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1. INTRODUCTION.

This paper begins a two-part series on phase transitions in deformable

solids,1 with and without mass transport,2 with the interface between

phases sharp and capable of supporting energy and stress. The present

study, Part 1, discusses coherent phase transitions;3 Part 2 will discuss

incoherent transitions.

In a recent paper [GS]4, Allan Struthers and I developed a

continuum thermodynamics of coherent interfaces. Many of the results

presented here were derived in [GS], but the development here is different

and, I believe, simpler. In particular, I do not use the notions of "bulk

interactions between phases" and "attachment forces" as described in

Section 8 of [GS]; in fact, I now believe that section to be conceptually

flawed.

The development precedes in four steps:

(1) Kinematics. A chief difficulty in the study of dynamical phase

transitions is the presence of accretion, the motion of the phase interface

relative to the underlying material. The interplay between accretion and

deformation requires a kinematical development more complicated than

that standard in continuum mechanics.

(2) Mechanics. The standard forces associated with continua arise as

a response to the motion of material points. The mechanical description of

accretion requires additional forces with their own balance. Following [GS], I

refer to the former as deformational forces, to the latter as accretive

^Other papers relevant to solid-solid phase transitions are: Brooks [1952], Robin

[1974], Cahn [1980], Cahn & Larch* [1978,1982,1985], Mullins [1981,1984], Alexander &

Johnson [1985,1986], Parry [1987], Pitteri [1987], Fonseca [1989], and Leo & Sekerka

[1989], all of whom derive equilibrium balance laws for the interface as Euler -

Lagrange conditions for a global Gibbs function to be stationary; Abeyaratne &

Knowles [1990,1991] and Truskinovsky [1991], who discuss kinetic relations for the

interface neglecting interfacial structure; and Pfenning & Williams [1992], who use

measure-theoretic arguments to derive interface conditions starting from general

laws for force, energy, and entropy.

^ Heat flow and interfacial mass are neglected; their inclusion adds no new

difficulties. (Cf. Gurtin & Struthers [1990], who allow for bulk heat flow.)
3For which the reference lattices (homogeneous reference configurations) of the

individual phases are coincident (modulo a homogeneous deformation) and the

underlying deformations are continuous across the interface.
41 write [GS] for the reference "Gurtin & Struthers [1990]".



forces* That more than standard forces may be required is at least

intimated by Gibbs,6 whose discussion is paraphrased by Cahn [1980] as

follows: "solid surfaces can have their physical area changed in two ways,

either by creating or destroying surface without changing surface structure

and properties per unit area, or by an elastic strain along the surface

keeping the number of surface lattice sites constant " Analogous

ideas appear in the work of Eshelby,7 who introduced the notion of forces

on lattice defects. A basic difference between the presentation here and the

work of Gibbs, Cahn, and Eshelby is that for them such forces as well as

their balances derive from variational principles,8 whereas for me

"accretive forces*' are primitive concepts entering the theory through their

own force balance.

(3) Thermomechanics. For a mechanical theory of the type

considered here the second law is the requirement that the energy of a

body B increase at a rate not greater than the power expended on B plus

the energy flow into B.9 Basic to a precise statement of this law is a

prescription of the manner in which interfacial forces expend power; I

assume that such forces expend power over velocities associated with the

motion of the interface through the lattice.10

(4) Constitutive theory. My development of a suitable constitutive

theory is based on an extension of the Coleman-Noll procedure to

multiphase continua.11 Basic to this extension is the requirement that the

second law be satisfied in any conceivable motion of the material points and

phase interface, irrespective of the difficulties involved in producing such

motions in the laboratory. The rational application of this procedure
5 In place of the modifier "accretive", one might use lattice, configurational,

structural, or reticular.
6[1878] (pp. 314-331).
7Cf., e.g., [1975].
8 In such a derivation the standard force balance would be the Euler-Lagrange

equation resulting from arbitrary variations of the deformation; but there is also a

relation resulting from arbitrary variations of the interface; this corresponds to the

accretive force balance.
9 This version of the second law follows from appropriate versions of balance of

energy and growth of entropy under the assumption of constant temperature (cf.

Gurtin [1991]); in this instance what I term "energy" should more appropriately be

termed "free energy".
10Gurtin [1988,1991], [GS].
11Gurtin [19881.



requires the introduction of external fields that ensure balance of force and

mass in all such motions. This may seem artificial, but it is no more

artificial than a constitutive theory based on a principle of virtual work

using arbitrary virtual displacements; in fact, both procedures are

introduced with the same goal in mind: to ensure a properly invariant

theory consistent with basic physical laws under the widest possible set of

circumstances.

I begin with a development of equations appropriate to situations in

which mass transport may be neglected. In this case the bulk relations are

standard and consist of the momentum balance

DivS = py## (1.1)

and the constitutive equations

^ S = aF^(F) (1.2)

in each phase i = 1,2. Here y(X,t) describes the motion, F = Vy is the

deformation gradient, p is the mass density, $ is the bulk energy, and S

is the bulk stress. Here and in what follows:

• bulk fields are measured per unit volume

and area in the reference lattice,

so that, in particular, S is the Piola-Kirchhoff stress.

The interface — represented by a smoothly evolving surface S = S(t)

in the reference lattice — is endowed with interfacial energy ij;,

deformational stress S, and accretive stress C. Among the constitutive

equations considered for the interface are relations allowing i|>, S, and the

normal component C of C to depend on the normal n and the normal

velocity V of S, and the interfacial limits F± and F2 of F. A

consequence of the second law is that ^ , S, and 6 are independent of V

and depend on Fx and F2 through the tangential deformation gradient F.

In fact, the energy V|J = $(F,n) determines § and S through the relations



S = dF$(Ffn), C = -Dn$(F,n), (1.3)

in which dr is the partial derivative v/ith respect to F, while Dn is the

derivative v/ith respect to n following the interface.
Fields that strongly influence the motion of the interface are the bulk

and interfacial Eshelby tensors12

P * $1 - FTS, P * +lln - F
TS, (1.4)

respectively, where I is the unit tensor, while IIn is (essentially) the

identity on the tangent space n-1-. An important consequence of the

thermodynamic development is a relation P = C t an , identifying the

tangential part of the accretive stress C as the Eshelby tensor for the

interface.
The final interface conditions13 consist of the compatibility

conditions

[y] = -V[F]n, [F](ll - n®n) = 0, (1.5)

the deformational momentum balance

[S]n = -plyiV - DivsS, (1.6)

and the normal accretive balance

n-[P]n + {p[|Fnl2]V2 = -P-L - Divs(B + pV. (1.7)

Here p= p(F1,F2,n,V) > 0 is a kinetic modulus, [$] denotes the j u m p of a
1 2 The insight afforded by the use of bulk and surface Eshelby tensors was pointed

out to me by P. Podio-Guidugli (private communication).
13These interface conditions -were derived in IGS], but the development here is

different. For statical situations (1.7) was derived by Leo & Sekerka [1989] (cf.

Alexander & Johnson [1985,1986]) as an Euler - Lagrange equation for stable

equilibria, while (1.6) was derived by Gurtin & Murdoch [1974]. A counterpart of

(1.7) for a rigid system was derived by Gurtin [1988]. For dynamical situations

without surface energy or stress, (1.7) was proposed by Abeyaratne & Knowles

[1990,1991] and Truskinovsky [1991].



bulk field § across the interface, L is the curvature tensor of S, and

Divs is the surface divergence on S.

Next, using a study of Gurtin & Voorhees [1993]14 as a guide, I modify

the theory to include the bulk diffusion of *X (unconstrained) species of

mobile atoms, neglecting inertia. Each species a = 1,2,...,21 is described by

a molar density pa, a bulk molar flux h a , and a chemical potential |JLa,

assumed continuous across the interface. Letting

...,u*), H = (h1 , . . .**), (1.8)

I consider bulk constitutive equations

* = ii(Ffp), S = S p l ^ p ) , n « Sp^F.p), H = - D ^ p J V u , (1.9)

for each phase i, with diffusivity D^Fjp) compatible v/ith the inequality

2ah
a»V|jLa < 0, v/here Za designates the sum over a from 1 to 01.

The resulting interface conditions consist of (1.5) and

[S]n = -Div s§,

[pa]V = [ha]-n, (1.10)

n-[P]n = -P-L - Divse + pV,

v/ith the bulk Eshelby tensor P now based on a Gibbs function co,

P = col - FTS, co = $ - Zap
a\ia

f (1.11)

but with the interfacial Eshelby tensor P unchanged (since interfacial

mass is neglected). The corresponding bulk relations are (1.8), (1.9), and

DivS = 0, (pa)# = -Divha. (1.12)

14Who assume linear elastic behavior in bulk and no interfacial elasticity.



2. GENERAL NOTATION.

The notation presented here is sufficiently general to be applicable also
to incoherent phase transitions.

We v/ill generally omit regularity assumptions.
T designates the time-interval in question. The te rm region is used

to denote a region in IR3 with sufficiently regular boundary. Let B be a
closed region. A deformation (p of B is a smooth bijection of B onto a
closed region, with det Vcp > 0.

By an evolving two-phase region { Q(t), Qx(t), Q2(t); t c T } we
mean a (possibly) t ime-dependent region Q(t)cR3 , t c T , together with
closed subregions Q^t) and Q2(t) whose union is Q(t) and whose
intersection F(t) is a smoothly evolving surface whose orienting unit
normal n(x,t) is directed outward from 3Q1(t); F(t) will be referred to
as the interface. We will often refer to Q(t) or simply Q as the evolving
two-phase region, and we will usually omit the quantifier t e T .

Let cp be a mapping tha t associates with each xcQ(t) and t c T a
scalar, vector, or tensor1 5 cp(x,t). Then cp is a bulk field (for Q) if cp is
smooth away from the interface and up to the interface from either side.
For such a field cp, we denote by cpj(5,t) the limit of cp at 5cF(t) from
Q^t), by [cp] the j u m p in cp across the interface, and by (cp) the
average value of ip at the interface:

cp^,t) = lim cp(x,t),

[cp] = cp2 - (plf <cp> = (cp1 + cp2)/2; (2.1)

we then have the identities:

[cptf] = [<p]<*> + <cp>[*],

term tensor (without the adjective superficial or the adjective interfacial)

denotes a linear transformation of IR3 into itself. 1 is the unit tensor; Lin"1" is the set

of all tensors F with det F > 0; and Unit is the set of all unit vectors. We use a dot to

denote the inner product, ® to denote the tensor product, and the superscript T to

denote the transpose, regardless of the space in question.



where here and in what follows

64 = (-1)1. (2.3)

We will also use the notation (2.1) for arbitrary fields (|)1(x;t) and ip2(x,t)

on the interface (the subscripts here denoting the phase to v/hich the field is

associated).

By a control volume (with respect to Q) we mean a fixed region

R with the property that, for some open time-interval TcT,

RcQ(t)

for all tcT, and either F(t)nR is empty for all tcT or F(t)nR is a

smoothly evolving surface for all tcT; times t in the union of all such T

are then regular times for R. When writing balance laws the quantifier

"for all control volumes R" will mean "for all control volumes R and all

regular times for R". When writing balance laws for a control volume R,

we will always write

m for the outward unit normal to dR.

We label material points by their positions X in a fixed homogeneous

reference configuration. A dot denotes the material time-derivative (with

respect to time t holding X fixed); V and Div are the material gradient

and divergence (with respect to X).



A. SIMPLE THEORY WITHOUT INTERFACIAL STRUCTURE.

3. KINEMATICS. MASS.

3.1. KINEMATICS.

We consider a two-phase material with phases labelled i = l,2. We

choose a fixed (uniform) reference lattice £ identified with IR3; £

assumes the role played by the reference configuration in classical

continuum mechanics and should be viewed as a macroscopic interpretation

of a microscopic lattice, so that the points of £ fill IR3.

A two-phase body is a pair (B^B^ °f closed regions in £ whose

intersection S is a smooth surface. We will refer to

B = B1UB2

as the body, to points X of B as material points. The region Bx

represents the portion of B composed of material of phase i, while S

represents the interface between phases. Bi should be viewed as a

collection of lattice points together with atoms1** structured in the

manner peculiar to phase i.

Let B be a two-phase body, and let y be a mapping that associates

with each material point X in B a point x = y(X) in IR3. Then y is a

coherent two-phase deformation of B if:

(i) y restricted to Bj is a deformation of Bi for each i;

(ii) y is continuous across the interface.

The set B = y(B) then represents the deformed body, /8 = y(S) the

deformed interface, Bi=y(B1) the deformed phase i region.

At each time t, let y(t) be a coherent two-phase deformation of a

two-phase body (B^t) ,B2(t)), and write y for the mapping

(X,t)»-*y(X,t)=y(t)(X). Then y is a coherent two-phase motion of B if:

(i) the body

B = B1(t)uB2(t)

is independent of time, with {B,B1(t),B2(t)} an evolving two-phase

region;

theory is macroscopic; we use the term "atom" for descriptive purposes.



(ii) y is continuous;

(hi) y is smooth away from the interface

S(t) = B1(t)nB2(t) (3.1)

and up to the interface from each side.

Note that B1(t) and B2(t) depend on time at most through accretion;

away from the interface B^t) is independent of time in the sense that,

given any time T, each point X in dB^i) - S(T) has a neighborhood

N = N(X) such that, for some e>0, N n {dB t̂) - S(t)} is independent of t for

all tc(T-e,T+e).

Let y be a coherent two-phase motion of B (Figure 3a).

We use the term bulk field to denote a bulk field with respect to

{B, B1(t), B2(t)}, the term interfacial field to denote a superficial field

(Appendix A) with respect to the interface S. Given a bulk field (p, the

limits cpi at the interface from phase i, and the jump [cp] in cp across

the interface are as defined in (2.1).

We will consistently write:

n(X,t) for the unit normal to the interface

S(t) directed outward from dB1(t) (3.2)

and V(X,t) for the normal velocity of S(t) in the direction n(X,t).

Given a local parametrization X = r(u,t) for S(t), v(X,t) = (d/dt)r(u,t)

satisfies

V = vn; (3.3)

we will refer to interfacial fields v consistent with (3.3) as admissible

velocity fields for the interface.

We write

F(X,t) = Vy(X,t), y(X,t) = O/at)y(X,t) (3.4)

for the deformation gradient and material velocity. Computing
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O/dt)y(r(u,t),t) — which represents a velocity field v for /8(t) — from

either side of the interface yields the relations

v = (y)i + Yy (3.5)

and (hence) the compatibility conditions

[y#] = ~[F]v, [F](H - n®n) = 0. . (3.6)

The fields v and v have intrinsic forms

v = Vn, v = <y-> + V<F>n, (3.7)

which allows us to rewrite (3.6)1 as

[y ] = -V[F]n. (3.8)

By a referential control volunne R we mean a control volume

with respect to (B,B1(t),B2(t)}. Given a bulk field i , we write

(J§dv}-(t) = (d/dt){Ji(X,t)dv(X)}.
R R

3.2. MASS. MOMENTUM. KINETIC ENERGY.

We write p for the uniform17 mass density in the reference

lattice. Then balance of mass

{Jpdv}- = 0 (3.9)
R

is trivially satisfied for each referential control volume R.

The integrals

Jpy-dv, JiplyM2dv (3.10)
R R

i 7This assumption is consistent with coherency and a uniform reference lattice; we
will be unable to make this assumption when we treat incoherent interfaces.
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represent the momentum and kinetic energy. By Lemma Bl the time

derivatives of these integrals when localized to the interface have densities

P = -plylv, -ipliyi2]v, (3.ii)

with p the momentum flow across the interface. By (3.5) and (3.7)lf

[lyi2] = Uy--vl2] + 2[y].v = [IFnl2]V2 + 2[y]-v, (3.12)

and therefore

-|p[ly12]V = -kV + p-v (3.13)

with (cf. (3.8))

1 = ip[|Fnl2]V2 = jp[|y--vl2] = p-V<F>n (3.14)

the (jump in) relative kinetic energy.
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4. THE ACCRETIVE AND DEFORMATIONAL FORCE SYSTEMS.

Here forces such as surface tension that act within the interface are

neglected.

With each motion of the body we associate two force-systems: an

accretive system consisting of forces that arise in response to the motion of

the interface; a deformational system consisting of forces related to the

gross deformation of the body. Central ingredients of the theory are balance

laws for each of the two force systems.18

Let y be a coherent two-phase motion. Then the associated force

systems are characterized by the fields:

accretive system

C stress

f external interfacial force

deformational system

S stress

b external body force

g external interfacial force

C and S are bulk tensor fields, b is a bulk vector field, and f and

g are interfacial vector fields. Fix the time, let da and dv represent an

area element and a volume element in B away from the interface, and let

m denote a unit normal to da. Then Cm da and Smda represent

accretive and deformational forces exerted across da, while b dv

represents forces applied by the external world directly to dv. On the other

hand, fda and gda represent accretive and deformational forces applied

by the external world directly to area elements da on the interface. The

external forces generally vanish in problems of interest, but are needed if

we are to allow for arbitrary coherent two-phase motions of the body.

The accretive stress C acts in the lattice on the net atomic structure

(lattice points plus atoms). This structure undergoes change only at the

18Cf. [GS], where these balance laws laws are derived as consequences of the

invariance of the expended power (Section 5) under changes in observer. This

invariance is nonstandard: in addition to the usual spatial observers, who measure

the gross velocities of the continuum, [GS] allows for lattice observers, who study the

crystal lattice and measure the velocity of the phase interface.
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interface; consistent with a constraint of this type, we assume that C is

indeterminate away from the interface; this indeterminacy obviates the

need for an accretive body force (in bulk).

We postulate, for each referential control volume R:

an accretive balance19

JCmda + Jfda = 0 (4.1)
SnR

and deformational balances (balance of linear and angular momentum)

JSmda + Jbdv + Jgda = {Jpy # dv}\ (4.2)
dR R SnR R

JyxSmda + Jyxbdv + Jyxgda = {Jy xpy #dv}\ (4.3)
R SnR R

with m is the outward unit normal to dR (Figure 4a).

Lemma Bl allows us to localize these balance laws to regular

interfacial sets, and this in turn leads to the interfacial force balances

[C]n + f = 0, [S]n + g = p (4.4)

with p given by (3.11).

On the other hand, applying (4.1)-(4.3) to referential control volumes

R that do not intersect the interface yields the relations

DivS + b = py##, DivC = 0 (4.5)

in bulk (in B away from the interface) as well as the standard restriction

SFT = FTS, (4.6)

implying the symmetry of the Cauchy stress20 T= (detF)"1SFT.

1 Q
A Balance of moments for the accretive system has no relevant consequences within

this theory (cf. [GS], eq. (7.10)2).
20Cf., e.g., Gurtin [1981].
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Figure 4a. The accretive and deformational forces on a control volume R.
The surface stresses C and 8, neglected here, are considered in
Section 10.
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5. POWER.

Let y be a coherent two-phase motion. To write the second law we

need a representation for the power expended on an arbitrary referential

control volume R.

Deformational forces act in the deformed body as a response to

deformation. The stress S and the body force b act in the bulk material

away from the interface and, as is standard, are conjugate to (i.e., expend

power over) the material velocity y \ The external force g acts at the

interface, and we assume that g is conjugate to the velocity v of the

deformed interface.

Accretive forces are associated with the nondeformational kinetics of

material points in B, and expend power only at the interface, where the

phase i regions Bj(t) undergo change. Thus bulk accretive forces do not

expend power, but the external force f, which acts at the interface, does.

We assume that f is conjugate to the velocity v at which the interface

moves through B.

We therefore write the power expended on R in the form

P(R) = JSm-y#da + Jb-y# dv + J(f-v + g-v) da, (5.1)
3R R SOR

with m the outward unit normal to 3R. We require that this expression

be independent of how we parametrize the interface, and hence

independent of the admissible velocity field v used to describe its motion.

By (3.5), the dependence of (5.1) on v is through the term (f + (F)Tg)-v in

the last integral. Thus we require that

f + <F>Tg is parallel to n (5.2)

and, granted this, we may restrict attention to v and v in the intrinsic

forms (3.7).

By Lemma Bl, for Re a family of referential control volumes that

shrinks to a regular interfacial set A at time T,

-> J([Sn-y#] + g-v + f-v)da ( 5 3 )

A
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at T, and, by (3.5), (3.7), and (4.4), we can write this integrand in the form

-([n-FTSn] + [n-Cn])V + p-v. (5.4)
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6. ENERGETICS. DISSIPATION INEQUALITIES.
In this purely mechanical theory the second law is the requirement

that the energy increase at a rate not greater than the expended power.
Here interfacial energy is neglected; the energy of the system is therefore
represented by the bulk energy $ per unit volume, and the second law
takes the form of a global dissipation inequality

- < P(R) (6.1)

for each referential control volume R, with V(R) the expended power
(5.1).

Using Lemma Bl, (3.13), and (5.4), we may localize (6.1) to the
interface; the result is

+ [n-FTSn] - k + [n-Cn])V < 0.

Thus, introducing the Eshelby tensor

P = *11 - FTS (6.2)

and the accretive tension

TT = n-[C]n, (6.3)

we are led to the interfacial dissipation inequality

(TT - n-[P]n - k)V < 0. (6.4)

If we consider (6.1) restricted to referential control volumes that do
not intersect the interface, we are led, by virtue of (4.5)^ to the
requirement that

$' < S-F# (6.5)

in bulk.
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Granted the balance laws for force, the inequalities (6.4) and (6.5) are

equivalent to the global dissipation inequality (6.1).

The presence of n«[P]n in the interfacial dissipation inequality will

involve this component of [P]n in the constitutive theory. On the other

hand, for g=0, the tangential component of [P]n is determined by the

momentum flow p: in view of (3.6)2, (4.4)2, and (6.2),

( l - n ® n ) [ P ] n = - ( 1 - n®n)<F> T [Sn] = - ( I - n ® n ) < F > T p . (6.6)
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7. CONSTITUTIVE EQUATIONS.

We assume that the individual phases are homogeneous and elastic,

governed by standard constitutive equations

S = S4(F), * = $i(F) (7.1)

with2 1

(7.2)

We take Lin+ as the domain of the response functions Sx and 3^, and

assume that Sx is consistent with (4.6).

To these equations we adjoin a constitutive equation for the interface

giving the accretive tension TT as a function of the normal n, the normal

velocity V, and the limiting values F1 and F2 of the deformation

gradient at the interface:22

TT = TT(z), z = (F1,F2,n,V). (7.3)

The domain of TT is the set Z of all z with ncUnit, VclR, and

F1>F2€Lin+ with F± (1 - n®n) = F2(l - n®n) (cf. (3.6)2).

Remark 7,1 (Constitutive Processes). Suppose we are given an

arbitrary coherent two-phase motion. Then the constitutive equations may

be used to compute a constitutive process consisting of z as a field, the

bulk fields S and $, and the interfacial field TT. The balance laws for

force may then be used to compute the accretive stress C and the external

forces b, f, and g needed to support the process: (4.4)2 gives g; (4.4)1,

21This restriction is a consequence of the bulk dissipation inequality (6.5). We will

postulate rather than prove bulk constitutive restrictions, since they are well known

and their proof simple.
22Here we use the second law — in the form (6.4) — to suggest which fields should be

described by constitutive equations; this is in contrast to the standard procedure of

studying balance laws to see where the formal lack of sufficient equations may be

compensated for by the introduction of additional constitutive relations. This use of

the second law seems to lead — in all classical continuum theories — to the "correct"

set of constitutive variables.
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(5.2), and (6.3) give f; (4.5)1 gives b; (4.5)2 and (6.3) may be solved

(generally not uniquely) for C. The availability of external fields therefore

allows us to consider arbitrary constitutive processes with the assurance

that the balance laws for force are satisfied.

The second law — in the form of the dissipation inequalities (6.4) and

(6.5) — remains to be satisfied in all constitutive processes. In view of (7.2),

the inequality (6.5) is automatically satisfied; we therefore have only to

satisfy the interfacial dissipation inequality (6.4). Let

£(z) = TT(z) - n-[P]n - k (7.4)

with n*[P]n + & considered a function of z by virtue of (3.14) and (6.2);

then satisfying (6.4) in all processes is equivalent to satisfying

3(z(Xft))V(X,t) < 0

in all coherent two-phase motions. By Lemma B2, given an arbitrary value

ZQ€Z, we can always find a coherent two-phase motion for which z(X,t)

has the value z0 at (0,0). We are therefore led to the requirement that

i(z)V<0 for all zcZ; hence § must have the form

$(z) =

with coefficient p given by a constitutive equation

p = p(z) > 0. . (7.5)

Thus

n-[P]n +k - pV, (7.6)

so that the accretive tension is the sum of the normal imbalance in the

Eshelby tensor, the relative kinetic energy, and a drag force - pV, which

represents dissipation in the exchange of material between phases. This

drag force is the sole source of dissipation in the theory.
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The relations (4.4)1, (6.3), and (7.6) yield the normal accretive

balance

n-[P]n + k = pV - f-n. (7.7)

Note that TT = O when the external forces vanish, a result generally

not true when surface stress is included in the theory (cf. (11.10)).
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8. EVOLUTION EQUATIONS IN THE ABSENCE OF EXTERNAL FORCES.

Assume now that the external forces vanish. The complete set of

interface conditions then consists of the compatibility conditions

[y ] = -V[F]n, IF](1 - n®n) = 0, (8.1)

the deformational force balance

[S]n = p, (8.2)

and the normal accretive balance^

n-[P]n + k = pV, (8.3)

with

P = *H - FTS, p = -p[y-]Vf 1 = {p[IFnl2]V2, (8.4)

and these with the bulk equations

$ = ^(F), S = dp^F), DivS = py- (8.5)

and appropriate boundary and initial conditions form the free-boundary

problem for the mechanical theory.

By (2.2), (3.6)2, (3.14), and (4.4),

n-[FTS]n = <Sn>-[Fn] + p-<Fn) = <S)-[F] + k; (8.6)

thus

n-lP]n + ! = [ $ ] - <S>.[F], (8.7)

and we can write the normal accretive balance in the form

23Proposed by Abeyaratne & Knowles [1990,1991], Truskinovsky [1991].
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[$] - <S>.[F] = pV. (8.8)

Next, (3.14), (6.6), and (8.3) imply that

[P]n + <F>Tp = pVn, (8.9)

showing that the imbalance in the Eshelby tensor is due entirely to
interfacial dissipation and inertia. At equilibrium (8.8) and (8.9) reduce to
the standard results

[$] - <S>-[F] = 0, [Pin = 0. (8.10)
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B. THEORY WITH INTERFACIAL STRUCTURE.

9. KINEMATICS.

We now augment the notation of Section 3 to include concepts

relevant to a discussion of interfacial strain.

Let y be a coherent two-phase motion. We continue to use the

notation of Section 3 for fields such as the deformation gradient F

associated with y, and we let L and K denote the curvature tensor and

total curvature for the undeformed interface S(t). (Because of (A5), (A6),

and our agreement (3.2), K<0 for B1 a ball.)

The tangential deformation gradient24 F(X,t), defined at each

XcS(t) by

F(X.t) = Vsy(X,t), (9.1)

is a linear transformation from the tangent plane at XcS(t) into DR3,

although F(X,t) actually maps tangent vectors at XcS(t) to tangent

vectors at x€/8(t). IF is related to the deformation gradient F through

F = Filln = <F>lln (9.2)

with ln(X,t) the inclusion of the tangent plane nx(X,t) into IR3 (cf. (AD).

Because of the compatibility relation (3.6)2,

[F] = [F]n®n. (9.3)

and, by (2.2)2, the interfacial limits Fi are completely determined by (F)

and [F]n:

Fi = <F> + iSidFln)®!!. (9.4)

Two important identities — valid for v and v the intrinsic velocity

fields (3.7) for S(t) and Z(t) — are25

24Cf. Gurtin & Murdoch [1974]. Many of the definitions and results that we use can
be found there and in Sects. 2.1 and 3.2 of [GS].
25Cf. [GS], eq. (3.29).
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Vsv = - ( n ® n ) l n - V L , ( 9 5 )

Vsv = {F^-F^ngm0)}!^ - VFjL,

where the superscript " ° M represents the normal time derivative (for S)

discussed in Appendix A2. The relation (9.5)2 is independent of the phase i,

and is therefore valid with F> replaced by (F).

Let A(t) be a smoothly evolving subsurface of S(t), with V(X,t) the

outward unit normal to the boundary curve 3A(t). Given any local

parametrization X = r(u,t) for dA(t), w(X,t) = (d/3t)r(u,t) satisfies

w n = V, w-V = V(dA)tan (9.6)

(cf. (A13)); v/e will refer to interfacial fields w consistent with (9.6) as

admissible velocity fields for 3A. The interfacial field

w = (y-)l + Ftw (9.7)

then represents a velocity field for the boundary of the deformed surface

y(A(t),t). The expression (9.7) is independent of the phase i and hence, by

(2.1)2, may be written in the form:

w = <y'> + <F>w. (9.8)

If we choose w to be the intrinsic velocity vaA of dA as defined in (A13),

then

w = v + V(SA)tanV, w = v + V(3A)tan<F>V, (9.9)

with v and v the intrinsic velocity fields (3.7).
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10. FORCE SYSTEMS.

Let y be a coherent two-phase motion. Then the associated force

systems are characterized by the list of fields described in Section 3

augmented by two interfacial tensor fields:

C accretive surface stress

S deformational surface stress

Let R be a referential control volume, let

A(t) = S(t)nR (10.1)

denote the portion of the interface in R, and let V(X,t) denote the
outward unit normal to the boundary curve c)A(t). Then CV and SV
represent accretional and deformational forces, per unit length, applied to
R across dA.

We postulate, for each referential control volume R:
an accretive balance

JCmda + Jfda + JEVds = 0 (10.2)
3R A dA

and deformational balances (balance of linear and angular momentum)

J S m d a + J b d v + Jgda + j S v d s = { J p y # d v } \ (10.3)
dR R A dA R

JyxSmda + Jyxbdv + Jyxgda + JyxSvds = {Jy*py#dv}\ (10.4)
9R R A dA R

with m the outward unit normal to SR (Figure 4a).

Using the surface divergence theorem (A10) and the argument given

in Section 4, we are led to the interfacial force balances (cf. (3.11)1)

[C]n + f + DivsE = 0, [S]n + g + DivsS = p, (10.5)
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and the moment balances26

BTF-Tn = 0, SFT = FST, (10.6)

asserting that the Cauchy surface stress T = (detF^SF1" is symmetric and
tangential.

26Cf. Gurtin & Murdoch [1974], p. 307; [GS], eq. (7.13).
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11. POWER.

Let R be a referential control volume, with m the outward unit

normal to dR and V the outward unit normal to the boundary curve

dA, A = SnR. Guided by the discussion preceding (5.1), we assume that the

force CV is conjugate to (any choice of) admissible velocity w for the

boundary curve dA, while SV is conjugate to the corresponding velocity

w for the image of dA under the motion. Thus, in view of (5.1), we write

the power expended on R in the form

P(R) = JSm-y'da + Jb-y* dv + J(f-v + g-v) da +
dR R A

w + Sv-w)ds, (11.1)
dA

and require that this expression be independent of both the admissible

velocity v used to describe the motion of the interface and the admissible

velocity w used to describe the motion of the boundary curve dA. This

requirement leads to (5.2) and to an additional restriction, which we now

derive.

The last integral in (11.1) represents the power expended by

interfacial stresses; by (9.8) this integral can be written as an accretive part

J(CV+<F>TSV)-wds (11.2)
dA

plus a purely deformational part

jSv-<y->ds.

dA

The stress

A = C + <F>TS (11.3)

represents the stress C due to accretion alone plus the accretive
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contribution (F)TS of the deformational stress S. Let A t a n and G
denote the tangential and normal components of A with respect to the
undeformed surface S(t) (cf. (A3)). Since (11.2) is, by hypothesis,
independent of the choice of admissible velocity field w, we may use an
argument of [GS]27 to conclude that A tan is a surface tension a:

- < x l B . (11.4)

Note that, by (A3), (11.3), and (11.4), the tangential and normal
components C tan and C of the accretive stress are given by

e t a n = a l l n - (l-n®n)<F>TS, C = 8 - ST<F>n. (11.5)

We now restrict attention in (11.1) to the intrinsic velocity fields (3.7)
and (9.9), so that

V(R) = JSm-y'da + Jb-y'dv + J(f-v + g-v) da +
dR R A

•v + i F - v + aV (£)A)tan)ds.
dA

The balance laws (10.5) and the identity (All) yield

•vds = KC-V s v - ([C]n + f ) -v }da ,
dA A

•vds = J{g-Vsv - ([S]n + g - p)-v} da.
dA A

Thus, by Lemma Bl , for Re a family of referential control vo lumes that

shrinks to a regular interfacial set A 0 = A ( T ) at time T ,

P(R e ) -^ J > d a + J a V ( a A ) t a n d s (11.6)
Ao dA0

at T, -where

27Cf. (iii) of the Invariance Lemma given in Appendix C of [GS].



29

^ = [Sn-y'] - [C]n-v - [S]n-v + C-Vsv + S-Vsv + p-v. (11.7)

Further, by (A3), (A4), (A6), the fact that L is tangential, the sentence

following (9.5), (11.3), (11.4), and (11.5)2,

E-Vsv = -n-E€Xtn° - V{Ka-«F> T S)- l} ,

8'Vsv = S€Xt-{<F>°-<F>(n®n^)} - V«F>TS)-L,

n-C€Xtn° + Sext-«F>(n®n°)) = B-n°,

and therefore

C-Vsv + S-Vsv = -aKV - i-n0 + S€Xt-<F>°; (11.8)

thus, using (3.5) and (3.7),28

p-v (11.9)

at T.

The right side of (11.9) catalogs the manner in which power is

expended on the interface: -aKV represents power expended in the

creation - of new surface, -B-n° power expended in changing the

orientation of the interface, S€Xt^(F)° power expended in stretching the

interface, -([n-FTSn] + [n*Cn])V power expended in the exchange of

material between phases, p-v power expended by inertial forces.

Note that, since (1-n®n)L*L, we may use (A6), (A9), and (11.5)1 to

write the normal component of the accretive force balance (10.5) 1 in the

form

<JK + Divs6 - <F>TS-L + TT = -f-n (11.10)

with TT=n̂ [C]n the accretive tension.

28Cf. (9A) of [GS].
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12. ENERGETICS. DISSIPATION INEQUALITIES.

To discuss the energetics of the interface we introduce the interfacial

energy 4;, per unit area , which augments the bulk energy $ introduced

in Section 6. The second law then takes the form of a global dissipation

inequality

a}- < P(R) (12.1)

for each referential control volume R, where A(t) = S(t)nR, while P(R) is

the power expended (11.1).

If we apply (12.1) to a family of referential control volumes that

shrinks to a regular interfacial set A0 = A(T) at time T, and use (A15) and

Lemma Bl in conjunction with (3.13), (11.6), and (11.9), we arrive at the

inequality

Ao dA0

- a)V(dA)tands < 0

at T, or equivalently, introducing the Eshelby tensor P defined by (6.2),

J{iK + (a - i[/)KV + B-n* - S€Xt-<F>° + (TT - n-lPln -1) V}da +

Ao

J(^-a)V ( a A ) t a nds < 0. (12.2)
dA0

Given an arbitrary time T and an arbitrary interfacial set Ao at T, it is

possible to construct a control volume R such that A0 = A(T), and such

that V ( aA) tan is an arbitrary scalar field at t = T. The coefficient of

V ( aA) tan in (12.2) must therefore vanish, and this yields the standard

result

a = +. (12.3)
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Further, since A is arbitrary, we have the interfacial dissipation
inequality

+° + a-n* - S€Xt-<F)° + (TT-n-[P]n-l)V < 0. (12.4)

On the other hand, (12.1) applied to referential control volumes that
do not intersect the interface yields the bulk dissipation inequality (6.5).

Next, we introduce the interfacial Eshelby tensor

P = 4/ln - FTS. (12.5)

Since (11 - n ® n ) = lln U n ) T , (9.2) yields (1 - n®n)<F>T = llnIFT; hence (11.5),

(12.3), and (A3) imply that

- P (12.6)

identifying the tangential part of the accretive surface stress as the

Eshelby tensor for the interface.
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13. CONSTITUTIVE EQUATIONS.

We continue to assume that the bulk material is governed by the

constitutive equations (7.1) and (7.2).

To these equations we adjoin constitutive equations for the interface

giving the interfacial energy ^, the deformational surface stress 6, the

normal component29 C = CTn of the accretive surface stress E, and the

accretive tension TT as functions of the normal n, the normal velocity

V, and the limiting values F̂^ and F2 of the deformation gradient at the

interface. Coherency requires that the deformation gradients be consistent

with F^l - n®n) = F2(l - n®n), a constraint that allows us to choose

E = <F>, j = [F]n (13.1)

as independent variables in place of Fx and F2 (cf. (9.4)). We therefore

consider constitutive equations of the form:

+ = +(z), § = 8(z), c = e(z), TT = fr(z), ( 1 3 2 )

z = (E,j,n,V)

with § consistent with (10.6). The domain of the response functions in

(13.2) is the set Z of all z with EcLin\ jclR3, ncUnit, VcR.

Note that, by (11.3), (12.5), and (12.6), the normal component B = ATn

of A is given by a constitutive equation §=B(z); and that, by (3.14), (6.2),

and (7.1), n»[P]n+& may also be considered a function of z.

Remark 13.1 (Constitutive Processes). Suppose we are given an

arbitrary coherent two-phase motion. Then the constitutive equations may

be used to compute a constitutive process consisting of z as a field, the

bulk fields S and $, and the interfacial fields ty, S, C, and TT. The

balance laws for force may then be used to compute the accretive stress C

and the external forces b, f, and g needed to support the process: (10.5)2

gives g; (10.5)lf (5.2), and (6.3) give f; (4.5)1 gives b; (4.5)2 and (6.3)

may be solved for C.

29The relation (12.6) then yields a corresponding constitutive equation for the
tangential part of C.
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The second law in the form of the interfacial dissipation inequality

(12.4) remains to be satisfied in all constitutive processes. We now show —

as a consequence of the requirement that all constitutive processes be

consistent with (12.4) — that:

(a) The response functions ty, S, and I are independent of j = [F]n

and V; thus \\>, S, and 6 are at most functions of E = (F) and n:

«|> = 4>(E,n), S = l (E ,n ) , fi = #(E,n). (13.3)

(b) The response functions in (13.3) are related through

S(E,n)ext = dg^E.n), B(E,n) = -Sn^(E,n), (13.4)

where S(E,n)ext = S(E,n)(lln)
T (cf. (A4)).

(c) The accretive tension has the form

fl(z) = n-[P]n + k - pV (13.5)

with p given by a constitutive equation

£ = |(z) > 0. (13.6)

To verify these results we let

§(z) = fUz) - n-[P]n -JL (13.7)

The requirement that (12.4) hold in all constitutive processes then yields

av4-(z)V° + aj^(z)-j° + [dn$(z) + B(z)]-n° +

[3E+(z) - S(z)ext].E° + i(z)V < 0

in all such processes. In view of Lemma B2, given any z0 in the domain of

the response functions, there is a constitutive process such that z(X,t) = z0

at X = 0 and t=0, but E°(0,0). jo(0,0), n°(0,0), and V°(0,0) are
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arbitrary. Thus

) = 0, dj$(z) = 0, B(z) = -dn$(z), (13 9)

S(z)ext = dE^(z), 3(z)V < 0,

v/ith z an arbitrary element of the domain of the response functions.
Thus $ is independent of V and j = [F]n, and (a) and (b) are satisfied.
The final result (c) follows, as before, from (13.9)5.

Note that, by (12.3), (12.5), and (13.5), we can write the normal
accretive balance (11.10) in the form

n-[P]n + k = -F-IL - Divse + pV - f-n, (13.10)

generalizing (7.7) to include interfacial structure.
The results (a) and (b) have important consequences:

(d) The response functions ty, S, and C depend on E=(F) through

the tangential deformation gradient F = (F)lln,

), i = i(F,n), C = C(F,n), (13.11)

v/ith

S(F,n) = aF^(F,n), C(F,n) = -Dn$(F,n). (13.12)

To verify (d), note that (13.9)4 and the sentence following (Al)

imply30

E = 0, (13.13)

so tha t , by (A19)2,

ae$(z) = 0, € = En = <F>n, (13.14)
3 0Parry [1987], Pittcri [1987], and Podio-Guidugli & Vergara Caffarclli [1990] derive
(13.13) as a necessary condition for the statical stability of the interface (cf. Fonseca
[1989], Prop. 3.2).
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and we may conclude from Lemma Al that *Jf(z) = $(F,n). Thus (iii) of

Lemma Al holds, and this result, (13.9)4, and (A4) imply that §(z) = 8(F,n),

and that (13.12)1 is satisfied. Further, by (11.5) and (13.14)2, ! = C + STe,

and this relation, (A19), (13.9)3, and (13.14)! yield C(z)=C(F,n) and

(13.12)2. This completes the proof of (d).

Remark 13.2. When deciding on possible energies ^(E,n) for an

admissible theory, the condition (13.13) is crucial: granted (13.13), the

relations (13.4) may be used as defining relations for § and B, and yield

(13.11) and (13.12) as consequences.
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14. EVOLUTION EQUATIONS IN THE ABSENCE OF EXTERNAL FORCES.
Assume that the external fields vanish. The complete set of interface

conditions then consist of31 the compatibility conditions

[y] = -V[F]n, [Fid - n®n) = 0, (14.1)

the deformational force balance

[S]n = -Divsg + p, (14.2)

and the normal accretive balance

n-[P]n + k = -P-L - DivsC + pV, (14.3)

v/ith

§ = SF^(F,n)f C = -Dn$(F,n), p = p(z), (14.4)

and v/ith P, p, and k given by (8.4). These with the bulk equations

S = ar$i(F), DivS = py## (14.5)

and appropriate initial and boundary conditions form the basic free-

boundary problem of the theory.

31(GS1. For statical situations (14.3) was derived by Leo & Sekerka [1989] (cf.
Alexander & Johnson [1985,1986]) as an Euler - Lagrange equation for stable
equilibria, while (14.2) was derived by Gurtin & Murdoch [1974]. A counterpart of
(14.3) for a rigid system was derived by Gurtin [1988].
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15. THEORY WITH BULK DIFFUSION, BUT WITHOUT INERTIA.

We now alter the theory to include mass transport in bulk, neglecting

inertia as well as mass transport within the interface. We assume that

there are 2( effective32 species of mobile atoms, which we label

a = 1,2,...,9C, and we add to the basic quantities discussed previously the

following fields for each species a:

pa bulk density

ha diffusive mass flux

lJLa chemical potential

Qa external bulk mass supply

qa external interfacial mass supply

The bulk densities p a a re atomic or molar densities, measured per uni t

undeformed volume; the diffusive bulk mass fluxes h a a r e measured in

moles per unit undeformed area; Qa and qa , the external supplies of mass

of species a to the bulk mater ia l and to the interface, respectively, a re

measured in moles per unit undeformed volume and area.

We assume t h a t the interface is in local equilibrium in the sense t h a t

[±a is continuous across the interface. (15.1)

We introduce the Gibbs function <x> and the associated Eshelby tensor P:

« = * Z . P U . ( 1 5 2 )

P = col - FTS,

where here and throughout this section £a designates the sum over a

from 1 to 2t. Since we neglect interfacial mass, the Eshelby tensor for the

interface is still given by (12.5).

The basic laws are the force balance relations discussed in Section 10,
3 2 W e assume that the atoms of species a c{ l ,2 , . . . ,b) lie on lattice points, that the
atoms of species a € {b + 1 ,b + 2, . . . M) are interstitial, that there is an additional mobile
species a « 0 whose atoms lie on lattice points, and that all lattice sites are occupied.
The constraint pO + pl +... + pb = constant then allows us to omit mention of the species
a«0. The chemical potential u a for a c{l ,2, . . . ,b} should then be interpreted as n a - u ° .
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but without inertia, the mass balance

{Jp°da}# = -Jh°-mda + Jq° da + JQ° dv (15.3)
R 5R SOR R

for each species a, and the global dissipation inequality

SnR

P(R)+ Za {-Ju°h°-mda+ /naq°da + JuaQadv} ( (15.4)
SdR R

•with m the outward unit normal to dR. The requirement that (15.3) and
(15.4) hold for all control volumes leads to the identification <J = ty, to the
bulk relations

(pa)' = -Divha + Q \
(.lo.b)

$* - S-F* - Sa{ua(pa)' - ha-Vua} < 0,

and to the interface conditions
[p«]V .

^° + a-n° - S€Xt.<F>° + (TT-n-lP]n)V < 0,

with TT = n«tC]n the accretive tension.
Let

p = (pi,...,p«), n = (ni,...,n«), H = (h1 h«), (15.7)

(with H and V p. identified with vectors in K391). We consider bulk
constitutive equations

S - SjtF.p), H = djCP.p). 5 - ^(F.p),
UO.oj

H = -D1(F,p)Vn,
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for each phase i, with

Si(F,p) = SpliCF.p), iliCF.p) = Spl^F.p), (15.9)

and with diffusivity Dj(Ffp) (a linear transformation of Ft3* into itself)

compatible with the inequality £ah
a«ViJLa < 0.

Regarding the interface, we retain the constitutive relations (13.2),

but we allow z to contain the list p of densities:

z = (E,j,p,n,V). (15.10)

Compatibility with the local dissipation inequality (15.6)2 again leads to the

results (13.3)-(13.5), (13.11) and (13.12), but with P as defined in (15.2)2

and 2 given by (15.10).

The resulting system of equations,33 in the absence of external fields,

consists of the interface conditions (14.1) and

[Sin = -DivsS, [p«]V = [h*].nf

n-[P]n = -P-L - Divs6 + pV,

the bulk relations

DivS = 0, (p*)- = -Divha, (15.12)

and the constitutive relations (15.8) and (15.9).
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33Cf. Gurtin & Voorhees [1993], who discuss an analogous system appropriate to

linear elastic behavior in bulk and no interfacial elasticity.
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Al. SURFACES.
Let Lin(U,W) denote the space of linear t ransformations from a

linear space U into another such space W. It is convenient to wri te , 3 5

for ncUnit,

l n = the inclusion of n 1 into IR3; (Al)

(Iln)T is then the projection l - n ® n considered as an element of

LindR3,]!-1-) ra ther than Lin(IR3,!R3).
Let F be a smooth surface, in IR3, oriented by a choice of unit

normal field n. A superficial scalar (vector) field for T is a scalar

(vector) field on P. A tangential vector field is a superficial vector field

IS with values C(x) € n(x)J-. A superficial tensor field is a field C on F

whose values C(x) are linear transformations from the tangent space

n(x)J- into IR3; a tangential tensor field is a superficial tensor field C

whose values satisfy E(x)acn(x)-L for each acn(x)-1-. Each superficial

tensor field C admits the unique decomposition

C = C tan + n®6, (A2)

•with Eta^ a tangential tensor field and C a tangential vector field; in fact,

Etan = U-n®n)C, C = CTn; (A3)

we refer to Gtan and G as the tangential and normal3 6 components
of C with respect to the interface T.

We use the term tensor field (as opposed to superficial tensor field)
on F to denote a field H on F with values H(x)cLin(IR3,IR3). A tensor
field H on F is easily transformed to a superficial tensor field by
postmultiplication with l n , since Hlln is a superficial tensor field. Here
34Cf. Sect. 2 of [GSl.
3 5 For A a subset of B, the inclusion of A into B is the mapping t : A - * B that assigns to
each aeA the same element i(a) = a considered as a member of B.
3 6 C , a tangential vector field, represents the normal component of C , since
(n®C)(x,t) in (A2) maps tangent vectors at xcF(t) to normal vectors.



l n is the field x»->lln(x) with l n ( x ) the inclusion of the tangent space

n(x)-1- a t xzT into IR3. In the same spirit, we define the extension H€Xt

of a superficial tensor field W by

W€Xt = W(ln)T; (A4)

W€Xt(x)cLin(lR3,IR3), so tha t H€Xt is a tensor field on P.

We wri te V r for the surface gradient on T and div r for the

surface divergence on T. The tangential tensor field

L = - V r n (A5)

is the curvature tensor; its trace

K = trL = V L ( A 6 )

is the total curvature (twice the mean curvature). The curvature
tensor is tangential, so that

LTn = 0, (A7)

and symmetric in the sense that Lext=(L€Xt)
T, or equivalently,

L(ln)T = HnL
T. (A8)

Let C be a superficial tensor field. The following identity will be

useful:

n«divrE = Ctan-L + divrB (A9)

with C tan and C the tangential and normal components of C.
Let A denote a smooth subsurface of F, and let V(x) denote the

outward unit normal to the boundary curve dA, so that V(x) is
tangent to T at each xcdA. Let C be a superficial tensor field, (5 a
tangential vector field. We will use the surface divergence theorem
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Jc-Vds = Jd iv r eda , JCvds = Jdiv r Cda, (A10)
dA A dA A

as well as the integral identities

jCv-pds = J{C-V rp + p-div rC}da,

dA A (All)
JpC^Vds = J{C-Vrp + pdiv r c}da

dA A

with p a superficial vector field and p a superficial scalar field.

A2. SMOOTHLY EVOLVING SURFACES.37

Let F(t) (tcTclR) be a smoothly evolving surface. Superficial and

tangential fields for F(t) (t€T) are functions of xcF(t) and t cT , but are

superficial or tangential with respect to F(t) at each t. Similarly, V r

and div r denote the surface gradient and surface divergence on F(t) for

fixed t; n(x,t) is the (orienting) unit normal to F(t); V(x,t), K(x,t), and

L(x,t) are the normal velocity, total curvature, and curvature tensor for

F(t).

We write ip° for the normal time-derivative of a scalar, vector, or

tensor field cp on F (the derivative following the normal trajectories of

the surface). We then have the identity

n ° = -V rV. (A12)

Let A(t) denote a smoothly evolving subsurface of F(t), and let

V(x,t) denote the outward unit normal to the boundary curve c)A(t), so

that V(x,t) is tangent to A(t) at each xc3A(t). The motion of dA(t)

may be characterized intrinsically by the velocity field

vd A = Vn + V(dA)tanV, (A13)

where V (dA) tan , the tangential edge velocity of A(t), is the velocity of

dA in the direction of the normal V: for x = r(u,t) a local parametrization
37Cf. Sect. 2.2 of [GS], where the term smoothly propagating surface is used.



of SA(t), V(dA)tan(x,t) = V(x,t)-(d/dt)r(u,t). We will refer to vdA as the

intrinsic velocity of dA.

For (p a superficial scalar field, we write

(J<pda}#(t) = (d/dt){J<p(x,t)da(x)}. (A14)
A A(t)

The following identity will be useful:38

{ J<Pda}- « J(<p« - <pKV)da + J<pV(dA)tan ds. (A15)
A A dA

A3. INTERFACE RESPONSE FUNCTIONS.

In discussing interfaces we will consider functions

<p(E,n)

with domain Lin+xUnit, where n is the interface normal, while E is the

deformation gradient of one of the phases at the interface, or the average

value of the deformation gradient at the interface.

Given ncUnit, a tensor EcLin+ admits the unique decomposition

• E = i ( l n ) T + e®n, EcLinCn-MR3), eclR3, (A16)

with

I » Eln , e = En. (A17)

The decomposition (A16) allows us to consider <p(E,n) as a function

,«,n) = tp(E(ln)T + e®n,n) (A18)

of the "components" I and e. The partial derivatives

dEcp(E,n)cLin(nJ-,IR3) and d€cp(E,n)clR3 are then the corresponding partial

38Cf. Pctryk & Mroz [1986]; Gurtin, Struthers & Williams [1989]; Estrada & Kanwal

[1991]; Jaric [1991].
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derivatives of cp(E,e,n). In addition, we write D^CEjiOcn-1- for the partial

derivative with respect to n following the interface.39 We then have

the identities:40

dEip(E,n) = dEcp(E,n)Iln,

d€tp(E,n) = dEcp(E,n)n, (A19)
Dncp(E,n) = Qn(p(E,n) + 3Ecp(E,n)Te - ETdccp(E,n).

Lemma Al . The following are equivalent:
(i) 3€cp(E,n) = 0 for all (E,n);

(ii) cp(E,e,n) is independent of e;
(iii) dE(p(E,n)(ln)T = 3Ev(E,n) for all (E,n).

39Cf. €qt. (2.48) of [GS].
40Cf. Lemma 2D of [GS] for (A19) and Lemma (2E) for Lemma Al.



APPENDIX B. LOCALIZATION AND VARIATION LEMMAS.

The next definition and lemma use the notation and terminology of

Section 2, with Q = { Q(t), Q1(t), Q2(t); tcT} the underlying evolving two-

phase region. Given a family QE (0<s<e0) of sets and a set A, we write

QE—>A as e-*0 if the family Qe nests as e—>0 with A as its intersection.

We say that A is a regular interfacial set at time T if A is the

intersection of F(T) with a closed ball. We say that a family RE (0<e<e0)

of control volumes shrinks to A at time T if:

(i) T is a regular time for Re for all e;

(ii) A=Renr(T) for all e;

(iii) Re -> A as e -* 0.

Given a regular interfacial set A at T, it is possible to construct a family

Re of control volumes that shrinks to A at T.

Let q> be a bulk scalar field and let D(t) be a (possibly) time-

dependent region in Q(t). Then we write

(d/dt){J<pdv}(t) = (d/dt){J<p(x,t)dv(x)}.
£ J)(t)

Lemma Bl (Localization Lemma). Choose a time T, let Re be a

family of control volumes that shrinks to a regular interfacial set A at

T, and let m e denote the outward unit normal to 0Re. Then given a

bulk scalar field cp and a bulk tensor field S, we have the following

limits at time T as £ —» 0:

(d/dt){Jcpdv) - -J[cp]Vda, (d/dt){Jcpdv) -> -SjViVda, (Bl)
Re A QxnRe A

JSmeda -* J[S]nda, JSmeda -• S j S ^ d a , (B2)
dRt A DiOORg) A

with 6i=(- I)1. (A similar expression holds for vector fields.)



46

Lemma B2 (Variation Lemma for Coherent Motions). There is a

coherent two-phase motion y such that OeS(O) and such that the

following fields have arbitrarily preassigned values at (0,0):

E = <F>, j = [Fin, n, V, E°, j°, n", V . (B3)

Proof (sketch). Choose the body B to be R3. Let n and Z be

arbitrary smooth functions of time with n(t)cUnit and Z(t)clR3 at each

t, and with Z(0) = 0. Further, let S(t) be the plane through Z(t) with

normal n(t), and let

Bx(t) = {X : (X-Z(t))-n(t)<0 },

B2(t) * {X : (X-Z(t))-n(t)>0 }.

Let Eo and j 0 be arbitrary smooth functions of time with E0(t)cLin+

and jo(t)eIR3 at each t, and let

y(X,t) = F(X,t)X,

for all XclR3 and tclR, where

E0(t) - ljo(t)®n(t), XcB^t)

F(X,t) =

E0(t) + i jo(t)®n(t)f XcB2(t).

Then y is a coherent two-phase motion. Moreover, we may choose the

functions n and Z such that n, V, n°, and V° have arbitrarily

preassigned values at (0,0); and we may choose the functions Eo and j 0

such that E = (F), j = [F]n, E°, and j° have arbitrarily preassigned values

at (0,0). D
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