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Abstract

Experimental results of a displacement-controlled elongation of a shape-memory wire of
Nickel-Titanium are presented. It is observed that the hysteretic strain-stress curves de-
pend strongly on the strain rates at which the wire is extended. A theoretical model
is proposed to explain this phenomenon. This model couples the fully time-dependent
heat transfer in the wire to its quasi-static mechanical behavior through the temperature
dependence of the transformation stress of the alloy. It accounts quantitatively for exper-
imentally observed changes in the pseudoelastic hysteresis. The model presented here is
different from others proposed in the literature, as it does not make use of a kinetic relation
and accounts for the observed changes in the pseudoelastic hysteresis without parameter
fitting. The results show that a model consisting of a single moving austenite-martensite
interface is sufficient to predict the response of the wire over several decades of strain rate.
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1. Introduction

The behavior of shape-memory alloys and other 'smart1 materials is governed by a dif-

fusionless phase transformation between a high temperature, low strain austenite phase

and a low temperature, high strain martensite phase. Both the shape-memory effect and

the pseudoelastic behavior of shape-memory alloys arise from the interplay of temperature

and stress in the free energy of the alloy. In the shape-memory effect, an alloy deformed

in its martensitic phase recovers its initial shape when heated into the stable austenite

regime. Pseudoelasticity occurs when an alloy that is austenite at zero stress is stressed in

such a way that martensite becomes stable. The ensuing transformation results in a large

straining of the material at an essentially constant stress.

The roles of temperature and stress in the mechanics of shape-memory alloys are further

intertwined because heat is generated during a transformation from austenite to martensite.

The heat generated as an austenite-martensite interface propagates alters the relative

stability of the austenite and martensite phases at the interface, which, in turn, affects

the growth of the interface. In this paper, we demonstrate the interaction between heat

transfer and stress by conducting a series of experiments using Nickel-Titanium (NiTi)

shape-memory wires. We then present a theoretical model that exhibits qualitative and

quantitative agreement with the observed phenomena.

We experimentally study the pseudoelastic behavior of NiTi wires as a function of the
imposed strain rate and the heat transfer between the wire and its surroundings. We ob-
serve that the pseudoelastic hysteresis increases as the imposed strain rate increases, and
decreases as the heat transfer from the wire increases. Our models of these phenomena
combine nonlinear thermoelastic models of diffusionless transformations with a heat flow
problem that includes latent heat generation at a two phase interface. The thermoelas-
ticity models are based on the assumption that the energy of the system is a function of
both strain and temperature. At high temperatures, this energy has only one minimum,
corresponding to the austenite phase, while at low temperatures there is a single minimum
associated with martensite (or several minima representing the symmetry-related variants
of martensite). At intermediate temperatures there may be mixtures of austenite and
martensite, and there is a particular stress, the Maxwell stress, at which the two phases
are in equilibrium. This Maxwell stress increases with temperature, so that if the tem-
perature of the system increases, the stress needed to drive a transition from austenite to
martensite also increases.

In our model, the austenite-martensite interface will not move unless the stress in the wire
reaches a certain transition stress a(0) associated with the temperature 6 of the interface.



This transition stress is the sum of the thernioclynaniic Maxwell stress plus an additional
stress <7hy»t equal to half the height of the isothermal hysteresis loop. The Maxwell stress
arises from the free energy of the system, and so depends on the state of the system, while
the additional stress accounts for dissipative processes associated with the phase change,
which have been experimentally observed to be essentially independent of temperature (in
isothermal experiments).

If we consider the case in which there is a single austenite martensite interface in the wire,
then higher strain rates require the interface to move faster. This results in an increase
of the temperature of the interface as a result of the heat generated in the transformation
from austenite to martensite. For the transformation to proceed, the stress in the wire
must increase in order to match the transition stress at the elevated interface temperature.
Even if we allow nucleation of new inartensitic regions, we will still have a direct corre-
lation between the overall heating of the wire and the stress required for the austenite to
martensite region to grow. Finally, heat transfer between the wire and its surroundings
also effects the temperature distribution along the wire, and therefore plays an important
role in the phenomenon under consideration.

Experimental results of a similar nature to those presented here have been presented by
Otsuku and Shimizu [1] and McCormick, et al. [2] in their study of NiTi alloys. Much of the
previous modeling of shape-memory alloys has focused on isothermal transitions. Miiller
[3] and Miiller and Xu [4] have described the temperature dependence of the pseudoelastic
hysteresis loops in isothermal experiments, and linked the very existence of such loops
to interfacial or coherency effects. They observed, like us, that the height (= 2<Thy$t) of
isothermal hysteresis loops of the wire are essentially independent of temperature. Falk
[5] has constructed a smooth polynomial energy function that captures, at least partially,
the mechanics of the phenomena under consideration. In fact, the quasi-static mechanical
description in our model is based on a modified version of Falk's model (or, alternatively,
Knowles trilinear model [6]) that accounts for an additional stress <7hyst-

The quasi-static motion of an austenitc-martensite interface has also been studied by Abe-
yaratne and Knowles [7]. They postulate that there is a kinetic relation V — V(0,a) that
gives the speed V of the interface as a function of the stress a and the (uniform) tempera-
ture 9. Abeyaratne and Knowles derive an explicit expression for the function V based on
an idealized model. However, the function V may be strongly dependent on <r, reflecting
the fact that slow interface motions occur at nearly fixed stress. In contrast, our approach
considers that the position of the interface is determined to insure that the overall behavior
of the wire is quasi-static, thus we do not need to consider additional kinetic relations for
the interface.



2. Experiments and Motivation

Nickel Titanium wires were tested in displacement control in an Instron 4502 screw driven
mechanical testing machine. The wires were supplied by the Flexmedics Corp., Minneapo-
lis, MN; their properties are listed in Table 1. The full load 20 kN load cell was used to
provide as stiff a testing frame as possible. The wires were gripped in wedge grips with
a length of 130 mm of wire between the grips. The displacement was measured as the
overall displacement of the cross head; the difference between this measurement and the
actual wire extension is negligible due to the stiffness of the load frame and the small loads
and large deformations present in the wire. All load and displacement information, as well
as readings from the five thermocouples discussed below, were recorded using a 386 class
computer.

The temperature changes along the length of the wire were measured by attaching 5
thermocouples at 20 mm intervals to one specimen. The thermocouples were attached by
covering the wire in 1/32 inch internal diameter Tygon tubing, making slits around half
of the circumference of the tube at the locations for the thermocouples, and inserting the
thermocouples through the slits. While this procedure results in poor contact between the
wire and the thermocouple, it does not cause any mechanical changes to the wire, and it
allows us to get a qualitative picture of the temperature response of the wire.

Figure 1 shows the stress-strain behavior of a NiTi wire at three strain rates. These strain
rates correspond to extension rates of 0.5 mm/min, 5.0 min/min and 50. mm/niin; we will
refer to the extension values in the following. Upon loading, we observe an initial elastic
loading of the austenite phase, followed by a relatively constant stress plateau region
associated with the austenite to martensite transition, and then another elastic loading
stage, this time of the martensite phase. Unloading follows essentially the reverse path,
but there is a pseudoelastic hysteresis between the austenite to martensite transition stress
and the reverse martensite to austenite transition stress. Of particular interest here is the
observation that the austenite to martensite transition stress increases with strain rate
while the martensite to austenite stress decreases with strain rate, so the overall size of
the hysteresis grows significantly as the strain rate increases.

The amount of this strain rate effect depends very strongly on the heat transfer charac-
teristics between the wire and the surrounding medium. Figure 2 shows the stress-strain
curves at the same strain rates when the wire is surrounded by a water bath. The increase
in hysteresis with strain rate is greatly reduced by the increase in heat transfer between
the wire and the water. We also see that the lowest rate experiments in both air and water
are comparable, suggesting an approximately isothermal response.



We may also make two general observations about the behavior of the wire by looking at the
different shapes of the stress-strain curves. First, we note that the loading and unloading
paths of the martensite show different slopes, indicating that a secondary transformation
may be occurring at higher stress levels. It is known [8] that the austenite to martensite
transformation in NiTi occurs in two stages, with the austenite first transforming to an
intermediate temperature niartensite phase and then to a low temperature martensite
phase. This phenomenon may also explain the upturn in high (50 nim/min) rate curve
after roughly half the transformation is complete: the higher stress levels at this strain
rate cause the second stage transformation to occur earlier in the loading history. Second,
we notice that the stress-strain curve for the intermediate (5 mm/min) rate shows several
sawtooth-like irregularities in the plateau portion of the curve. This behavior, which is
highly repeatable, may be related to distinct nucleation events as discussed below.

Figures 3-5 show the temperature histories of the wire (prepared as described above)
for the three different strain rates, as determined by five thermocouples placed at evenly
spaced intervals along the wire. In the slowest strain rate case (Figure 3), we find that
as the transformation front passes each thermocouple, it causes a temperature rise, which
quickly decays as the front progresses. The data in Figure 3 shows that the transformation
proceeds first from thermocouples 1, 2 and 3, and then encounters thermocouples 5 and
4. This indicates that a single transformation interface starts at the low end of the wire,
followed by a second front nucleating at the other end. This order is repeatable, suggesting
that the nucleation events are fixed by microscopic flaws and/or by the action of the grips.

Figure 4 shows the temperature profile for the intermediate (5 mm/min) rate. We find
the same ordering as in the slow strain rate case, suggesting a similar progression of trans-
formation fronts. However, in this case after the transition passes a given thermocouple,
there is insufficient time for the heat to transfer out of the wire before the test is com-
pleted. This results in an overall rise in the wire temperature and hence the stress level.
In contrast, the results at the highest rate shown in Figure 5, are quite different from the
results in Figures 3 and 4. Here, there seems to be an overall heating along the length
of the wire rather than the relatively uniform jumps from thermocouple to thermocouple
indicative of individual interfaces. Thus, at this high strain rate there appear to be many
active transformation fronts, which results in an even heating of the wire.

The ideas above are confirmed by optical observation of the wire during loading. By using
a microscope objective attached to a video camera with suitable lighting, one can observe
the passage of the interface, because the large strain involved in the transformation forms
a slight kink on the wire surface. At elongation rates of both 0.5 mm/min and 5 mm/min
a bright band is clearly visible moving along the wire. The timing of the appearance of



the bright band is very repeatable and occurs at the same point during the loading of the

specimen each time. However, at a rate 50 mm/min this phenomena is not visible, which

agrees with the conclusions reached above.

One final experiment was performed in order to determine the temperature dependence

of the isothermal transition stress. For experimental purposes, this stress is taken as the

plateau of the stress-strain curve in the low strain rate case. To find the temperature

dependence of this stress we enclosed the wire in a temperature controlled water chamber

positioned between the grips of the load frame. The transition stresses from three tests

at 15 °C, 10 °C and 5 °C were used to determine the slope of the transition stress-

temperature curve. A least squares fit of this data yields a slope of 7.6 MPa/°C.

3. Elasticity

The isothermal stress-strain behavior shown in Figures 1 and 2 can be described by using

relatively simple one-dimensional models. For example, in the model developed by Falk

[5], the Helmholtz free energy function F is taken to be a sixth order polynomial in the

strain 22,

F(E,T) = aE6 - (3E4 + (ST - 7 )£ 2 + F0(T), (3.1)

where T is the absolute temperature, a, /?, 6 and 7 are positive constants that depend

on the material and Fo{T) accounts for the heat capacity of the material. The free en-

ergy (3.1) is such that a zero strain austenite phase is stable at high temperatures, two

martensite variants (at strains ±EQ, where JE70 depends on a, /?, 7 and 6) are stable at

low temperatures and a phase mixture is stable at intermediate temperatures.

The stress-strain behavior of a material that obeys Falk's model is shown in Figure 6.

In this figure, we show the derivative of the free energy with respect to strain (thin solid

line), which has both stable and unstable regimes, as well as the equilibrium stress-strain

behavior (thick solid line). The equilibrium curve shows that the austenite deforms elas-

tically until the stress increases to the Maxwell stress, which is the stress for which the

shaded areas in the figure are equal. At this point, the austenite transforms to marten-

site at constant stress, so that the strain in the alloy increases as the volume fraction of

martensite increases. Once the transformation is complete, any further deformation is ac-

complished by elastic deformation of the martensite. The unloading path is the reverse of

the loading path; thus in the absence of thermodynamic barriers to prevent an equilibrium

phase transition, there is no isothermal hysteresis in Falk's model and the Maxwell stress

is identical to the austenite to martensite transition stress.



It is easy to show that (3.1) leads to a Maxwell stress that increases approximately linearly
with temperature. For our purposes, it is convenient to include this feature of Falk's model
in a simple, piecewise linear model* Therefore, we will use a simple variation of Falk's model
in which the MaxwTell stress depends linearly on temperature, the transformation strain e

and latent heat L are assumed to be independent of temperature, and both the austenite
and martensite are taken to have a constant linear clastic modulus C. This model is similar
to the trilinear model used by Abeyaratne and Knowles |7- (the dashed lines in Figure 6),
which approximates Falk's model by three straight line segments.

In Falk's model and the trilinear model, the equilibrium austenite to martensite and
martensite to austenite transition stresses are identical to the Maxwell stress, so there
is no isothermal hysteresis loop. This is clearly different from the experiments, and can
be explained by noting that these simple models neglect any dissipative stresses that arise
as the phases separate and new interface forms. The existence of such dissipative forces
has been acknowledged in the work of Knowles and Abeyaratne [7] and Knowles [6], and
Muller and Xu [4] have extended Falk's model to include such forces resulting from interfa-
cial and/or coherency effects. Here, we allow for dissipative effects by taking the austenite
to martensite transition stress to be equal to the Maxwell stress as determined above plus
an additional constant stress <7hyst equal to half the height of the isothermal hysteresis
loop. That is, <Thy$t accounts for the isothermal hysteresis, which is assumed independent
of temperature in the range of interest, while the temperature dependence of the Maxwell
stress accounts for additional hysteresis owing to transient heat transfer.

4. One-dimensional heat transfer

Consider a shape-memory wire of length /o, and assume that the heat transfer properties of
the austenite and martensite are identical. There arc three mechanisms for the transfer of
heat out of a segment of the wire: convection, radiation and conduction. The only source
of heat in the wire is the latent heat L which is generated at an austenite martensite
interface at position xj and moving with speed v. If we imagine the wire to be cylindrical
of radius r and we neglect temperature variations in r and take the surrounding medium
to be isothermal, then a heat balance in an arbitrary control volume of the wire yields the
partial differential equation,

where 0(x,t) is the temperature in the wire, 6Q is the temperature of the surrounding
medium (which is also taken as the initial temperature of the wire) and S is the Dirac
delta function. In equation (4.1), the density of the wire is denoted by p, the thermal



conductivity by fc, the convection coefficient by h and the heat capacity by cp. Also, the

radiation coefficient a = 5.669 x 10~8W/m2K4 and the cmmisivity of the surface is cj.

The boundary conditions at x — 0 and x IQ depend on the detailed heat transfer at the
grip-wire connection. In our models we have used both constant temperature (0 — 0Q at
x = 0 and x = /<>) and zero flux (q — ̂ ~ — 0 at x — 0 and jr - /o) boundary conditions.
Based on our numerical results, and on the observation that the convective heat transfer
term in (4.1) dominates over the conductive term, we conclude that insulated (no heat
flux) boundary conditions are more appropriate. The implications of this choice will be
discussed in more detail in the results section.

It is convenient to nondimensionalize equation (4.1) by introducing the thermal diffusivity
a = k/p cp, then the nondimensional length is x* = X/IQ and the nondimensional time is

£
By collecting nondimensional groups one finds

BQ B26

m~-z='d^~'3*ie~0o)~ a*tl{0A -^) + L' v°6(x' -x^' (4-3)

where (3* = 2l\h/rk is the convective Biot number, and so gives the relative importance
of convection vis conduction, a* = 2l\a jrk plays a similar role in relating radiative and
conductive heat transfer, and L* = La/k is the nondimensionalized latent heat.

Equation (4.3) can be solved using straightforward finite difference techniques. However,
because of the latent heat source, Crank-Nicolson implicit methods perform badly [9].
Therefore we use a standard explicit method in discrctizing equation (4.3), where we
choose At0/(Ax*)2 = 0.1 for all our calculations. An implicit method was also used to
solve equation (4.3) in the absence of the nonlinear radiative term; no differences were
found between the implicit and explicit solutions. The code was also checked against
solutions for the moving boundary problem at constant interface speed [10]. These checks
confirmed that our code worked well, except that the numerical solution showed a small
peak in the temperature at the interface. We tried to smooth this peak by averaging the
temperature over several nodal points behind the interface; this led to negligibly small
changes in our results.

5. Coupling of Elasticity and Heat Transfer

Coupling between elasticity and heat flow occurs because the pseudoelastic phase transition
involves a release of latent heat, which in turn affects the elasticity of the alloy. We now

8



analyze this coupling in the case in which there is a single interface associated with the

transformation. Also, we only consider the loading (austenite to martensite) curve, though

the reverse transformation can be treated in an analogous manner.

Consider stretching a shape-memory wire at some imposed rate of strain. Our main as-

sumption is that for the austenite-martensite interface to propagate, the stress in the wire

must be equal to the transition stress a(0) = <T\{(0) + ^hyst associated with the temperature

$ of the interface. Because the strain of the wire will be accommodated by the formation

of the high strain martensite phase (along with a smaller elastic stretch), the speed of the

austenite-martensite interface will depend on the strain rate. Higher strain rates will lead

to higher interfacial temperatures, so more stress must be applied to continue the phase

transition. Because convection and radiation will act to moderate the interfacial temper-

ature, increasing these effects will tend to keep the stress needed for the transformation

nearer the isothermal value.

In order to examine how the interfacial speed couples the elasticity and heat transfer prob-

lems, consider the trilinear model discussed earlier. Suppose that at time /0 the wire has

a deformed length l(t0) and is under stress <T(/0) . Also, the austenite-martensite interface

is at the position xj(t0) (as measured in the undeformed state of the wire) and is at the

temperature 0(x/(foMo)- In the next time step A/ , the bar must increase in length by

A/ = e /oAf, where e is the imposed strain rate. This additional length can be accom-

modated either elastically, by transforming austenite to inartcnsite or by a combination

thereof.

In order to decide what the position of the interface at time /Q •+ A/ will be, we find the

transition stress &(0(xj(to),to)) associated with the temperature 0(?/(/-o),/o) by using the

trilinear model to find the Maxwell stress at 0(x](to),to)) and adding the constant <7hy$t.

We then calculate

A/, = ( 5 1 )

C>

where C is the modulus of the wire. The quantity A/i is the total stretch that can be

accommodated elastically when the stress in the wire is at <T(#(Z/ ( /OMO))- If A/ < A/ i , the

additional stretch of the wire will be achieved purely by elastic deformation, the new stress

will be a(t0 + At) = a(t0) + C A / / / 0 , and the interface will not move, i.e., xi(t0 + At) =

xj(to). Otherwise, A/ > A / j , and the bar will be stretched elastically up to the current

transition stress <r, and then, new martensite must form in order to accommodate the

remaining deformation, so that

* i (*o )+ A / ~ T
A / l , (5.2)



where iT is the transformation strain from austenite to inartensite. In either case, the

new position and speed v = (x/(<o + A/) - xi(to))/At of the interface are used by the

heat transfer code to recalculate the temperature profile of the bar, and in particular the

temperature at the new interface position, and the process is repeated until the entire bar

has transformed to martensite.

We reiterate that we are only considering the loading curve of the shape-memory wire,

though unloading can be modeled in much the same way by determining to what extent

the interface cools upon transforming from martensite to austenite. Also, we are only calcu-

lating the additional hysteresis from the generation of heat at the interface; the isothermal

hysteresis arises solely from the constant

The discussion above focussed on the case where we assume that a single interface starts

from one end of the wire and propagates to the other end. The transformation is completed

when the interface reaches the end of the wire. Based on the experimentally obtained

temperature profiles, we have considered two additional cases. In one, two interfaces

propagate symmetrically from the ends of the wire toward the center. However, if the ends

of the wire are assumed to be insulated, then the single interface model strain-stress curves

do not differ significantly from those of the symmetric two interface model. In the second

case, we have allowed for the possibility that nuclcation may occur, so that the position

of the actively transforming interface may change each time step. The results from this

model will be discussed below.

6. Parameters

The comparison of our model results with experimental observations depends on knowledge

of both the heat transfer and elasticity parameters for the NiTi wire used in the experiment.

This data has proven difficult to obtain, as there is a lack of data on the thermal constants

for NiTi and the elastic constants (and possibly the thermal constants) are extremely

sensitive to the composition of the particular alloy. The values we have used for the

various constants needed in our model have been taken from the recent literature and the

value of the additional stress <7hyst &s well as the slope of the transition stress-temperature

curve were obtained by the experiments described above.

The heat transfer constants needed for our model are the thermal conductivity fc, the

thermal diffusivity, a, the convection coefficient, h and the latent heat, L. The necessary

elasticity parameters assuming the trilinear model are the elastic moduli, C, of the austen-

ite and martensite phases (which are taken to be identical) and the transformation strain,

eT. The values used, and their sources, are summarized in Table 1.

10



The two key parameters that describe the coupling between the thermal and mechanical

problems are the latent heat, L and the slope 7/ of the Maxwell stress versus temperature

curve. The constant 77 for our material was determined experimentally as described above.

However, the latent heat posed more of a problem, primarily because of the different

transitions that are reported in the literature [8,11] and which we observed in calorimetry

measurements. Thus we have taken the latent heat to be 43. J/cm3 as given for the

intermediate to high temperature transition for nickel rich NiTi in [8].

7. Results and Discussion

The experimental data at all strain rates is best matched by our single interface model with

insulated ends. The numerical results for this case are shown in Figure 7 for convection in

air and in Figure 8 for convection in water. In almost all cases we find excellent agreement

with the initial linear rise of the stress-strain curve and the transition to the pseudoelastic

plateau of the stress strain curve.

The details of the heat transfer in the wire provide insight in to the stress-strain response

of the NiTi. Because we take the ends of the wire to be insulated, any initial motion of the

transformation front (which is assumed to begin at one end of the wire) is accompanied

by a large increase in temperature, and so the Maxwell stress must increase accordingly.

However, a steady state among conduction, convection, radiation and the heat production

is eventually reached where the temperature of the transformation front, and hence the

transition stress, stays fairly constant. This corresponds to the plateau region of the stress

strain curve. In fact, our model predicts that in air, this steady state temperature rise is

about 2 °C for the slow rate (0.5 mni/niin), 9 °C for the intermediate rate (5 mm/min)

and 13 °C for the fast rate (50 mm/min), in agreement with experiments [2]. Finally,

as the interface reaches the other end of the wire, the temperature begins to rise again

because of the no flux boundary condition, and we observe a slight increase in the stress

strain behavior as the wire completes its transformation to martensite. We note that

had we chosen constant temperature boundary conditions at the ends of the wire, the

initial stress rise would be less steep, and a downturn in the stress would appear as the

transformation nears completion.

One of the most pronounced differences between our model results and the experimental
data is in the behavior of the wire under the fast (50 mm/min) loading rate in air. In
this case, the model correctly finds the transformation plateau, but experiments show
that about half way through the transformation, the plateau region acquires a pronounced
positive slope that is not reproduced by the model. We speculate that because of the high
stresses in the high rate case, the low temperature martensite phase in NiTi may begin to

11



form at this point. Because the austenite to low temperature inartensite has a latent heat
about three times greater than the austenite to intermediate phase transition, one would
expect a significant generation of heat associated with the low temperature phase, which
could account for the marked increase in the transformation stress. This behavior is not
observed at any of the lower strain rates; however, the fact that in all cases the loading and
unloading slopes of the martensitic phase are different may also indicate the possibility of
a secondary martensitic transformation.

Another difference between theory and experiment occurs when we consider the fast loading
of the wire in water. We expect in this case that a local increase in the temperature of the
hollow tube of water surrounding the wire accounts for significant heat transfer from the
wire. The upper numerical curve in figure 8 includes a correction to the specific heat of the
wire to include the specific heat of the surrounding water. In the future a two dimensional
heat transfer model could be used to eliminate this discrepancy.

The fact that we have assumed a single interface exists arises both from our experimen-
tal observations and the idea that nucleation in first-order phase transformations involves
overcoming some energy barrier. In order to better understand this latter point, we have
considered models where more than one interface is allowed to nucleate in the wire. Con-
sider first the case where at each time step, a new interface is formed at the coldest point
of the wire (i.e, there is no energy barrier). Because the initial interface does not move far
enough to generate a significant temperature rise, there is no initial rise in the transforma-
tion stress. Instead, the temperature increase in the wire depends on the volume fraction
of transformed martensite through essentially a bulk heating, and so the model predicts
a linear increase in transformation stress as the transformation proceeds, which is clearly
different from the experimental data. These results for the intermediate strain rate case
are shown by the dashed curve in Figure 9.

We obtain better results when we allow for an energy barrier and assume nucleation occurs
only if the temperature of the active interface is greater than some assigned threshold
value above the temperature of the coldest part of the wire. Figure 9 shows such a case
for a threshold of 16. °C for an elongation rate of 5 mm/niin. Here, we observe the
initial rise from the isothermal transition stress to the dynamic transition stress, because
no nucleation occurs during this stage. During the transformation, however, there are a
discrete number of nucleation events to a new active transformation front. These events
are accompanied by a sharp drop in stress, owing to the fact that this new front is at
a much lower temperature. This behavior appears qualitatively similar to the 'kinks' in
the experimental stress-strain curves at the intermediate strain rate, suggesting that these
kinks may correspond to discrete nucleation events. Unfortunately, our multiple nucleation

12



model does not work as well when the elongation rate is fast (50 mm/min), which is the

case where multiple nucleation events are observed to occur. This may be due to the fact

that there are multiple active fronts in the high rate case (as suggested by the uniform

heating observed), while our model is limited to a single active interface at any one time.

8. S u m m a r y and Conclusions

In this paper, we have shown that both the transition stress and the size of the pseudoelastic

hysteresis in NiTi shape-memory wires depends on the strain rate of the experiment. These

effects can be modeled by coupling the temperature and stress dependence of the free

energy of the alloy with the heat transfer problem associated with the moving austenite-

martensite interface. That is, the behavior of the wire, at least in deformation controlled

experiments, can be explained by assuming quasi-static elastic behavior together with

transient heat transfer.

The main conclusions that we draw are the following:

At low strain rates, a single interface moving through the wire appears to dominate the

transformation. This interface moves slowly enough so that the heat generated at the

interface is quickly dissipated, and thus this case approximates isothermal behavior.

At intermediate strain rates, a single interface again seems to dominate the transformation.

This interface moves fast enough so that the heat generated by the transformation causes

a significant increase in the amount of hysteresis. While there is some evidence to suggest

that the active austenite-martensite front may jump from position to position at discrete

times, this does not affect the overall behavior of the wire.

At high strain rates, experiments indicate that there are multiple active transformation

fronts during the transformation. However, the model that best matches the experiment

is again the single interface model. In this case, we also notice a significant rise in the

transformation stress about halfway through the transformation, suggesting that different

phenomena, such as a secondary transformation, may be occurring. Thus, we expect that

accurate models at much higher strain rates than those considered here would have to

take into account both changes in the atomic mechanisms of the transformation as well as

dynamic elasticity effects.

The time scales in all the experiments indicate that convection is the dominant heat transfer

mode. Thus, the best agreement between theory and experiment occurs when the grips

are modeled as insulated.
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Table 1. The properties of the Nickel-Titanium wires used in the experiments.

Property

Composition
Area
Length
Thermal diffusivity
Conduction
Convection (air)
Convection (water)
Specific heat (300 °K)
Latent heat
Density
Elastic modulus
Emissivity
Transition stress (300 °K)
Transition strain
Slope of a(0)
Width of hysteresis loop

Value

50.5 Ni (at %)
0.3339 mm2

130. mm

0.06 cnr/s
0.2 J/cm-s-°K
6.5 x 10"4 W/cm2-°K
8.90 x 10"2 W/cm2-°K
0.5 J/gm-°K
43. J/cm3

6.45 g/cm3

30 GPa
1.0
360 MPa
.068
7.6 MPa/°K

Symbol, Source

n
'o, H
a, [14]

*, [13]
h, [12]

fc, [12]

cP, [14]
I , [8]

/>, [13]

CA*)

vA*}
2<Thyst, [*]

[*] indicates measured quantities.
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Figure Captions

Figure 1. The stress-strain response of a NiTi wire in tension at strain rates of 6.4 x

10~5 sec"1 (0.5 mm/min) (solid curve), 6.4 x 10~4 sec ! (5.0 mm/miii) (thick curve) and

6.4 x 10"3 sec"1 (50.0 mm/min) (dashed curve) in air at 23 °C.

Figure 2. The stress-strain response of a NiTi wire in tension at strain rates of 6.4 x
10"5 sec"1 (0.5 mm/min) (solid curve), 6.4 x 10~4 sec"1 (5.0 mm/min) (thick curve) and
6.4 x 10"3 sec"1 (50.0 mm/min) (dashed curve) in water at 23 °C.

Figure 3. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10"5 sec"1 (0.5 mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.

Figure 4. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10"4 sec"1 (5.0 mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.

Figure 5. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10"3 sec"1 (50. mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.

Figure 6. Schematic stress-strain behavior for a material having a free energy (3.1). The
dark line shows the stress-strain behavior; the Maxwell stress OM is taken so that the two
shaded areas are equal. The dashed line shows the trilinear approximation.

Figure 7. Predicted stress-strain results (thin curves) for a NiTi wire in air compared to
the experimental data from figure 1 (thick curves). These results are for the case of a
single moving interface and insulated ends of the wire. All relevant parameters are given
in Table 1.

Figute 8. Predicted stress-strain results (thin curves) for a NiTi wire in water compared
to the experimental data from figure 2 (thick curves). These results are for the case of a
single moving interface and insulated ends of the wire. All relevant parameters are given
in Table 1.

Figure 9. Predicted stress-strain results for a NiTi wire in air at a strain rate of 6.4 x
10"4 sec"1 (5.0 mm/min). These results are for the case of a multiple interfaces with a
nucleation threshold of 16. °C (solid curve) and zero threshold (dashed curve) compared
to the experimental data (thick curve). All relevant parameters are given in Table 1.
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Figure 1. The stress-strain response of a NiTi wire in tension at strain rates of 6.4 x
10~5 sec"1 (0.5 mm/min) (solid curve), 6.4 x 10~4 sec"1 (5.0 mm/min) (thick curve) and
6.4 x 10~3 sec"1 (50.0 mm/min) (dashed curve) in air at 23 °C.
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Figure 2. The stress-strain response of a NiTi wire in tension at strain rates of 6.4 x
10~5 sec"1 (0.5 mm/min) (solid curve), 6.4 x 10~4 sec"1 (5.0 mm/min) (thick curve) and
6.4 x 10"3 sec"1 (50.0 mm/min) (dashed curve) in water at 23 °C.
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Figure 3. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10"~5 sec"1 (0.5 mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.
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Figure 4. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10~4 sec""1 (5.0 mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.
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Figure 5. The temperature rises at the five thermocouples for an strain rate of 6.4 x
10~3 sec"1 (50. mm/min). The symbols denote the order of the thermocouples along the
wire: 1. open square, 2. circle, 3. triangle, 4. inverted triangle and 5. solid square.
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Figure 6. Schematic stress-strain behavior for a material having a free energy (3.1). The
dark line shows the stress-strain behavior; the Maxwell stress &M is taken so that the two
shaded areas are equal. The dashed line shows the trilinear approximation.
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Figure 7. Predicted stress-strain results (thin curves) for a NiTi wire in air compared to
the experimental data from figure 1 (thick curves). These results are for the case of a
single moving interface and insulated ends of the wire. All relevant parameters are given
in Table 1.
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Figure 8. Predicted stress-strain results (thin curves) for a NiTi wire in water compared
to the experimental data from figure 2 (thick curves). These results are for the case of a
single moving interface and insulated ends of the wire. All relevant parameters are given
in Table 1.
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Figure 9. Predicted stress-strain results for a NiTi wire in air at a strain rate of 6.4 x
10~* sec"1 (5.0 mm/min). These results are for the case of a multiple interfaces with a
nucleation threshold of 16. °C (solid curve) and zero threshold (dashed curve) compared
to the experimental data (thick curve). All relevant parameters are given in Table 1.


