in the plane, of a region Q(t)

whose boundary-curve evolves from a given region Qo according to an

equation

(1.1) B(e)V = G(e)K - U

with V the normal velocity and K the curvature . (Our sign
convention is such that the positive normal-direction is outward from
dQ = dQ(t), and K<0 when dQ is a circle.) Here B(e) and G(e) are given
functions of the normal-angle ©, which is the counterclockwise angle
from a fixed axis to the outward normal of dQ, and U is a given constant.

For B(e) and G(e) continuous and strictly positive, (1.1) is a
parabolic equation that is well understood, with fairly well-behaved
solutions.1 There are, however, situations of physical importance for
which G(e) = 0 over certain angle-intervals and for which G(e) need not be
continuous (cf. §1.2). Here we will develop a fairly complete theory of (1.1)
under the following assumptions:

(1.2a) G is piecewise continuous and >0, and continuous on any interval
of strict positivity;

1Cf. Angenent [Agl; Chen, Giga, and Goto [CGG]; Soner iSol; Barles, Soner, and
Souganidis IBSS]. • Urnversiiy Uh
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(1.2b) B is continuous and >0.

In some instances we will add the hypothesis:

(1.3) B has polar diagram a straight line on any angle interval for which
G=0,

which is based on the underlying physics.
Because of the lack of continuity of G as well as the degeneracy of

(1.1) when G=0, it is convenient to discuss this equation within the weak
framework of viscosity solutions. This approach to geometric equations,
initiated by Evans and Spruck lESl] and Chen, Giga, and Goto [CGG], is based
on the use of level sets to characterize evolving curves, an idea due to
Sethian [Se], Osher and Sethian [OS], and Barles [Ba]. Here — to study (1.1)
— we will use this approach as well as an intrinsic approach given by Soner
[So] and Barles, Soner, and Souganidis [BSS]. The difficulties concerning (1.1)
result from the discontinuous nature of G; the degeneracy of the equation,
at angles © with G(©) = 0, causes no great difficulty; were G continuous,
most of our results would follow from those in [CGG].

Our main results, for evolution from a given compact region Qo,
consist of: a theorem of existence and local uniqueness; a global comparison
theorem2 for level-set solutions.

1.2. PHYSICAL BACKGROUND.
There are situations of interest in which the motion of a phase

interface is essentially independent of the behavior of the corresponding
bulk phases. One of the first models of such phenomena was proposed by
Mullins [Mu] to study the planar motion of grain boundaries; the resulting
evolution equation has the form3

(1.4) V = K

after an appropriate scaling Equation (1.4) is a parabolic PDE with a large
literature;4 its major consequence ([GH], [Gr]) is that all such boundary
2This comparison theorem was established independently by Ohnuma and Sato
[OS], whose proof is different (and more concise) than ours.
3 Allen and Cahn [AC] and Rubinstein, Sternberg, and Keller [RSK] deduce the
equation V«K as a formal approximation to the Landau - Ginzburg equation, a result
established rigorously in [BSS], [ESS], [Ch], and IDS]. See also [ORS], [OwS], [RS].



/ curves, irrespective of their initial shape, shrink to a point in finite time,

with asymptotic shape a circle.

Mullins's theory was generalized in [Gl,§8], lAGl] to include

anisotropy and the possibility of a difference in bulk energies between

phases. The resulting equation is

(1.5) b(e)V = g(e)K - U,

where g(0), the energy modulus, is given by

(1.6) g(e) --

with f(e)>0 the interfacial energy; U is the relative energy of the

material in Q; and b(e)>0, the kinetic modulus, is a material function.

The presence of the angle © reflects anisotropy, and the particular form in

which f appears in (1.6) is a consequence of thermodynamics. In fact, a

consequence of (1.5) and (1.6) is the thermodynamic inequality

(1.7) (d/dt){Jf(e)ds + Uarea(Q(t))} = - Jb(e)V2ds.

dQ(t) dQ(t)

When

(1.8) g(e) > 0

evolution according to (1.5) is governed by a parabolic PDE and the

underlying problem is not much different than that for the equation V = K.

What makes (1.5) nonstandard is the possibility of interfacial energies that

satisfy

(1.9) g(0) < 0

4Cf. Brakke [Br], Sethian [Se], Abresch and Langer lAL], Gage and Hamilton [GH],
Gray$on [Gr], Osher and Sethian 10S], Evans and Spruck [ES1-3], Chen, Giga, and
Goto [CGG], Goto and Sato [GS], Almgren, Taylor, and Wang [ATW], Taylor, Cahn, and
Handworker [TCH], and the references therein.



(1.12) G(e) =

The next question we must answer is what is an appropriate kinetic
modulus for the infinitesimally wrinkled curve. If F(t) is a finite wrinkling
whose facets have ex and ©2

 a s normal angles, then F(t) evolves as a
rigid body with constant velocity GO defined by [AG1]

(1.16) oo-NCe^ = - b t e ^ U , GO-N(©2) = -b(©2)"
1U

(although F(t) is allowed to shrink or grow tangentially). Since GO

depends on the particular wrinkling only through ©x and ©2, it seems

reasonable to suppose that infinitesimal wrinklings with ©1 and ©2 as

normal angles also evolve with rigid velocity GO, and this is equivalent to

replacing the kinetic modulus b(©) between Bx and ©2 by an effective

modulus B(©) that agrees with b(©) at Bx and ©2 and has polar

diagram between ©1 and ©2 a straight line:

(1.17) B(©)"1 = u1(©)b(©1)'
1 + u2(©)b(©2)-

1

This proceedure defines an effective kinetic modulus B(©) for all © [G2]:
B(©)>0 is continuous; B(©) = b(©) for all GS angles ©; the polar diagram of
B(©) is a straight line over normal-angle intervals with f(©)>F(©).

We will refer to G and B derived in this manner as the effective
moduli corresponding to f and g.

We are therefore led to the relaxed evolution equation (1.1) with
B and G the effective moduli corresponding to f and g [G2]. It is
important to note that this relaxed equation coincides with our original
system (1.5) at all GS angles ©. Note also that, because of the construction
of G(©), no matter how smooth f(©) is,

(1.18) G(©) will generally be discontinuous

whenever the angle © changes from GS to GUS; this property of G(©)



renders the relaxed evolution equation nonstandard. In addition, G(©) = 0
whenever © is GUS, so that (1.1) degenerates to hyperbolic at GUS angles.

Our main results of physical interest are:
1° Viscosity solutions of (1.1) not only satisfy (1.5) away from

corners, but, what is most interesting, such solutions automatically satisfy
the force balance (1.11) across corners.

2° If (©^©2) i s a G U S angle-interval, then a wedge whose two sides
have normal angles ©1 and ©2 and evolve according to b(©1)V = -U and
b(©2)V = -U, respectively, is a solution of the basic equations (1.5) and (1.11)
[AG1,§9]. We show that our choice of the effective moduli G and B is the
only possible choice if all such wedges are to be viscosity solutions of (1.1).
What makes this result so interesting is that G(©) and B(©) differ from
g(©) and b(©) only at angles © that are not globally stable, and wedges
by definition do not involve such ©.

3° For U< 0 and Qo large enough, f *Q(t) converges to a dilation
of the Wulff region for 1/B(©).9

9 T h i s r e s u l t , c o n j e c t u r e d by Angenent and Gurtin [AG1], w a s proved by Soner [So]

for G>0 and B "with a convex polar diagram, and extended in IAG2] to general B>0 .



2. CLASSICAL EVOLUTIONS. WRINKLINGS AND WEDGES.

Throughout the paper we restrict attention to energies f(e) and

kinetic moduli b(e) that are consistent with the following hypotheses:

(2.1a) f is C2 and >0;

(2.1b) each convexifying tangent to the Frank diagram 3F intersects 7 at

most at two angles, and there are at most a finite number of such

tangents;

(2.1c) g(e)>0 at each GS angle ©;

(2.1d) b is continuous and strictly positive.

We begin with a discussion of regions whose boundaries evolve

according to (1.5), but with normal angles constrained to be GS, so that (1.5)

is parabolic. Such boundaries will generally contain corners - consistent

with (1.11) - for which the jump in normal angle removes angles of

backward parabolicity of (1.5).10 Not all initial data are consistent with

evolutions of this type; in particular, the initial region A must be

admissible in the sense that1 1

(2.2a) A is closed with dA piecewise C2, and at each point of smoothness

the (outward) normal angle © is GS (so that g(©)>0);

(2.2b) (1.11) is satisfied.

For each tc(O,T), let Q(t)ClR2 be given. Then Q(t) is a classical

evolution in (0,T) if:

(2'.3a) Q(t) is admissible at each tc(O,T);

(2.3b) the evolution equation (1.5) is satisfied on each interval of smoothness

of c)Q(t) (up to the endpoints).

If, in addition,

(2.4)

1 0The motivation for considering such regions can be found in l/i«l,§9], [AG2,§2],
IG2.S111.
11 An assumption of piecewise smoothness for a boundary curve F will always
contain the tacit assumption that T is locally graphlike, so that, e.g., sets with
boundary a "figure 8" are ruled out.



then Q(t) is a classical evolution from Qo.

Theorem 2.1 (Existence and Uniqueness of Classical Evolutions [AG2]).

Let Qo be bounded and admissible. Then there is a unique maximal

classical evolution Q(t), tc[0Jmax), from Qo. Moreover, c)Q(t) is

piecewise C°° at each tc(O,Tmax).

By definition if the boundary curve c)Q(t) of a classical evolution

Q(t) has a corner corresponding to an angle jump from Bx to ©2, then

(©1,©2) is a GUS angle-interval and C(©1) = C(©2). Suppose that e l f ©2 is

such a pair. Then we can construct classical evolutions, called (©1,©2)-

wrinklings (Figure 2.1), whose normal angles jump back and forth between

©! and ©2 [AG1,§9]; the flat portions of the wrinkling with angle ©j

(i = l,2) are then called ©^facets. By (1.5), each ©j-facet evolves according

to

(2.5) V = -b^pu ,

and from this we may conclude that the wrinkling itself evolves as a rigid

body with velocity oo given by (1.16). A (©1,©2)-wrinkling with a single

corner is called a (©1>©2)-wedge. A (©1,©2)-wedge Q(t) is prescribed by

specifying: (i) whether Q(t) is convex or concave; (ii) the position of the

corner at some time.

Suppose that dQ0 is a piecewise flat curve whose normal angle

jumps back and forth between B1 and ©2, with dQ0 the c-level set of

an auxiliary function $0; i.e.,

(2.6) aQ0 = {xclR2: io(x) = c }, Qo = { xclR2: §0(x) > c }.

Then Qo is the initial set of a (©1,©2)-wrinkling Q(t) if and only if

(27) Q(t) = Qo + tco = { xclR2: §(t,x) > c }, $(t,x) = i o (x- tw) .
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3. VISCOSITY SOLUTIONS. RELAXED EVOLUTIONS.
We will use the relaxed equation (1.1) to discuss evolution from an

initial region tha t has normal-angles © with g(e)<0. In the derivation of
(1.1), G and B are the effective moduli for f and b, but we will
generally require only that G and B satisfy (1.2).

a. DEFINITIONS.
We are interested in the relaxed evolution problem defined by the

relaxed equation (1.1) supplemented by the initial condition (2.4):

(E) B(e)V = G(O)K - U, Q(0+) = Qo.

Suppose tha t B, G, and Qo are such that (E) has a smooth solution Q(t)

w^ith c)Q(t) the c-level set of an auxiliary function $:

(3.3) dQ(t) = { xcIR2: §(t,x) = c }, Q(t) = { xcIR2: §(t,x)>c }.

Assume further that § is a smooth function whose spatial gradient
has |V3Kt,x)l never zero on dQ(t). Then 3> satisfies the PDE

(3.4) § t =

where V2 i is the Hessian matrix of second spatial derivatives of §, while

(3.5) 7(p,A) = B(e)"1{G(e)T(e)-AT(e) - Ulpl}

= B ( e r 1 { G ( e ) t r [ ( I - p ® p ) A ] - Ulpl},

e = sin"1(-p2), P = p/lpl

for all vectors p * 0 and all symmetric matrices A. Thus solving (E) at
least formally reduces to solving (3.4) subject to an initial condition

(3.10) $(x,0) = §0(x)

for all xcIR2, where $0 is an auxiliary function satisfying
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(3.9) 5Q0 = {x€lR2: $0(x)*c }, Q0 = {x€lR2: 30(x) > c }.

7 defined by (3.5) has two chief properties upon which much of the
level-set theory of (3.4) is based: the geometric property

(3.12)

for all A>0, t>cIR; and the elliptic property

(3.13)

v/henever B is symmetric and positive semi-definite.
The level-set method is not intrinsic, since it requires data irrelevant

to the problem: namely the values of §0 away from an arbitrary small
neighborhood of 3Q0. ^ method of circumventing this is to work with the
characteristic function12

(3.14) u(t,x) = XQ(t)(x)

of the region Q(t). It is reasonable to expect that u should, in some sense,
satisfy (3.4), an expectation motivated by viewing u as the limit of a
sequence ($k) of functions <£k consistent with (3.3) for, say, c = £. We will
use the theory of viscosity solutions13 to define the sense in which u
satisfies (3.4).

Let h be a bounded scalar function on a subset K of IRn; then h*
and h*, respectively, denote the upper and lower semicontinuous
envelopes of h defined on cl K by

(3.6) h*(z) = limsup *uq), h«(z) = liminf h(q)

12Ci. IBSS1.
13Cf. Crandall and Lions ICL], Crandall. Evans, and Lions fCEL], Jemen [Jc]. A
recent article of Crandall, Ishii, and Lions [CILl provides an excellent survey of the
subject.
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q c K q c K

Let u be a bounded function on [0,»)x[R2. Then u is a viscosity
subsolution of (3.4) if, for every (scalar) test function w€C1'2((0,oo)x[R2)i

(3.7) w t(t0 ,x0) < 7*(Vw(to,xo),V2w(to,xo))

at every local maximum of u*-w; u is a viscosity supersolution of

(3.4) if, for every such w,

(3.8) w t(t0 ,x0) > 3F«(Vw(to,xo),V2w(to,xo))

at every local minimum of u«-w; u is a viscosity solution of (3.4) if u

is both a viscosity subsolution and a viscosity supersolution of (3.4) [CGG].

We will also use viscosity subsolutions, supersolutions, and solutions on

finite time intervals (0,T).

Let Q(t), t>0, be given, and define u(t,x) = XQ(t)(x). Then Q(t),

t>0, is a X-subsolution or a X~supersolution of (1.1) according as u is

a viscosity subsolution or a viscosity supersolution of (3.4) and Q(t) is

uniformly bounded on compact time intervals; Q(t), t>0, is a relaxed

evolution if it is both a X-subsolution and a X~supersolution of (1.1).

Let

Q*(0+) = { xeIR2: limsup u*(t,y) = l },
t-»o*. y-*x

Q«(0+) = { xclR2: liminf u«(t,y) = l },
t~»0*f y-»x

so t h a t QM(0+) is closed, while Q«(0+) is open. Then Q(t), t > 0 , is:

(a) a X-subso lut ion of (1.1) compatible w i t h Qo if it is a X~

subsolution and Q*(0+)CclQ0;

(b) a X-supersolution of (1.1) compatible with Qo if it is a X~

supersolution and Q«(0+) 5 intQ0;

(c) a relaxed evolution from Qo if it is a X-subsolution of (1.1)
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compatible with Qo as well as a X*supersolution of (1.1) compatible with

Q«.

Note that, if a relaxed evolution is to take on initial data Qo in a

classical sense, then Qo must be regular ( i.e., cl Qo = cl (int Qo)).

One should expect lack of (global) uniqueness for relaxed evolutions
from a given initial set;14 with this in mind, we introduce the following
definitions: the upper and lower envelopes IKt) and Lit) for relaxed
evolutions from an initial set fi0 are defined at each t > 0 by15

Ti(t) = cl { union of all values at t of %-subsolutions of (1.1)
compatible with QQ },

£(t) = int { intersection of all values at t of %-supersolutions of (1.1)

compatible with Qo)»

the graph up to time T of a time-dependent set A(t) is defined by

graphTA = U [A(t)x{t}];

0<t<T

the time

Tuniq = SUP ( T : graphT*U = cl (graphT£) and int (graphTtl) = graph T £ }

is the uniqueness time for relaxed evolutions from Qo and, for Tu n i q>0,

^umq(t) = IKt) = clC(t), t€[O,Tuniq)

is the unique relaxed evolution from Qo.

b. EXISTENCE AND UNIQUENESS.
We assume throughout this subsection tha t

1 4 For G continuous there are conditions that guarantee the uniqueness of solutions

IBSS], [So]. For motion by mean curvature and smooth initial data (V*K)

uniqueness holds generically IES3].
15Cf. [So, Section 11].
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G and B satisfy (1.2);
Qo is a prescribed initial domain, assumed compact.

(Note tha t we do not require the consistency of B with (1.3)).

Theorem 3.1 (Existence and Local Uniqueness of Relaxed Evolutions).
(a) there is at least one relaxed evolution from Qo;
(b) the upper and lower envelopes are relaxed evolutions from Qo.

If, in addition, dQ0 is C3, then

(c) the uniqueness time for relaxed evolutions from Qo is strictly

positive.1**

We postpone, until Section 8, the proof of this theorem and the next.
Let M([0,T]xlR2) denote the set of all bounded functions on [0,T]xIR2

t ha t are equal to a constant outside of a large ball; i.e., cp€M([0,T]x IR2) if
and only if there are constants a and R such that <p(t,x) = a for lxl>R;
here a and R m a y depend on <p. We define M(IR2) similarly. Finally,

M([0,oo)x|R2) = fi M([0,T]*[R2);
T > 0

i.e., cpc M([0,~)x IR2) if and only if for every T there are constants cxT

and RT satisfying <p(t,x) = ocT for lx!>RT and tc[0,T].

Let 3>0 be an auxiliary function for the initial set Q o ; tha t is, a

continuous function §ocM(IR2) satisfying (3.9). Then §cM([0,°o)x IR2) is a

level-set solution of (1.1) if § is a continuous viscosity solution of (3.4);

if, in addition, $ satisfies the initial condition (3.10), then § corresponds
to Bo.

Theorem 3.2 (Existence and Uniqueness of Level-Set Solutions).17

There is a unique level-set solution of (1.1) corresponding to any given
1 6If Qo is strictly star-shaped, then T u n i q « «> (cf. lSo,Section 9]; a more general

condition is given by [BSS, Section 4]).
1 7For G continuous and nonnegative uniqueness and existence follow from Theorem

6.8 of [CGGl.
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choice of auxiliary function $ 0 for Qo. Moreover, the upper and lower

envelopes for relaxed evolutions from Qo are given by

(5.7) <U(t) = { x: B(t,x) > c } , £(t) = { x: 3(t,x) > c } .

Thus the sets { x : §(t,x) = c } , { x : $ ( t , x ) > c ) , and { x : $ ( t , x ) > c }

are independent of the choice of auxiliary function $ 0 . 1 8

c. COMPARISON.

In this subsection w e state comparison theorems related to weak

solutions of (1.1) and (3.4). We assume throughout that

G and B satisfy (1.2);

we do not require (1.3). The next theorem ih the key technical result of the
paper.

Theorem 3.3 . 1 9 Let <p€M([0,T]x IR2) be a viscosity subsolution
and +€M([0#T]x|R2) a viscosity super solution, both of (3.4) on (O,T)*IR2.
Then

(5.1) sup (<p« - +M) = sup [tp«(O,y) - +«(0,y)]
[0J]xlR2 y€!R2

Suppose that Q1(t) and Q2(t) are, respectively, a X~subsolution
and a %-supersolution of (1.1) and set

u i(t,x) = XQ (t)(x).

Since X~sub and supersolutions are assumed to be uniformly bounded on
compact time intervals, Uj€M([0,«>)xIR2)# Then (5.1) with tp2tu1 and ^ = u2

yields
18Cf. Theorem 7.1 of ICGG] for the case in which G i$ continuous and nonnegative.

••/" i 9 O h n u m a and Sato [OS] have independently established this theorem using a
<* completely different method of proof.
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(5.2) (u^Mt.x) - (u2)M(t,x) < sup [ ( u ^ ^ y ) - (u2)«(O,y)]

and we have

Corollary 3.1 (Weak Comparison). Let Qxit) be a %-subsolution

and Q2(t) a %-supersolution o/(l.l). Suppose that, for all x,

(5.3) (u1)*(0,x) < (u2)M(0,x).

Then for all t> 0,

(5.4) cl Qx(t) Q int Q2(t).

Condition (5.3) follows if (5.4) is satisfied at t = 0+. Unfortunately, (5.3)

is stronger than the requirement: Q1(0)SQ2(0).

We say that (1.1) with initial data Qo has strong comparison in

(0,T) if

(5.5a) graphT Qx = cl (int (graphT Q2))

for all tc(0,T) for every X-subsolution Qx(t) of (1.1) compatible with Qo

and X-supersolution Q2(t) of (1.1) compatible with Qo.

The next result follows from the definitions of the upper and lower

envelopes IHt) and t ( t ) and the uniqueness time Tuniq for relaxed

evolutions from Qo.

Theorem 3.4. Let Qa(t) be a X'subsolution and Q2(t) a X-

supersolution, both of (1.1) and both compatible with Qo. Then for all

t>0,

cl Qx{t) C <U(t), int Q2(t)
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Thus (1.1) with initial data Qo has strong comparison in (0,Tuniq).
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4. RELATION BETWEEN CLASSICAL AND RELAXED EVOLUTIONS.
Our next theorem shows that our choice of effective moduli G and

B for the relaxed problem is the only possible choice, at least if wedges are
to be relaxed evolutions; what makes this result so interesting is tha t G(©)
and B(e) differ from g(e) and b(e) only at angles © tha t are not
globally stable, and wedges by definition do not involve such ©.

Theorem 4.1 (Effective Moduli are Canonical). Let f and b be
consistent with (2.1), let G and B be consistent with (1.2), and let
6(e) = f(e) + f"(e) and B(e) = b(e) for all GS angles ©. Then all wedges are
relaxed evolutions only if G and B are the effective moduli for f and
b.

Proof. It suffices to show that G(©) = 0 and B(©) satisfies (1.17) on

any GUS angle-interval (©^©2). Choose such an angle-interval (©1,©2^

Consider a (©1,©2)-wedge QW with corner at the origin at t = l , and let

GO be the corresponding rigid velocity defined by (1.16). Assume tha t Q(t)

is a relaxed evolution, so tha t u(t,x) = Xo(t)(x) is a viscosity solution of (3.4).

Let Q(t) be convex, and let

w(t,x,e) = 1 - [x - ( t - l)w]-N(e)

for all (t,x) and all B£(BVB2). Then by (2.7),

Q(t) = {xcIR2: w(t,x,©)>l, © * © l l e 2 }

Fix ©€(©!,©2). Then,

u*(t,x) - w(t,x,©) < u*(l,0) - w(l,O,©) = 0

for all (t,x) near (1,0). Thus, since u is a viscosity solution of (3.4),

w t(l,0,©) < 7*(Vw(l,0,©),V2w(l,0,©)).
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Further,

wt(l,O,e) = oo-N(e), Vw(l,0,e) = -N(e), V2w(l,0,e) = 0,

and (3.5) yields

7MVw(i,o,e),v2w(i,o,e)) = -U/B(e);

hence

(4.1) B(e) < -Ufoo-Nte)]"1.

Now let Q(t) be concave, and let

w(t,x) = w(t,x,e) = - [ x - ( t -

with & fixed. Then u«-w has a local minimum at (t,x) = (l,0), so that,
arguing as before,

B(e) > -

Thus, appealing to (4.1),

(4.2) B(e) = -Ulw-Nte)]-1 for all ec(e1,e2),

and (1.1"; follows from (1.16), (4.2), and (1.12).

]sk:;t, to show that G(e) = 0 on (0^02), we again take Q(t) to be
convex, and let

w(t,x,e) = 1 - [x-(t-l)w]-N(e) + p[x- (t-l)co]2

for all (t,x) and all ec(e1,O2). Fix 0 and write w(t,x) = w(t,x,e).
We first show that, given any pclR, u*-w has a local maximum at

(t,x) = (l,0). Choose (T,y) with u*(T,y) = l. Then
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,) < 0,

i = l ,2, and, since ©€(©!,S2)>

[ y - (T-l)co]-N(e) < -oc < 0,

). Therefore if (t.y) is close enough to (1,0) that
ly-(T-l)col<oc/2p, then

1 = u*(T,y) < 1 + }ocly- (T-I)COI

< 1 - [x-(t-l)oo]-N(e) + p [ x - ( t - l ) w ] 2 = w(T,y).

Further,

w(x,y) > 0 if ly-(T-l)eol + Ip l ly - (T-Deo] 2 < 1,

and hence

u*(T,y) - w(T,y) < 0 = u

for all (T,y) sufficiently close to (1,0); thus

w t(l ,0) < 7

Further,

w t(l ,0) = w.N(e), Vw(l,0) = -N(e), V2w(l,0)

= (2pG(e)-U)/B(e);

hence

(4.3) co-N(e) < (2pG(e)-U)/B(e),

and this must hold for all pc(R and B£(B1,e2). On the other hand, by
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(4.2), u>.N(e)=-U/B(e), and (4.3) can hold for all p only if G(e) = 0. D

Theorem 4.2 (Classical Evolutions are Relaxed Evolutions). Let Qo

be bounded and admissible. Let G and B be the effective moduli
corresponding to i and b, with f and b consistent with (2.1). Let
Q(t), tc[0,Tmax), be the maximal classical evolution from Qo. Then the
uniqueness time Tuniq for relaxed evolutions from Qo satisfies
Tuniq * Tmax and &W coincides with the unique relaxed evolution

Proof. Let Q(t), 0 < t < Tmax be a classical evolution. We will show
only that Q(t) is a %-subsolution; the proof that Q(t) is a X^supersolution
is analogous. Let u(t,x) = XQ( N(X). Suppose that for a test function w

u*(t,x) - w(t,x) < u*(to,xo) - w(to,xo) = 0

for all (t,x) near (to,x0).

Case 1: x o cintQ(t o ) . Then u * ( t f x ) « l for all (t,x) near (t0>x0)
and

w t(t0 ,x0) = 0, Vw(to,xo) = 0, V2w(t0,x0) > 0.

Hence

T"(Vw(to,xo),V2w(to,xo)) > 0

and (3.7) is satisfied.

Case 2: x oc!R 2 \ Q(t0). Then u*(t,x) = 0 for all (t,x) near (to,xo)
and an analysis similar to that of Case 1 yields (3.7).

Case 3: xo€3Q(to) and Vw(to,xo) = 0. Then w t(t0 ,x0) = 0, since the
normal velocity V of 3Q(t) is finite. Moreover, the definition of the upper
semicontinuous envelope yields
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7*(Vw(to,xo),V2w(to,xo)) = G(e)B(er lmax { q-V2w(t0,x0)q : lql = l }.

We claim that the quantity m a x { . . . } is nonnegative. Indeed, xo€dQ(to)
and to<Tmaix; hence x0 is not an isolated point of Q(t0) and there is a
sequence {xn} with xncdQ(t0) , x n * x0 , and xn-> x0 . By choosing a
subsequence, if necessary, we may assume that (x n - x0) / lxn- xol is
convergent, say to e. Then

w(to ,xn) > u*(to,xn) = 1 = w(to,xo),

€-V2w(t0,x0)e = 2 l imn^o e (w(to,xn) - w(to ,xo)]/lxn-xol2 ,

so that

0 = w t(t0,x0) < 7*(Vw(to,xo),V2w(to,xo)).

Case 4: x0 belongs to a smooth part of 5Q(t0) and |Vw(to,xo)l * 0.
Then the normal angle B, the curvature K, and the normal velocity V
of 3Q(t) at t=t0 and x0 satisfy

N(e) = -Vw(to,xo)/lVw(to,xo)l,
K < div[Vw/|Vw|](to,xo),
V = w t(t0 ,x0)/|Vw(t0 ,x0)l,

and (3.7) follows from (1.5).

Case 5: x0 is a corner point of dQ(t0) and IVw(to,xo)l * 0. Let
(©1,©2^ ^€ t^ ie *^^s angle-interval that defines the corner, and let z(t)
with z(to) = xo denote the trajectory of the corner for t near t0. Then
dQ(t) must have a "convex-type" corner of the type shown in Figure 4.1
near z(t), with curvature K(x,t)<0 for x near but not equal to z(t).
Thus and by (1.5), for such x the normal velocity of dQ(t). must satisfy

(4.4) V(x,t) < -U/b(e(x,t)).
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On the other hand, consider the simple (e1 ,e2)-wedge c)A(t) which has
A(t) convex and has corner at x0 at time t0, and let GO be the rigid
velocity of the wedge as defined by (1.16). Then, since this wedge must
have normal velocity V^-U/bCe^ on each of its facets, we may conclude
from (4.4) that there is a ball B centered at x 0 such that
A(t ) f )BCQ(t)nS for all t near t0 with t<t0; thus

A(t)nBC{x: w(t,x) >1 }.

Further, since A(t) moves with rigid velocity oo and x 0 is the the

corner point of A(t0),

x0 + (t-to)[w-N(a)]N(a)€ A(t)

for all t and all ac[©1,©2^ Thus for such oc and for t near t0 with
t*t0J

w(t ,x 0 + (t-t0)[oo-N(oc)]N(a)) > 1 = w(to ,xo)

and it follows that

(4.5) w t(t0 ,x0) + [co-N(a)][Vw(t0>x0).N(a)] < 0

for all ac[e1 ,©2].
Now let ac[e 1 , e 2 ] be the angle defined by

Vw(to ,xo)/|Vw(to ,xo)l = -

then (4.5) yields

(4.6) w t(t0 ,x0) < GO-N(a)lVw(t0,x0)l,

and, by (4.2),
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(4.7) w t(t0,x0) < -U|Vw(to ,xo)l/B(a).

If a€(e 1 , e 2 ) , then G(oc) = 0 and (3.5) yields

(4.8) 7*(Vw(to,xo),V2w(to,xo)) = -UlVw(t0,x0)l/B(oc),

so that, by (4.7), (3.7) is satisfied. If a equals ©t or ©2, then G(oc) is

generally nonzero, but the definition of 7* yields

for any sequence pn -• p. Let p = Vw(to,xo) and choose a sequence so that
G(en) = 0 for all n, where en is defined by N(©n) = pn / lpnl. Then (4.8) is
replaced by

(4.9) 7*(Vw(to,xo),V2w(to,xo)) > -U|Vw(t0,x0)l/B(oc),

which, with (4.7), yields (3.7).
We have only to show that

(4.10) Tuniq > Tm a x .

Given Qo we can construct a one-parameter family of admissible initial

domains Q0(6) (l6l<60 for some 80>0) satisfying

(4.11a)Q0(6) C Q0(6') if 6 > 6\

(4.11b)Iim6^6 Qo(6') = Q0(6),

the limit being in the Hausdorf metric.20 Let Q(t;6), (tc[0,Tmax(6) ),
161 < 60 ) be the unique maximal evolution from the initial data Q0(6) (cf.
Theorem 2.1). Since for t€(0,Tmax(6)), dQ(t;6) is piecewise smooth, we
may use the compactness lemma [AG2, Lemma 8.3] and the uniqueness of
20For bounded sets the Hausdorf metric dH(AfB) is the largest of the distances
sup { dist(x.A) : xcB } and sup { dist(xrB) : xc A ).
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classical solutions to show that: (i) Tmax(6) is lower semicontinuous in 6
(cf. also the proof of [AG2, Lemma 8.2]); (ii) by Corollary 3.1,
Q(t;6) C Q(t;6') if 6 > 6'; (iii) for fixed t, the map 6»-*Q(t;6) is continuous
in the Hausdorf metric. (Assertion (iii) is proved by showing that any limit
point of Q(t;6) as 6-* 8' is a classical solution with initial data Q0(6*) and
hence by uniqueness is equal to Q(t;6').

Fix T<Tm a x = Tmax(0). By the lower semicontinuity of Tmax(6)

there is a 6(T) > 0 satisfying

Tmax(6) > T for all 161 < 6(T).

For (t,x)€[0,T]*lR2 define

inf{ 6 : 161 < 6(T), xcQ(t;6) },
§(t,x) =

- 6(T) if the set above is empty.

Since Q(t;6)lQ(t;6') for 6 > 6',

{x : $(t ,x)>6} = Q(t;6)

whenever 161 < 6(T) and tc[0J] . Moreover, for each 8, Q(t;6) is a
classical and therefore relaxed evolution from Q0(6). From this one can
show that § is a continuous viscosity solution of (1.1), so that, by Theorem
3.2,

<U(t) = { x : §(t,x) > 0 } = Q(t;0) = Q(t), Lit) = { x : i(t,x) > 0 }.

Since

lim Q(t;6) = Q(t;0)

for every xcTKt), there are 6n > 0 and x n -» x such that
x n c Q ( t ; 6 n ) c £ ( t ) . Hence clCW-IKt) for all tcIOJ]. An analogous
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argument shows that int<U(t)*C(t) at each tc[O,T]. Hence Tuniq>T, and

the desired conclusion follows, since T<Tmax was chosen arbitrarily. D

Remark 4.1. For bounded, admissible initial data Qo there exist a

maximal existence time Tmax and a classical evolution Q(t), tc[O,Tmax),

from Qo. There is also (at least one) relaxed evolution Q(t), tc[O,«>), from

Qo, and, by Theorem 4.2,

Q(t) = Q(t) for all tclOT a J .
max7

Hence the relaxed evolution represents a weak extension of the classical

evolution Q(t) after Q(t) develops a singularity at t=Tmax.
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5. CONVERGENCE.
Throughout this section

G and B satisfy (1.2);
Qo

 i s a prescribed initial domain, assumed compact;

Tuniq JS the uniqueness time for relaxed evolutions from Qo.

a. GENERAL RESULTS.

We say that a sequence {Qo
n} of compact domains approximates Qo

provided the signed distance to Qo
n approaches the signed distance to Qo,

uniformly on IR2.

Theorem 5.1 (Convergence of Relaxed Evolutions). Assume that

Tuniq > 0. Let {Q o
n } approximate Qo. For each integer n, let Qn(t),

t€[0,°°), be a relaxed evolution from Qo
n. Then, for each tc[O,Tuniq),

Qn(t) converges, in the Hausdorf topology, to the unique relaxed evolution

from Q 0.

We now state a result that holds for all time. The proof will be given
at the end of this section, as will the proof of the theorem just stated.

Theorem 5.2 (Convergence of Level-Set Solutions). Let § be the

unique level - set solution corresponding to an auxiliary function $0 for
Qo. Let {§n} be a sequence of level-set solutions of (1.1) such that

1 y yy> w [ H Tf J ss © I v )

uniformly on IR2. Then

lim §n(t,x) = §(t,x)

uniformly on compact subsets of [0,«>)xlR2.
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b. INFINITESIMALLY WRINKLED SOLUTIONS AS LIMITS OF SOLUTIONS
FROM ADMISSIBLE INITIAL DOMAINS.

If the initial domain Qo is admissible, then there is a classical

evolution from Qo up to a maximal existence time Tmax; each relaxed

evolution from Qo (unique up to Tuni >Tmax) supplies a weak extension

of this classical solution for times greater than Tmax.

Suppose that Qo is not admissible (for example, suppose that dQ0

has normal angles e for which g(e)<0). Then the notion of a classical

evolution from Qo breaks down, since classical evolutions are required to

be admissible and hence to have globally stable normal-angles. On the

other hand, there is a relaxed evolution from Qo. The derivation of the

relaxed formulation is based on allowing the boundary curve to develop

infinitesimal v/rinkles whenever its normal angle is not globally stable. We

now use Theorem 6.1 to give a partial justification of this proceedure, under

the assumption that dQ0 is C1 and piecewise C2, and that Tuniq>0.

We first approximate Qo by a sequence {Qo
n} of admissible

bounded domains. We accomplish this by dividing dQ0 into curves whose

normal angles are GS, interspaced with curves whose normal angles are

GUS. We approximate dQ0 by leaving the GS curves unchanged, but

replacing each GUS curve by a wrinkled curve. If F is such a GUS curve,

then the normal angles of F lie in a GUS angle-interval (BVB2) with Qx

and ©2 angles for a corner consistent with (1.11). We replace F by a

wrinkled curve 10 such that: the endpoints of 10 coincide with those of F;

the facet angles of 10 are B1 and O2 > ^ ^ € S *n a n arbitrary small

neighborhood of F. The replacement for 3Q0 constructed in this manner

is admissible and arbitrarily close to 3Q0 in the required sense.

For each n, we let Qn(t), t€[0,©°), be a relaxed evolution from the

admissible initial domain Qo
n. Then, by Theorem 6.1, for each t€[O,Tuniq),

Qn(t) converges, in the Hausdorf topology, to the unique relaxed evolution

from Qo.

c. PROOFS.
Proof of Theorem 5.1.

1° Let



29

dist(x,dQ0)Al, X€Q0,

S 0(x) =
-(dist(x,dQ0)Al), x$Q0 .

Then $0 is an auxiliary function for Qo as defined in Section 3, and there
is a unique level-set solution § of (1.1) corresponding to $0 . For each n,
let §on(x) anc* $n(t,x) be defined in the same manner using Qo

n as the
initial set. Since {Q o

n } approximates Qo, §on(x) converges to f o ( x ^
uniformly for xcIR2. Thus Theorem 5.2, which will be proved subsequently,
implies that <£n(t,x) converges to §(t,x), uniformly on compact subsets of
[0,oo)x[R2.

2° Let B(r) denote the (closed) ball of radius r centered at the

origin. Since Qo is compact and (Q o
n ) approximates Qo, there is an

Ro such that Qo
ncB(Ro) for all n. Set

U = lUKinfB(e)}-1.

Then

B0(t) = B(R0+|it)

is a X -supersolution of (1.1) compatible with Qo, and hence

- 1 , x$intB0(t),

5(t,x) =
1, X€intB0(t).

is a viscosity supersolution of (3.4) with $(0,x) > §n(0,x). Thus Theorem 3.3
with 5 as supersolution and $n as subsolution yields 5 > §n . In
particular,

in(t fx) < - 1 , x<intB0(t).
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3° By Theorem 3.4,

(5.1a) { x : gn(t,x) > 0 } £. Qn(t) £. {x : §n(t,x) > 0 }

for t > 0. Therefore

(5.1b) Qn(t) £. B0(t)

for t>0 . Also, on (0,Tuniq) the unique relaxed evolution from Qo is given

by

(5.2) Q(t) = { x : $ ( t , x ) > 0 } .

4° For 6 > 0 , let

1L(t;6) = { x : §(t,x) > - 6}, C(t;8) = { x : $(t,x) > 6}.

Since §n(t,x) converges to $(t,x) locally uniformly, we may use (5.1b) to
conclude that there is an n(6) such that, for all n>n(6) and t€[0,Tuniq),

) i . { x : 8n(t ,x)>0) , C ( t ; 6 ) i { x : §n(t,x) > 0 }.

Hence (5.1a) yields

(5.3) £(t;6) £. Qn(t) £

for all n>n(6) and t€[0,Tuniq).

5° Using the arguments of step 2, we can show that

ti(t;S), £(t;6) £. B0(t).

6° Our next step will be to show that, for every t€[0,Tuniq), the

Hausdorf distance



d6 = dHCU(t;8),£(t;6))

satisfies

(5.4) d6 -» 0 as 6 -> 0.

Since £(t;6)£.<U(t;8), we may use the definitions of £(t;6) and 1i(t;6) to
conclude that

d6 » sup{d(t,x;8) :

d(t,x;6) - inf{ Ix -y l : §(t ,x)>6).

Choose x(6) satisfying

§(t,x(S))>-6,

(5.5) d(t,x(8);6) > d6 - 6.

Since x(6)€*U(t;6)cB0(t) and B0(t) is compact, there is a sequence (also

denoted by 6) such that x(8) -» x0 as 6iO; hence

§(t,x0) = lim $(t,x(6)) > 0,
6-10

and xo€tl(t). Also, t€[0,Tuniq); hence we may conclude from the
definition of Tuniq that *U(t) = clLit), and there is a sequence y m - » x 0 ,
ym€j:(t), or equivalently, i(t,ym) > 0. Thus, for all 6<f(t,ym),

d(t,x(6);6) < lx(6)-yml.

let 6 tend to zero and then m to infinity to obtain

lim d(t,x(6);6) = 0,
S i O
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and this, with (5.5), implies (5.4).

7° By (5.2) and (5.3),

dH(Qn(t),Q(t)) < dH(\Kt;6),J:(t;8)) = d6

for every t€[0,Tun iq), 6 > 0, and n>n(6). Therefore, by (5.3),

lim dH(Qn(t),Q(t)) = 0

n-

for all tc[0,Tu n i q). n

Proof of Theorem 5.2.
1° Since $0 is bounded and <En(0,x) converges uniformly to 5

there is a K>0 such that

(5.6) l§n(0,x)l < K

for all xcIR2. Since \\> s K is a solution of (3.4), the inequality (5.6) and the

comparison theorem 3.3 yield i n ( t , x ) < K. Similarly, V ^ S - K yields

$n(t,x)>-K. Hence

(5.7) l$n(t,x)l < K

for all (t,x)€[0,oo)xIR2.

2° For (tfx)€[0,oo)xR2- define

$*(t,x) = lim sup fn(s,y),

$"(t,x) s liminf $n(s,y).
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Then $* is a viscosity subsolution and $" a viscosity supersolution of (3.4)
in (0,~)x|R2 (cf. [FS;§2.6,§7.4]).

3° Theorem 3.3 applied to the subsolution §* and the supersolution
$~ yields

§+(t,x) - §-(t,x) < sup[r(0,x) - f"(O,x)].
y

Note that $n is locally uniformly convergent if and only if §* = §". Also,

by construction, ;)?*> §0 > i£~. Hence to prove local uniform convergence of

$n it suffices to show that

(5.8) r(0,x) = S0(x) = r(0,x),

•which v/e shall accomplish in the next three steps.
4° Let

g- = sup{ G(e) : ©e[0,2Tt) }, a • IUI.

For X€lR2 and 6>0, define (cf. (5.6))

0, lx-yl<R(t;6),

$(t,x;y,6) =
-2K, Ix-yl >R(t;6),

•where R(t;6) is a solution of

dR(t;6)/dt = -g-R^jS)"1 - a, t€(0,T(6)),

R(0;6) = 6,

with T(6) < +« the first time t for which R(t;6) = 0. Then

{ x : Ix-yl <R(t;6) }, t€(0,T(6))

is a classical subsolution of the relaxed equation (1.1), and hence $ is a
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5° Fix yclR2 and let po=$o(y) . Then, for all p<p0 , there are 6>0

and T\o such tha t

$(0,x;y,6) + p < $n(0,x)

for all xcIR2 and n>Tj0. Since $ is a viscosity subsolution of (3.4), it is
clear from the form of this equation t h a t $ + p is also a viscosity
subsolution of (3.4).

6° We now use Theorem 3.3 with subsolution $ + p and
supersolution 9>n to obtain

;y,6) + p < in(t fx)

for all (t,x)€[0,T(6))*!R2; hence

;y,6) + p < S"(t(x)

for all (t,x)€[0fT(6))x|R2. Applying this inequality at (t,x) = (0,y) yields

£<§~(0,y) for all p<po = io(y). Therefore $0(y) = i"(0,y).

7° To show that $0(y) - $"(0,y), we follow the procedure of the

three previous steps replacing $ with the supersolution

0, lx-yl<R(t;6),

i(t,x;y,6) =
2K, lx-yl>R(t;6),

of (3.4). D



35

6. LARGE-TIME ASYMPTOTICS.
In this section we discuss the large-time asymptotics of relaxed

evolutions, assuming throughout that:

G and B satisfy (1.2) and (1.3);
Qo is a prescribed initial domain, assumed compact.

In particular, we will prove that , for U< 0 and Qo large enough, t -1Q(t)
converges to a dilation of the Wulff region for 1/B(e). This result,
conjectured by Angenent and Gurtin [AG1], was proved by Soner [So] for
G>0 and B with a convex polar diagram, and extended in [AG2] to general
B>0. We here follow the ideas of [So, §12-13].

Let Q(t)cIR2, t > 0, be given. Then Q(t) vanishes in finite time
if there is a T>0 such that

Q(t) = 0 for all t>T.

Given a function cp > 0 on (0,«>) and a set AClR2, we write

Q(t) ~ ip(t)A as t -> eo

if there are functions t p ^ ^ > 0 on (0,«0 such tha t

cpx(t)A C Q(t) C <j)2(t)A

for all sufficiently large t, and

tpi(t)/cp(t) -• 1 as t -• oo (i=l,2).

The Wulff region W(h) for a given function h(e) (cf., e.g., [G2]) is
the set

W(h) = { X€lR2 : x-N(e) <h(e), ©C[0,2TI] }.
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Our main result of this section is

Theorem 6.1 (Asymptotic behavior of relaxed evolutions). Let Q(t)
be a relaxed evolution from Qo.

(a) // U > 0, then Q(t) vanishes in finite time.

(b) If U<0 with IUI sufficiently large, then

Q(t) ~ tlU|W(l/B) as t -> oo.

Assertion (a) is a direct consequence of

Lemma 6.1. Let Q(t) be a X~subsolution of (1.1) compatible
with Qo. Choose oc0 such that

(6.1) intQ0Coc0W(l/B).

Then, for t > 0,

(6.2) Q(t)c(-Ut + oc0)W(l/B).

Proof. The right side of (6.2), denoted by A(t), is a %-solution of

B(e)V = -U

for t>0 [So, §12]. Since W(l/B) is convex, A(t) has curvature < 0.
Thus, since G>0, A(t) is a X-supersolution of (1.1); (6.2) then follows from
<6.1) and Corollary 3.1. D

Assertion (b) is more difficult to prove; for that reason we first give a
simple proof under a more stringent hypothesis on B. To state this
hypothesis, let D denote the differential operator defined on functions H(e)
by

DH = H + H".



37

Then the polar diagram of H is convex at angles © for which DH(e) > 0,
strictly convex at angles with DH(©) > 0. We now establish (b) under the
assumption that, for some constant C>0,

(6.3) G < CDCL/B)

on [0,2n], so that the polar diagram of 1/B is convex; in fact, strictly
convex at angles © with G(©)>0. Granted (6.3), (b) follows from Lemma
6.1 and

L e m m a 6 . 2 . Assume that (6.3) is satisfied, and that U < 0 and

sufficiently large that

(6.4) a 0 intW(l/B) c Qo< oc0 = -2C/U.

Let exit) be the solution of

oc'(t) = -U - C/a(t), a(0) - oc0.

Then any relaxed evolution Q(t) compatible with Qo satisfies, for t > 0,

(6.5) a(t)W(l/B)cQ(t) .

Proof. Let A(t) = oc(t)W(l/B). Then A(t) is a X-solution of (1.1)
with G replaced by CD(1/B) [So §12]. Since W(l/B) is smooth and
0<G<CD(l /B) , A(t) is a %-subsolution of (1.1) (with G); hence (6.5)
follows from (6.4) and Corollary 3.1. D

Proof of Theorem 6.1.

1° Let

g = supG(©), b = supB(©),

and assume that IUI is sufficiently large that
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oc0intB1 C Qo, a0 = -2g/U,

where 31 is the unit ball in IR2. Let a(t) be the solution of

boc'(t) « -U - g/a(t), a(0) = a0,

and let AttJsaUJBj. Then A(t) is a classical solution of the isotropic

equation bV = gK-U. Also, VXD, since oc'(t)>0 for all t>0; consequently,

A(t) is a X~subsolution of (1.1) compatible with Qo, and, by Corollary 3.1,

A(t)cQ(t). Further, oc(t)->oo as t-*~; hence:

(6.6) as t-^oo, Q(t) expands to fill the entire space.

2° Let WnClR2 be a sequence of strictly convex, closed domains,

v/ith smooth boundary, satisfying

(6.7) ( l -rr i )W(l/B) C Wn C

Further, let tfn(o) denote the support function of Wn:

yn(e) = sup{ x-N(e) : xcWn }

(so that Wn=WUn)). Since Wn is strictly convex and dWn is smooth,

is smooth and Difn>0. Also,

1/B(e) > sup{ x-N(e) : X€W(1/B) ) ,

and hence, by (6.7),

(6.8) 1/B > lfn.

3° Let

cn = g { inf
0
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By 2°, cn<«>, but cn may diverge to +» as n—>

Choose tn>0 satisfying

(6.9) a n = in tW n C Q(tn), a n = - 2 c n / U ,

and let a n ( t ) be the solution of

ocn'(t) = -U - c n / a n ( t ) , t > t,

= ocn.

Then An(t) = a n ( t )W n is a %-solution of

cn£sn(e)K - u

for t>tn [So, §12]. Further, (6.8), the definition of cn, the convexity of

An(t), and the positivity of V imply that

B(e)v < yn(e)-iv = cnD^n(e)K - u < G(e)K - U;

hence An(t) is a X-subsolution of (1.1) for t>tn. By Corollary 3.1 and

(6.9), An(t)cQ(t) for all t>tn, and using (6.7) we conclude that

(6.7) an(t)(l-n-i)W(l/B) C Q(t), t > tn.

4° For t>tx define

a(t) = sup { (1 - n'1)an(t) : n > 1, tn > t }.

Then a(t)W(l/B)cQ(t) for t>tx. Also, for each n,

ot(t) > (l-n-i)an(t) f t > tn.

Hence



l i m i n f oc(t)/t > (1 - n"*) l iminf ocn(t) / t = - ( l - n - * ) U
t-»oo t-»»

for every n, and consequently

(6.11) liminfoc(t)/t > -U.

5° Summarizing, in 4° and Lemma 6.1 we have shown that

oc(t)W(l/B) C Q(t) C (-Ut + ao)W(l/B),

•which, with (6.11), yields

lim

h e n c e Q(t) - t IUIW(1/B) as
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7. PROOFS OF THE COMPARISON THEOREMS,
a. SUB AND SUPERDIFFERENTIALS.

We recall several definitions from the theory of viscosity solutions.21

Let <p be a bounded function on (0,«)xlR2, and let Z denote the set of
symmetric 2*2 matrices. Then the subdifferential D*(p(t,x) and the
superdifferential D~ip(t,x) of (p at (t,x)€(0,«>)xlR2 are defined by

D*<p(t,x) = { (q,p,A)€(Rx|R2x/o : limsup D(ip*)(h,z) < 0 },
(h.z)-0

D'<p(t,x) = { (q,p,A)€lRxlR2x^ : lim inf £(<p«)(h,z) > 0
(h,z) - 0

•where

,z) = Df (t,x;h,z;q,p,A) =

h,x + z) - f(t,x) - hq - z-p - |

we close the sets D±tp(t,x) as follows

cD±ip(t,x) = { lim(qn,pn,An) : (qn,pn,An)€Dt^(tn,xn), (tn,xn)-»(t,x)

Then22 (q,p,A)cD*v(t,x) if and only if there is a wcC1'2 satisfying

wt(t,x) = q, Dw(t,x) = p, D2w(t,x) = A,

and (t,x) is a maximum of the difference (<p*-w). Hence cp is a viscosity
subsolution of (3.4) if and only if

q < TM(p,A) for all (q,pfA)cD*<p(t,x)

21Cf.. [CIL. §21. IC), [CELL ITS, §5A].
22Ci.t e.g., IFS, Prop. 4.1, §5.4]; since q> is not necessarily continuous, the proof given
in IFS] must be slightly modified.
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and all (t,x)c(0,«>)xIR2. A limit argument then shows that

(7.1) q < 7 * ( p , A ) for all (q,p,A)€cD*<p(t,x).

Similarly, cp is a viscosity supersolution of (3.4) if and only if

(7.2) q > 7«(p,A) for all (q,p,A)€cD-<p(t,x)

and all (t,x)€(0,«>)x|R2.

b. SEMICONVEX AND SEMICONCAVE FUNCTIONS.
Let CclRd be a convex set. We say that $ is semiconvex on C if

there is a constant K such that

I(Y) « $(Y) + KIYI2

is convex on C; § is senniconcave on C if - § is semiconvex.
Let $ be semiconvex. Since $(Y) is convex, the set of

subdifferentials, standard in convex analysis [C], is given by

dl(Y) = { PcIRd : 1(Y)>I(Y) + P.(Y-Y), VYcC }.

In addition, wthe directional derivatives of $ exist and are given by

(7.3) O/SZ)1(Y) « Hmr-Ml(Y + rZ)-I(Y)] - sup { P-Z :

for ZclRd\{0}. We now define

OS(Y) = dl(Y) + { -2KY} = { P : P = P - 2KZ, Pcdl(Y) }.

Then, using the formula for the directional derivative of $,

O/3Z)$(Y) = sup{ P.Z : Pcdi(Y) }

for ZcIRd\{0}.
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The following properties of semiconvex functions are well known:

(7.4) 4 is differentiable at Y if and only if £>$(Y) is a singleton.

(7.5) if there are sequences P n - * P , Y n -* Y and convex functions

$ n -» $ (uniformly on C) satisfying P n c d $ ( Y n ) for all n,

then Pc3$(Y).

Our next result is an implicit function theorem for semiccnvex
functions. Let ^ be a semiconvex function on C, and let 0 be an interior
point of C. We assume tha t \\> is different ia te 2 3 at 0 with a nonzero
gradient Po ; and, without loss in generality, we assume tha t Po=Po/IPol
satisfies

Po - (0,0 ,0,1).

Let 61 be a constant satisfying

(7.6a) IP-POI < IP0l/2, VPcdf(Y), IYI<261,

(7.6b) P d > IP0l/2, VPcSf(Y), IYI<261,

(7.6c) 38(26^ = { Y : IYI < 261 } C C.

Note tha t the existence of S1 follows from (7.5) (with $n= $ for all n).

For Y«(Y 1 ,Y 2 f . . . i Y d . l ,Y d )€R d we write

FY = (Y1 ,Y2 , . . . ,Yd .1)€lRd-1 ,

Theorem 7.1 (Implicit Function Theorem). There is a 6>0 and a

unique real-valued, Lipschitz continuous function I on B(6) such that,
for all Y,

make this assumption to simplify the analysis; an analogous result holds
under the weaker assumption d$(0) n{0) « 0 .



(7.7) $(PY,I(Y)) = $(YdP0) for all Y = (PY,Yd) € B(6).

Moreover, 6 depends only on IPOI, 6J( and the Lipschitz constant of

on B(61).

Proof.

1° For IYI < 6X and oc€R with locl<61( we define

§(oc;Y)

By (7.3),

$(PY,oO = $(Y) + JO/SP0)$(PY,p)dp,

0 , p ) = sup{ Pd :

Thus, by (7.6b), for \Y\<S1 and lal<81(

(7.8a) $(PY.a) > $(Y) + (a - Yd)IPol/2, Va>Y d ,

(7.8b) $(PY,a) £ $(Y) + (a -Y d ) IP o i /2 , Va<Y d .

2° Our next step will be to show that there is a 6€(0,61] such that

(7.9) §(-6 i ;Y) < 0 < i(6 i ;Y)

for all IYI<8. Indeed, by (7.8a),

- $(YdP0)
> (61-Yd)IP0 l /2- LlY-YdPol,

where L is the Lipschitz xonstant of $ on Sib^. (i is semiconvex on



45

C and hence Lipschitz continuous on every compact subset interior to C.)
Let 6 be the lesser of 6^2 and OJPQIML. Then for all IYI<6,

Y) > ( 6 1 - 6 ) I P o l / 2 -
> S jPo l /4 - 2L8 > 0.

The other inequality in (7.9) is proved similarly, with the same choice for 6.

3° Fix IY|<8 and consider the map

Ha) = §(oc;Y), ^

Then i. is continuous on [-81,61] "with

H-&J < 0 < USX).

Also, the argument leading to (7.8a) yields, for oc,p€[-

Ha) > «(p) + (a - p) IP0l/2 for a > p.

Hence there is a unique a«€[-61 ,61] such that Koc«)

4° For each IYI<6 set

Then, for all IYI<6,

0 = f(a«) = *(PY,I(Y)) - *(YdP0),

and (7.7) is satisfied.

5° Our last step will be to show that I is Lipschitz continuous. Let
IY|,IXI<6 be given. Then (7.8a) and the Lipschitz continuity of \\> yield

> 5(PX,I(X) + p) - $(XdP0) - 2LIX-YI
P0) - 2LIX-Yl



> plP 0 l /2 + S(I(X);X) - 2LIX-YI > 0

provided

(7.10) p > 4L|X-YI/IPOI.

A similar argument shows that

ff(I(X)-p;Y) < 0

if p satisfies (7.10). Hence I(Y)€[I(X) - p,I(X) + p]. D

Remark 7.1. Note that the Lipschitz constant of I is <4L/IPOI,
with L the Lipschitz constant of $ on S(61).

The next result, the key technical contribution of the paper, will be
used in an essential manner in the proof of Theorem 3.3. For p*0, let

e(p) = sin'1(-p2), p = p/lpl.

Proposition 7.1. Let v be a semiconvex function on [0,«>)x[R2

(so that v(t,x) + K(t2 + lxl2) is convex for some constant K). Suppose that
v is differentiable at (to,xo) with

Po = Vv(tOlxo) * 0.

Then there exist (tn ,xn) -• (to ,xo) and (qn^Pn.An^cD^^n^n) such
that

(7.11a) lim (qnipn) s (vt(t0,x0),p0), lpnl ^ 0,

(7.11b) lim inf min { e(pn) - ©(p0), T(pn,An)} < 0,
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T(p,A) = trace [ ( I - p®p)A].

To motivate the proof of this proposition, assume, for the moment,
that v is smooth. For rclR, let

h(r) = e(Vv(to,xo + rw)), w = ((po)2,- (PoV-

Then

h'(0) = T(p0fV
2v(t0,x0)).

Hence if T(po,V2v(to,xo)) > 0 then h(r)<h(0) for r>0.

This argument works only for smooth v. However, if v is
semiconvex, then its second derivative is bounded from below. We will use
this lower bound to prove (7.11b), with H playing the role of h (cf. 7°).

The argument given above indicates the possible validity of the
following assertion, which is dual to (7.11b):

(7.11c) liminf min{ e(p0) - e(pn), T*(pn,An)} < 0

Indeed, the proof of Proposition 7.1 with minor changes establishes the
existence of a sequence satisfying (7.11a) and (7.11c). One might believe
further that

liminf min{ e(pn) - e(p0), -T(pn,An)} < 0,

n-

but (7.11d) is not valid, the reason being that, since v is assumed
semiconvex, its second derivatives are necesarily bounded only from below,
but the proof of (7.11d) requires an upper bound on the second derivatives;
in fact, (7.11d) holds for semiconcave functions.

The proof of Proposition 7.1 will utilize the following result, which
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connects the subdifferentials of convex analysis to cD" and cD"\ We omit
the proof; similar results may be found in [FS,§2.8 and Chapter 5].

Lemma 7.1. Let v be a semiconvex function on [0,«>)x[R2.
Then

(q,p,A) € cDMt.x) U cD~v(t,x)

only if

(7.12) (q,p)c dv(t.x).

Conversely, (7.12) implies that

(q,p,-2Kl) €D~v(t,x),

where K is the constant appearing in the definition of semiconvexity.

Proof of Proposition 7.1.

1° Let (y,z) denote a generic point of IR2. Assume, without loss in
generality, tha t v is defined on IR*1R2, that (to,xo) = (0,0,0), and tha t

Po = IP

If

liminf inf{ T(p,A) : (q,p,A)ccD+v(t,y,z), ltl + ly| + |zl<e } < 0,

then (7.11b) follows directly; we therefore assume tha t there are tf, t1 > 0

such tha t

(7.13) T(p,A) > Jf, V(q,p,A)€cD*v(t,y,z), (t,y,z)cS(e1).

The semicontinuity of v yields the existence of a 6X > 0 satisfying
(7.6), and hence of a bx > 0 such tha t , for all (q,p) € d v ( t , y , z ) ,



(t,yfz)€©(261):

(7.14a) Ip - pol * IP

(7.14b) p2 > |pol/4.

2° Since v is semiconvex, v is locally Lipschitz continuous.

Therefore, by Rademacher's Theorem, v is differentiable almost

everywhere; we define H(t,y,z) at the points of differentiability by

H(t,y,z) = e(Vv(t,y,z)).

3° By Theorem 7.1, there are a SctO^] and a function I(t,y,z)

satisfying

(7.15) v(t,y,I(t,y,z)) = v(0,0,z), V(t,y,z)cB(6).

Further, by Remark 7.1, I(t,y,z) is Lipschitz continuous on B(6) with

Lipschitz constant no more than 4L/|pol, where L is the Lipschitz

constant of v on B(61)

4° Our next step is to show that the map (t,y,z) «-> (t,y,I(t,y,z)) with

domain B(6) is one-to-one. Suppose (t,y,I(t,y,z)) = (t,y,I(t,y,z)). Then

(t,y) = (t,y) and

v(0,0,z) = v(t,y,I(t,y,z)) = v(t,y,I(t,y,z)) = v(0,0,z).

Since p0 = lpol(O,l), (7.14b) yields

(7.16) lv(0,0,a) - v(0,0,a)l > la - a||p0l/2

for all (0,0,a),(0,0,oc) € ©(26!); hence z = z.

5° The inverse of the map defined in 4° has the form (t,y,J(t,y,z))

with
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v(t,y,z) = v(0,0,J(t,y,z)),

and we m a y use (7.16) to show that J is Lipschitz continuous.

6° Thus the map (t,y,z) »-> (t,y,I(t,y,z)) with domain B(6) is one-
t o - o n e and Lipschitz, with Lipschitz inverse; hence it transforms null sets
into null sets.

7° In view of 6°,

H(t,y,z) = H(t,y,I(t,y,z))

is defined for almost every (t,y,z)cB(6). We now define, for 0<e,C<6/2,

?) = J[H(t,y+C,z)-H(t,y,z)]dtdydz.

In 9°-15° we shall show th?it, for sufficiently small e,?>0,

(7.17) k(e,C) * I31llfce3/2lpol

with tf as in (7.13), where IB1I is the volume of the unit ball in IR3. The

above es t imate provides a weak method of proving t h a t H(t,y,z) is

increasing in y. Indeed, if v were smooth, a direct calculation v/ould yield

Hy(0,0,z) = lpo|-
1T(po,V

2v(O,O,z)) > tf/lpol.

(The details are given in 9°.)
We shall assume t h a t (7.17) is valid and complete the proof of

(7.11a,b), before proving (7.17).
8° Let 0 denote the set of points of differentiability of v. For all

sufficiently small s,C>0 there are (t,y,z)€BCe) satisfying

(t ,y,I(t ,y,z))€6, (t ,y + C,Kt,y +

(7.18) H(t,y+ ?,£)) - H(t,y,z) > tf?/2lp0l.
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Moreover, by (7.5) and Lemma 7.1,

lim(sup { IH(t,y,z)-e(po)l : (t,y,z)cB(p)n0 }) = 0.
pio

Since 1(0,0,0) = 0, by choosing e>0 small we can make lH(F,y,z) - e(po)l
smaller than *C/2lp0l. Therefore for every C = 1/n there are tni0 and
^n»Yn»2n )c B(en) satisfying

H(tn,yn,zn) > e(p0).

This completes the proof of (7.11a,b), granted (7.17).
We now turn to a proof of (7.17)
9° We now assume that v is smooth, a restriction we will later

remove using mollification. Since v is smooth, H is defined everywhere.
Recall that

H(t,y,z) = e(Vv(t,y,z)), H(t,y,z) = H(t,y,I(t,y,z)),
e(p) = sin"1(-p2), p = p/lpl,

v(t,y,I(t,y,z)) = v(0,0,z).

We claim that

(7.19) Hy(t,y,z) = T(Vv(t),VM^))v2(t)-i, $ = (t,y,I(t,y,z)).

This formula may be verified using a direct but tedious calculation; instead
we give an indirect derivation, which also motivates our reason for
computing Hy.

For (t,z) fixed, the parametrized curve T : y « (y,I(t,y,z)), lyl<6 is
a subset of the v(0,0,z) level curve of v. Hence the normal angle of T is
© = H(t,y,z) and the curvature is given by

©s = T(Vv,V2v)/|Vv|
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with s the arc length. Thus

Hy = T(Vv,V2v)sy/lVv|, Sy =

By differentiating (7.15) -with respect to y we obtain

v y + v z l y = 0;

hence sy = |Vv|/v z , which, when substituted into the previous formula,
yields (7.19).

10° We continue to assume that v is smooth. The definition of
,f) yields

1
) = U jHy(t,y + r?,z)drdtdydzH.

B(e) 0

Let

K(t,y,z) =

Then, by (7.19),

1
k(e,c) = IJ jK(t,y + r?,z)drdtdydz k .

Sit) 0

for all 0<e,C£6/2, and (7.17) follows from (7.13) and (7.14). Thus we have
established (7.17) for v smooth. We now remove this restriction; here the
manner in which 8 depends on v is important. The constant 6 comes
from Theorem 7.1 and hence depends only on lDv(0,0,0)1, 61( and the
Lipschitz constant of v on 8(6!); the constant 6A is chosen in 1° and
satisfies both (7.6) and (7.14).

11° Let v n be a molification of v. Then v n converges to v
uniformly on compact sets; vn(t,y,z) + K(t2+y2 + z2) is convex, with K as
in the statement of the proposition; on compact sets, the Lipschitz constant
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of v n is < the Lipschitz constant of v.
Let kn and Kn be defined as in 10°, but with v replaced by vn .

Then 10° yields

1
kn<e.C) = [ J jKn(t,y + rc .z)drdtdydz]c .

B(e) 0

for all 0<e,C* 6n/2.
12° Consider a sequence ( t n , y n , z n ) - • (t,y,z). Since Dvn(tn ,yn ,zn)

(the derivative in IR3) is uniformly bounded in n, it has a subsequence,
also denoted by n, such that Dvn(tn ,yn ,zn) is convergent with limit
(q,p). Then, by (7.5), (q,p) € dv(t,y,z). Thus Dv n ( t n ,y n ,z n ) - • Dv(t,y,z) for
any sequence (tn,yn,zn) -»(t,y,z) €0. In particular,

(7.22a) limDvn(0,0,0) = Dv(0,0,0)

(7.22b) limkn(e,c) = k(e,c)

for all 0< e, ? < 6n/2 for sufficiently large n.

13° Recall that bx > 0 satisfies (7.6) and (7.14). In view of the
previous steps, we may choose 6 l n —> 6 ,̂ as n—»«>, satisfying (7.6) and
(7.14) with v replaced by vn . Since the Lipschitz constant of v n is <
that of v on each compact set, 12° and the discussion just before 11°
imply that 6n -> 6.

14° Recall the definition of kn given in 11°. We claim that there is
a subsequence, also labeled by n, such that

(7.23) liminf kn(e,c) * IB1U83/2lp0l

for all sufficiently small 0<e,C. Indeed, since v is semiconvex,

D2v = M + A,



54

where M is an integrable matrix-valued function and A is a matrix-
valued measure orthogonal to the Lebesgue measure (cf. [J, Proposition 3.3]).
Moreover, A > 0 and

(7.24) u-M(t,ylz)i> > - K M 2 , VVCIR3

with K as in the statement of the proposition. Since v n = v * m n for some
smooth mollifier m n ,

D2vn - Mn + An, Mn = M*mn, An = A*mn .

The measure An has density with respect to Lebesgue measure. Moreover,
A n >0 and Mn satisfies (7.24).

The monotonicity of T(p,A) in A and the positivity of A imply

that

Kn(t,y,z) =
t n = (t,y,In(t,y,z)).

Suppose ^ = (t,y,I(t,y,z))€©. Then, by 12°,

Further,

Kn(t,y,z) >

for all (t,y,z)€B(6n) and sufficiently large n. Also Mn -»M in L1. Recall
that the map (t,y,z) *-* (t,y,I(t,y,z)), on B(6), is one-to-one and Lipschitz,
with Lipschitz inverse (cf. 6°). Let

«

Mn(t,y,z) = Mn(^n), M(t,y,z) = M(O-

Then Mn -• M in LMBtS)). Therefore, by passing to a subsequence, also
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labeled by n,

lim Mn(t,y,z) = M(t,y,z)
n-»oo

for almost every (t,y,z)c!B(6). Since

it follows that

T(Vvn(ftn).Mn(*n)) > -K.

Fatou's Lemma then yields

liminf jT(Vvn(*n),Mn(*n)) dtdydz >

dtdydz
Sit)

for all e<6/2. Hence, for 0<e,C<6/2,

1
liminf kn(e.c) > [ J jT(t,y + rC,z) drdtdydz k /2lp0l,
n—. B(e) 0

•where

T(t,y,z) « T(V

Also for ^cO, 5$suppA,

Let 0 = On complement (supp A). Then 0 has full measure and, by 6°, so
also has {(t,y,z)€tB(6) : $(t ,y,z)€©}. Moreover, by (7.13), T(t,y,z) > JT for
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every (t/y.zJcBUiJn©. We have therefore proved (7.23).
15° The desired result (7.17) follows from (7.21), (7.22), and (7.23). D

c. SEMICONVEX AND SEMICONCAVE APPROXIMATIONS.
For s>0 and (t,x)c[0,oo)x|R2j we define

ip«(t,x) = sup{ <p«(s,y)-(4e)-2(|t-sl« + lx-yl«) : (s,y)€[0,~)xR2 }#

ipE(t,x) • inf { <p*(s,y) + (4e)-2(|t-s|4 + lx-yl«) : (s,y)€[0,oo)xR2 }.

These definitions are similar to the sup and inf convolutions of the theory of
viscosity solutions [LL,FS,JLS,CIL], in which the second power ra the r than
the fourth is used in the translations. Our reasons for using the fourth
power are its simplification of our proof of comparison (cf. Lemma 7.4c).

Let cp be bounded. Then <pe is semiconvex. To verify this, choose a
maximizer (so,yo) in the definition of <pe(t0,x0), and set

r = t0 - s0, w = x0 - y 0 .

Then

<p*(to,xo) = cj)*(s

for all (t ,x). For 0 < h < t 0 and zcIR2, we use this inequali ty at

(t,x) = (t0 ± h,x0 ± z) to obtain

Q(to,xo;h,z) = q)^(to+h,xo + z) + ^ ( t o - h , x o - z ) - 2tp^(to,xo)

Hence

liminf lh2+lz|2]-iQ(to,xo;h,z)

Also,
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ip*(so,yo) -

with ||«|| the sup norm. Therefore

> - ( K / S ) I in D'

for some constant K depending only on HepII; hence <pE is semiconvex. A
similar argumenv shows tha t (pe is semiconcave (cf. [CIL, §3], [FS, §5.4]).
Also, as tiO,

<pe(t,x) i cp*(t,x), ^e(t,x) T (p«(t,x)

for all (t,x)c[0,oo)x|R2.

The next lemma is similar to [FS, Lemma 7.2, §5.7] (see also [CIL, §3]).
Let Me(t,x) denote the set of all maximizers in the definition of <pE(t,x)
and me(t,x) the set of all minimizers in the definition of ipe(t,x).

Lemma 7.2. Fix (t,x)€(0,«0*IR2 and e>0. Then

(7.24) l t -s l« + |x -y |4 < 8llvlle2 f

for every (s,y) € Me(t,x) nmE(t,x). Suppose

(7.25) t > te := (8llcp||e2)i/4.

Then

D*cpE(t,x) cD+q>(s,y)

for every (s,v)cMe(t,x) and

D-cpe(t,x) c D"tp(s,y)

for every (s,y) € mE(t,x).
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Suppose that ip is a viscosity solution of (3.4) in ((),«>) *R2. Then we

may use Lemma 7.2 and (7.1) to conclude that <pe is a viscosity subsolution

of (3.4) in (te,oo)x|R2 and that ipe is a viscosity supersolution of (3.4) in
(tCfoo)xR2.

Lemma 7.3. Suppose that

(q,p,A)€cD+ipe(to,xo).

Then

(7.26) A > -3(lpl/e)2/3l.

Proof. We assume, without loss in generality, that

(q,p,A)€D*(pE(t0,x0). Then there is a function wcC1*2 such that

Wt o , x o ) = q̂  Vw(to,xo) = p, V2w(to,xo) * A

and (to,xo) is a maximizer of cp^-w. Let

+(t,x;s,y) * ip*(s,y)-(4e)-2(|t-sh+lx-yh) - w(t,x).

Choose (s0;y0)€ME(t0,x0). Then ^ has a maximum at (to,xo;so,yo). Thus

-x0 |2 = Vw(to,xo) = p,

o o o o o - x o ) ] < V2w(t0,x0) = A,

and (7.25) follows. D

A similar argument yields

(7.27) B < 3(lpl/e)2/3l.
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for all (q,p,B)€cD-<pe(t0,x0).

L e m m a 7A. Let e , p > 0 a n d bounded functions <pf^ on

[0,oo)xR2 i>e given. Suppose that (t0,x0)€(te,°o)x|R2 is a maximizer of tE

(cf. (7.25))

We(t,x) - <pe(t,x) - *e(t,x) - pt.

Then:

(a) ipE and v̂ E are differentiable at (to,xo) with

(7.28a) V^(t o ,x o ) = V+E(t0,x0) =: p e ,

(7.28b) -p + (vO t(t0.x0) = (^E)t(t0,x0) «: qc;

(b) there are symmetric matrices AE<Be such that

(qE + p,pE,AE) € cD*<pe(t0,x0), (qe,Pe3e) € cD-^E(t0,x0);

(c) if pE = 0, then AE = BE = 0.

Proof. (a) Recall that <pE and ^E are semiconvex and
semiconcave, respectively. Thus there is a KE such that

tp(t,x) = <pE(t,x) +

is convex and

is concave.
Let (qllp1) c 3?p(to,xo). (q2*P2^ € -c)(-vf)(to,xo). Since (to,xo) is a

maximizer of WE(t,x),
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t + 2Ke(t2 + lxl2)

pt + 2Ke(t2

<p(t,x) -

Also, by the definition of the subdifferentials Sip and -d(-iji),

tp(t.x) - *p(t,x)
> <p(to,xo) - »p(to,xo)

Thus

q2

for all (t,x), so that

+ (p1-p2)-(x-x0)

x - q2)(t - t0) + (p 1-p 2)-(x-x 0) .

- t0) + (Pi - P2)«(x - x0) < 2Ke(t
2 + Ixl2 - t0

2 - lx0l
2)

for all (q1,p1) € 8^(to,xo), (q2,p2) € -3(- *p)(t0>x0). Hence d<p(t0>x0) and
-9(-vj))(t0>x0) are singletons, and ijj and <p are differentiate at (to,xo).
Assertion (a) then follows from the definitions of ijj and (p.

(b) Since tpE is semiconvex and tyz semiconcave, this assertion
follows from (7.25), (7.26), and Jensen's maximum principle Ue], [CIL, §3],
IFS, Theorem 5.1, §5.5].

(c) Using (7.26) and (7.27), we obtain

< Ae < B£ <

d. PROOF OF THEOREM 3.3.
We will prove Theorem 3.3 by contradiction. Suppose that conclusion

(5.1) is invalid.
1° By hypothesis, (p€M([0,T]*|R2) and <V€M([0,T]*!R2); thus there

are constants oc.oc.R such that

ip(t.x) = a, for lxl>R, t€(0,T].
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Thus, by (7.24), for all sufficiently small e,

tpE(t,x) = oc, ^£(t,x) = a for Ixl > R + 1, t€[0,TL

2 e Set

I = sup [tp*(0,x) - <|/«(0,x)]

Then I > a - a . Since (5.1) does not hold, there are (s,y)€(0,T]*B(R) and

tf >0 such that

(7.29) <p"(s,y) - «|»«(s,y) > I + *.

3° For e,p>0 consider the function

H£(t,x) - cpe(t,x) - +e(t,x) - pt

for (t,x)€[0,T]x|R2. Then, by the definitions of (pE and \\>E,

He(t,x) > «p*(t,x) - +«(t,x) - pt

for all (t,x)€[0,T]xR2. In particular,

H*(s,y) > I + a - pT.

Therefore, by 1° and the inequality I>oc-6c, for p<tf/T, He achieves its

m a x i m u m at some (t(e),x(e))€(O,T]*B(R + l ) .

4° Suppose t(e) < te for all sufficiently small e>0 , where te is

defined in (7.25). Since lx(e)l<R + l , there is a subsequence, also labeled by

e, such that (t(e),x(e))-*(0,z) as E 4 0 , and

(7.30) I > (p«(0,z) - i|/w(0,z).

Also,
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(7.31) <pe(t(e)fx(e)) - ^

Choose (s(e)ly(e))€ME(t(8),x(e)). (Recall that Mc(t,x) is the set of all
maximizers in the definition of (pe(t,x).) Then, by (7.24), (s(e),y(e)) -* (0,z)
as slO. Moreover,

(pE(t(e),x(e)

and therefore

limsup <pE(
tio

Similarly,

liminf 4*E(t
tio

) * <P« (s(e),y(e))

e)) < q>*(0

)) > +.(0.

Using (7.30), (7.31), and the inequalities above, we are led to the inequality
£> Jf/T.

5° We now fix

p = JT/2T.

Then, in view of the previous step, t(e) < te for some small e>0. Let
(to,xo) = (t(e),x(e)). Then, by Lemma 7.4, cpe and tyt are differentiate at
(to ,xo) and (7.28) are satisfied. Moreover, there are A e <B e satisfying
Lemma 7.4b. We now write qo>Po>AO'Bo f o r ^LfVt^t^t t 0 emphasize
the fact that e is now fixed. Since cpe and v̂ E are, respectively, a
viscosity subsolution and supersolution of (3.4), Lemma 7.4, (7.1), and (7.2)
imply that

(7.32) q0 + P ^ 7*(po,Ao),
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(7.33) q0 > y«(pOlBo).

6° Suppose tha t p 0 = 0. Then, by Lemma 7.4c, Ao = Bo = 0 and (7.32)

and (7.33) yield

q0 + p < 7*(0,0) = 0 < q0,

which contradicts the positivity of p. Hence p0 * 0.

7° Suppose tha t G is continuous at

O0 = e(p0).

Then for any symmetric matrix A,

7*(po,A) = y-(Po.A) = 7(po,A).

Since A 0 <B 0 , the ellipticity property (3.13), (7.32), and (7.33) yield

q0 + p < 7*(po,Ao) = 7(po,Ao) < 7(po,Bo) = 7«(po ,Bo) < q0,

which again contradicts the positivity of p.

8° Suppose tha t G is discontinuous at ©0. Then, by (1.2), there is a

tf>0 such tha t G(©) = 0 either for all ©c[©0,e0+ if] or for all ©c[©0-IT,©O].

We v/ill consider only the case in which

G(©) = 0, V©€[©0-*,©0];

the other case is treated similarly. Let

p = B(©0)"
1, Go = p lim G(©).

Then



-pUlpol + G0(T(p0,A0))
+,

" G0(T(p0.B0))~.

•where (a)+= max(a,0) and (a)~ = (-a)+.
9° We -will analyze three cases separately.
Case A0>0. Since B0>A0 , it follows that B0>0 and T(po,Bo) * 0.

Then, by (7.33),

(7.34) q0 > 7«(po,Bo) = -pUlpo|.

We now use Proposition 7.1 to construct

(7.35) (qn,pn,An)€cD*<pe(tn,xn),

satisfying (7.11b). By (7.35)

qn < 7*(pn,An)

and therefore

(7.36) q0 + p < liminf gr*(pn,An).

On the other hand, (7.11b) implies that

(7.37) liminf 7*(pn,An) < -pUlpol.

Indeed, (7.11b) yields either ©(pn)<e0 or

(7.38) liminf T(pn,An) < 0.

n-
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In the first case G(e(pn)) = 0 and

<F*(pn,An) = -pUlpnl,

and hence (7.37) follows from the convergence of pn to p0. On the other

hand, (7.38) and 8° yield

7*(pn,An) < -pUlpnl + m a x e (G(e)B(e)-1] (T(pn,An))+,

which implies (7.37). Now combine (7.36) and (7.37) to obtain

e + p < pUlpolf

which, with (3.4), contradicts the positivity of p.
Case B0<0. Then Ao < 0 and

7*(po,Ao) = -pUlpol,

and we may use Proposition 7.1 with - vĵ e and argue exactly as in the
previous case to obtain a contradiction.

Case A0<0<B0. Then

q0 + p < 7*(po,Ao) = -pUlpol « 7^(po,Bo) = yn(po,Bo) < q0,

v/hich once again contradicts the positivity of p. a
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{ 8. PROOF OF THEOREMS 3.1 AND 3.2.
Proof of Theorem 3.2. The uniqueness of a level-set solution of (1.1)

corresponding to an auxiliary function $0 follows from Theorem 3.3.

Let {©1,©2'--"'®M^ k e the set of points of discontinuity of G. For n

a sufficiently large positive integer, let Gn be the continuous 2n-periodic

function with Gn(e) = G(©) for l e - e k l > l / n , k=l ,2 , . . ,M, and Gn(©) linear

otherwise. Further , let 7 n denote the function defined by (3.5) with G

replaced by Gn. Then 7 n approximates 7 in the sense of the following

lemma, whose proof we omit.

Lemma 8.1. Let (pn,An) -* (p,A)clR2xS as n->«>. Then

l imsup (7n)*(pn ,An) < 7*(p,A),

n—»

liminf (7n)«(pn ,An) >

n—»

Since Gn is continuous, we may use [CGG, Theorem 6.8] to conclude

tha t there is a unique, continuous viscosity solution $n€ M([0,«0* IR2) — of

(3.4) with 7 replaced by ?n — satisfying §n(x,0) = i o (x ) , and we define

§ + and 3T as in the proof of Theorem 5.2. Moreover, Lemma 8.1 together

with classical stability results for viscosity solutions [FS, §2.6, §7.4] imply

tha t i + and <§~ are, respectively, a viscosity subsolution and a viscosity

supersolution of (3.4) on (0,«>)x|R2. We now follow the steps 4°-8° in the

proof of Theorem 5.2 to conclude tha t <E+ = $~ = 3L Hence § is a level-set

solution of (1.1) corresponding to $0 .

We complete the proof by establishing (5.7). Let § be a level-set

solution of (1.1) corresponding to an auxiliary function 3>0.

For 6>0, let TJ6 : IR -> IR be smooth and satisfy: (i) r\B' > 0; (ii)

H6(r) s 0 for r<c ; (hi) Tj6(r) = 1 for r > c + 6. Then the geometric property

(3.12) implies tha t

$6(t,x) = T)6(§(t,x))
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is a level-set solution of (l . l ) .2 4

Next,

u+(t,x) = lim sup 3>6(s,y)
640

is a viscosity subsolution of (3.4) (cf. [FS, §2.6, §7.4]). If we let u(t,x) be the
characteristic function of

<U(t) = { x: §(t,x)>c },

then the continuity of $ and the properties of T)6 yield

u+(t,x) = u*(t,x) = u(t,x),

so that 11 (t) is a X"subsolution of (1.1). In fact, since

cl Qo = { x: §0(x) > c } = { x: lim sup u(s,y) = 1 },
siO, y-*x

A- .

1i(t) is a X"subsolution of (1.1) compatible with Qo.
Similarly,

u-(t,x) = liminf $6(s,y)
6io

(sfy)-(t,x)

is a viscosity supersolution of (3.4), and, further, u- = u«; hence TJ(t) is
also X"supersolution of (1.1) compatible with Qo. Thus ll(t) is a X"
solution of (1.1) compatible with Qo.

Next, in view of the definition *U(t), IKO^lKt). In lact, they are
equal. To verify this, let Q(t) be a X"subsolution compatible with Qo,
and let u(t,x) be the characteristic function of Q(t). For any d<c, let
24Cf. [CGG, Theorem 5.61 for the proof of this fact when G is continuous.
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u(t,x;d) be the characteristic function of

£(t;d) = { x: $(t,x)>d }.

Then u*(0,x) < u«(0,x;d) = u(0,x;d), since Q(t) is compatible with Qo and
§0(x) = §(0,x) is an auxiliary function for Qo . Then, by Corollary 3.1,
Q(t)c£(t;d) for any %-subsolution Q(t) of (1.1) compatible with Qo .
Hence cU(t)j£.£(t;d) for all d<c, and, since the intersection over all such d
of £(t;d) is <U(t), <U(t)£.\l(t). Thus WO-OKt).

The analogous assertion for £(t) is proved in the same manner. D

Proof of Theorem 3.1. Parts (a) and (b) follow from Theorem 3.2. To
prove (c) note first that, since dQ0 is C3, there is a C3 parametrization
a*-»Y(oc) (IR —>IR2), periodic with period 1, such that

0 = { Y(cc): occ[0,l] }

and

Y'(oc)/IY'(oc)l = T(eo(a)),

where ©0(a) the normal-angle at Y(oc) and T(e) is defined in (1.10).

Proceeding formally, let Q(t) be a solution of (1.1) such that

X(t.oc) = Y(a) + h(t,oc)N(e0(o0)

is a parametrization25 of dQ(t) for some real-valued function h(t,oc).

Then

(8.1) h(t,a) is periodic in a with period 1.

Assume that h is C2. Let K0(oc) denote the curvature of dQ0 at Y(oc),
and let e(t,oc), V(t,oc), and K(t,oc) denote the normal angle, normal
2 5A similar paramctrization was used by Chen and Reitich ICR] in their proof of

local existence for a modified Stefan problem.
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velocity, and curvature of dQ(t) at X(t,oc). Then

(where the subscript denotes differentiation with respect to that variable),

and defining

F^oc.h.h*) = [F2(oc,h)2+ha
2]1/2,

F2(«,h) = IY'(a)l - hK0(a),

a tedious computation yields

e(t,a) = e(«,h(t,«),h(X(t,a)),

with ©(a,h,ha) the solution of

(8.2) T(e(oc,h,ha)) = lF2(a,h)T(e0(a)) + haN(e0(a))]F1(a,h,ha)-1,

and

(8.3a) V(t,«) = Xt(t,a)«N(e(t,«)) = htF2(a,h)/F1(a,h,h0<)>

(8.3b) K(t,a) = ea(t,«)/IXa(t,a)l » F3(oc,h,ha,haa)

K0(a)|Y'(a)l3*

- T(e0(a)).V(oc)ha-

N(©0(oc)).y(a)hK0(a)}F1(a,h,ha)-3
>

(Note that ©(t,a) is well defined provided the right side of (8.2) is nonzero.)

Thus, since

B(e(t,a))V(t,a) = G(e(t,a))K(t,oc) - U,

h(t,a) satisfies
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(8.4) B(oc,h,ha)h t = G(oc,h,ha)haa - F(a ,h ,h a ) ,

wi th

B(a ,h ,h a ) = B(e(a,h,h a)) ,
G(oc,h,ha) = G(e(a,h,h a))F 1(a ,h,h a)- 2 ,

F (a ,h ,h a ) = G(oc,h,ha){hK0(oc)2 + F2(a,h)"1( K0(a)IY'(a)l3 •

h a [2K o ( a )h a + Ko '(a)h] - T(e0(a))*Y"(a)hoc -

N(e o (a ) ) .Y"(a)hK o (a ) )} - UF 1 (a ,h ,h 0 C )F 2 (a ,hr 1 .

We will complete the proof by solving (8.4) subject to h(oc,0) « 0. Let

Q = { (a,h) : lhl<IY t(a)l/2lK0(a)l) .

Then

IY'(a)l - hK0(oc) > IY'(a)l/2 > 0.

Hence the right side of (8.2) is nonzero and e(oc,h,ha) is continuous on
G*[R. Moreover, F:G*1R—>IR is continuous; B :Qx|R-* [0,°°) is continuous
and strictly positive; G :Qx[R —> [0,oo) is continuous except at finitely t w o -
dimensional manifolds in QxIR, and suffers at most j u m p discontinuities
across such manifolds.

Although G has discontinuities, one can prove a comparison result
for viscosity sub and supersolutions of (8.4) using a modification of the
analysis given in Section 7. Indeed, requisite modifications of all arguments
except Proposition 7.1 are either straightforward or minor, and Proposition
7.1 should be replaced by

Proposition 8.1. Let v(t,oc) be semiconvex on [0,«>)xlR and

differentiate at (to,ao) with va(t0,a0) * 0. Then there are
(tn.ocn)-* (t0loc0) and (qn ,pn ,an)ccD*v(tn ian) C R3 such that

lim (qn»Pn^
 = (v t ,v a)( t o ,aoi s ^O'Po^
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liminf min{ ©(ocn,hn,pn) - Q(cxo,hOtpo), F3(an ,hn ,pn ,an)} < 0,

where hn = v(tn,ocn), h0 = v(t0loc0), and F3 is defined in (8.Z).

Once a comparison result has been obtained, the existence of a
unique viscosity solution h of (8.4), satisfying (8.1) and an initial condition
for h(t,0), can be established utilizing an approximation argument of the
type used in the proof of Theorem 3.1. This solution is defined on
[0,Tmax]x|R, where Tm a x is the largest time satisfying (a,h(t,oc))€G for
all (t,oc)€[0,fmax]x|R.

Let

e0 = inf { IV(«)I/4IKO(«)I },
occlR

and for lel<e0, let h(t,oc;e), (t,a)c[0,tmax(8)]xIR, be the unique viscosity
solution of (8.4) satisfying (8.1) and h(0,oc;e) = e. The uniqueness associated
v/ith such solutions ensures that h(t,oc;s) depends continuously on e. Our
next step will be to show that

T* := inf { fmax(e) : lsl<e0 }

satisfies

0 < T« < Tuniq.

To verify this assertion, define, for (t,x)c[0,T«]x|R2,

e if xcdQ(t;e), kl<e0 ,

ip(t,x) = e0 if xcc)Q(t;e0),

- e 0 if

v/here Q(t;s) is the closed region enclosed by
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(8.5) { Y(oc) + h(t,oc;e)N(e0(oc)) : occlO.l] }.

(Since t<T« , (a,h(t,a;6))cQ and the curve (8.5) encloses a region.)
Further, a tedious calculation shows that ip is a level-set solution of (1.1)
corresponding to an auxiliary function compatible with Qo. By Theorem
3.2 (cf. (5.7)),

= { x : §(t,x)>0}, t(t) = { x : 5(t,x)>0).

Since h depends continuously on e,

T > T*

To establish the positivity of T*, observe that, by the maximum principle
(or comparison result for (8.4)),

lh(t,oc;e) - el < Kt

for all lel<e0, tc[O,fmax(e)), where K is a suitable constant depending on

the C3 norm of SQ0. Hence

lh(t,oc;e)l < 2e0

for all t<en/K. Finally, the definitions of Q and e0 imply that T*>en/K.
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