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1. Introduction.
Crystals of solid helium in a liquid melt exhibit a phenomenon

generally not found in other materials: oscillations of the solid-liquid
interface in which atoms of the solid move only when they melt and
enter the liquid. Such melting-freezing waves were predicted by
Andreev and Parshin [AP] in 1978 and exhibited experimentally1 by
Keshishev, Parshin, and Babkin [KPB] in 1979.

Motivated by this classic paper of Andreev and Parshin, I develop
a continuum theory of crystallization using, as a basis, a framework
developed in [G1]2. I restrict attention to a purely mechanical3

theory, and, to avoid geometric complications that accompany evolving
surfaces, confine the derivation to a two-dimensional theory in which
the interface evolves as a plane curve.

One of the chief differences between theories involving phase
transitions and the more classical theories of continuum mechanics is
the creation and deletion of material points as the phase interface
moves relative to the underlying material. To describe this process I
introduce an interactive energy-balance in which the energy and power
transferred from the bulk material to the phase interaction is related
to the interactive dissipation, which is the energy associated with the

keshishev, Parshin, and Babkin observed frequencies of 3 kHz; since then frequencies up

to 1O10 KHz have been reported (cf. Castaing, Balibar, and Laroche [CBL] and the references

cited by Maris and Andreev [MA]).
2See also [G2,G3,AG,GS]. Gurtin and Podio Guidugli [GPG] develop a (possibly

oversimplified) theory of melting-freezing waves in which the melt is considered only as a

source of atoms for the crystallization process and the Inertia - which in the current

theory arises from the motion of the melt - is presumed to be an effective inertia endowed

to the interface. The results of this simplified model show fair qualitative agreement

with the current theory, a major deficiency being a dispersion relation of the form w^X2

rather than w2~Xs (cf. (1.18)). The chief advantage of the model of [GPG] is a hyperbolic

evolution equation for the interface; for an isotropic crystal this equation has the simple

form pV*+pv*viK + F (pJ3,\jj« constants >O, F« constant).
3As noted by Maris and Andreev [MA], for superconductors such as solid helium

solidification is "essentially a mechanical process, rather than a thermal process as it is

for ordinary materials".
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exchange of atoms between phases. This energy balance and balance of
mass and linear momentum are the basic balance lavs of the theory.

I suppose that the crystal is rigid, incapable of deformation, and
model the melt as an incompressible,4 inviscid fluid. The interface
is characterized by constitutive equations which allow the interfacial
energy, the interfacial force, and the interactive dissipation to depend
on the orientation and normal velocity of the interface; and a
mechanical version of the second law is used to deduce suitable
constitutive restrictions.

The theory leads to a free-boundary problem for the evolution of
the interface; this problem consists in solving

p v = -gradp, divv • 0 (I. I)5

in the melt and

[i)»(8)tf(B)]K =P(8)V + F - {pcV2 + (1

on the interface, subject to suitable initial and far-field conditions.
Here K and V are the curvature and normal velocity of the
interface, \j>(8) is the interfacial energy6 as a function of the angle
8 to the interface-normal m, J3(8) is the kinetic coefficient of the
interface, v and p are the velocity and pressure of the melt,
4Andreev and Parshin [AP] note that the phase velocity of melting-freezing waves is

generally veil below the sound velocity.
5grad, div, and A are the spatidl gradient, spatial divergence, and spatial

loplacian. For <Kx,t) defined in the melt: 4>̂  is the spatial time-derivative, 4>' the

material time-derivative; thus <t>'«4>j + v»grad* for $ scalar-valued, etc. (cf.. e.g.,

[G4], §6).
6 I use the term energy (for y(8), V, and Wc) In a generic sense; as to what

thermodynamic potentials (free energy, internal energy, etc.) these quantities actually

represent depends on what thermodynamic theory this purely mechanical theory is meant

to "approximate"; the current theory is, of course, independent of such considerations.



£ = pc /p with pc and p the constant crystal and melt densities,

and F = tyc-£V with tfc and 4* the constant crystal and melt

energies.
I show, as a consequence of the crystallization equations (1.1)

and (1.2), that if the far-field does not supply melt, then

(d/dt)area(C) = 0,
(1.3)

(d/dt){}^(8)ds + Jipv2da} = -Jp(8)V2ds < 0,
dC Tfl dC

where C = C(t) and TTL = TTt(t) denote the regions occupied by the
crystal and melt. These relations furnish Lyapunov functions for the
crystallization problem.

When the melt is irrotational, v(x,t) is proportional to the
gradient of a potential u(x,t); if, in addition, the melt velocity is
sufficiently small that the term involving v2 in (1.2) is negligible,
then the crystallization equations reduce to

Au = 0 (1.4)

in the melt and

[\ji(8) + ̂ "(8)]K - J3(8)V - u t ,

du/dm = ocV ^ ^

on the interface, with ot = ( p c - p ) 2 / p .

The system (1.4) and (1.5) with |3(8) = O, linearized about a flat
interface at equilibrium, reduces to a system proposed by Andreev and
Parshin [AP]:

uxx + uyy • ° (-00<X<00, y>0, t>0),

(\ji + \j>")ohxx = -u t , uy = ocht (-oo<x<oo, y = 0, t>0),



where y = h(x,t) defines the interface, the subscript zero indicates
evaluation at equilibrium, and the subscripts x and y denote partial
differentiation with respect to the corresponding variable. As noted by
Andreev and Parshin [AP], this system has an oscillatory solution of
the form

h(x.t) = e 1 X x e i w t (1.7)

with

w2 = . (1.8)

yielding a proportionality of w2 to X3 found experimentally by
Keshishev, Parshin. and Babkin [KPB].

Global growth relations, similar to (1.3), are established for the
linearized equations (1.6) and used to establish uniqueness for the
associated initial-value problem.

I discuss the form the basic equations take when the theory is
three-dimensional, and, within that context, solve the problem of
spherically symmetric crystallization in an infinite melt whose far-
field pressure P is finite. The behavior of the crystal is governed
by the sign of the constant

C = tyc + p -

(i) for C > 0, crystals melt in finite time; (ii) for C<0 and the melt
initially at rest, crystals melt in finite time if initially small, but
grow unboundedly if initially large.



2. Crystals.
We consider an infinite crystdl lattice modelled as a two-

dimensional continuum, in fact as R2 (Figure 1). A crystal C is
then a compact subset of the lattice with boundary, dc, a smooth,
simple closed curve, dc represents the interface between the
crystal and its melt; we write m(x) for the outward unit normal to
dc and define a unit tangent l(x) (the direction of increasing arc
length) so that {<t(x),m(x)} is a positively oriented basis of IR2. We
write fs for the derivative, sometimes partial, of f with respect to
arc length on dc. We then have the Frenet formulas

ms = -K-t, ls = Km, (2.1)

with K(x) the curvature of dc. We define the angle 8(x), as a
smooth function of x, through

m = (cos8,sin8), I = (sin8,-cos8); (2.2)

then
K - 8S. (2.3)

Since our goal is to model crystallization, we consider crystals
C(t) that evolve with time t, under the assumption that dC(t) is a
smooth evolving curve (in the sense of [AG]).

We write V(x,t) for the normal velocity of dC(t) in the
direction m(x,t). Let V(x,t) = V(x,t)m(x,t). Fix t and xc3c(t) and
(for p sufficiently close to t) let y(p) denote the curve that
passes through x at time t and has

dy(P)/d]3 = V(yO3),j3). (2.4)

Then the normal time-derivative *°(x,t) (following dc(t)) of a
scalar or vector function 4»(x,t) is defined by
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4>*(x.t) = (d/d]3)*(y(p),p)|p=t. (2.5)

The identities

8° = i * - m - - m ° - i = Vs,
(Vm)s = m8° - KVt, (2.6)

(Vrn)' = V°m - 8°V-t.

are standard.7

By an interfacial chunk we mean a smoothly evolving curve
with ^(t)cdC(t) at each time t. We write ( v^J / t ) and

for the endpoint velocities of <t,(t):

( v ^ ) / t ) = dx^D/dt. (v d j 2 ( t ) = dx2(t)/dt, (2.7)

with x / t ) and x2(t) the initial and terminal points of <i,(t). Then

m(x i( t ) , t ) ) - (vd j i( t ) = V(x1(t),t)) ( i = 1.2). (2.8)

Given a smooth function *(x,t) and a smooth vector function *(x,t),
we write

J* = *(x2(t).t) - 1

( 2 9 )

so that

= J*sds. (2.10)

7Cf., e.g., [AG], eqts. (2.4), (2.18).
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Less trivial is the transport identity8

(d/dt)J*ds = J(*°-*KV)ds + J*^-vd^. (2.11)

In what follows, we will generally omit the argument t when writing
such integrals.

We write

tri(t) = closure of R2 \c(t)

for the region occupied by the melt. By a control volume we mean a
bounded region DClR2 with D fixed in time;

Dc(t) = CCOflD, D^(t) = KL(t)nD. d( t ) = dC(t)HD (2.12)

are then the portions of D contained in the crystal, in the melt, and
on the interface; we wi l l generally denote by n the outward unit
normal to dD (Figure 1).

Let <p(x,t) and 4>(x,t) be smooth functions defined for x€C(t)
and X€TTt(t), respectively. We wi l l repeatedly use the identities

(d/dt)J<pda * Jcptda + (<pVds,

Dc Dc d (2.13)
(d/dt)J*da = | * tda - J*Vds,

DTH t>n d
as well as the special case

(d/dt)area(Dc) = -(d/dt)area(D^) = JVds. (2.14)
d

8Cf.# e.g., [AG], eqts. (2.20), (2.34).



3. Capillary force. Balance lavs. Dissipation inequality.
3.1. Basic quantities.

The crystals we consider are rigid, incapable of deformation, with
corresponding melt an incompressible, inviscid fluid. Let C(t) be an
evolving crystal. The mechanics of C(t) is described by five
functions,

C(x,t) interfacial force, defined for X€dc(t),

\jj(x,t) interfacial energy, defined for X€dC(t).
Tc(x,t) crystal stress, defined for xeC(t),

p(x,t) melt pressure, defined for xeTTLCt),

v(x,t) melt velocity, defined for xeTflCt),

and four constants,

pc crystal density,
p melt density,
Wc c rys ta l energy,
U> melt energy.

C(x,t) represents the force within the interface exerted across
x at time t; if we let $," and 4 / , respectively, denote left and
right neighborhoods of x in 9C(t), then C(x,t) is the force exerted
on 4," by 4,+. We decompose this force into normal and tangential
components:

C = Gl + | m ; (3.1)

or(x,t) is then the surface tension, |(x,t) the surface shear.
The remaining quantities are standard; because the crystal is

rigid, the stress Tc is indeterminate. Similarly, the
incompressibility of the melt leads to the constraint
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divv = 0 (3.2)

and to the indeterminancy of the melt pressure p.

3.2. Balance of mass.
We neglect interfacidl mass. Then, as the crystal interior is

immobile, balance of mass requires that

(d/dt){Jpcda + Jpda} + Jpv-nds = 0 (3.3)

for every control volume D. Since the densities are constant, if we
apply (2.14) and then shrink D to the interface, we are led to the
interfaciai mass balance

p(v-m - V) - -pcv. (3.4)

or alternatively,

v . m « ( l - £ ) V . (3.5)

where

Pc/P (3.6)-

is the mass ratio. We assume throughout that the crystal and melt
densities are unequal:

£ * 1 . (3.7)

3.3. Balance of momentum.
Balance of momentum is the assertion that, given any control

volume D,



11

(d/dt)Jpvda + Jpv(v-n)ds = JC + }Tcnds - Jpnds.
D^ (dD)n dd (dD)c (dD)^ (3.8)

Since D is arbitrary, this leads (in the standard manner) to the local
balance laws

divTc = 0, p v = -gradp (3.9)

in the crystal and in the melt, respectively, and, using (2.13), to

Cs - Tcm + pm + pv(v-m - V)

on the interface. By (3.4), this last relation reduces to the
interfacial balance lav

Cs - Tcm + pm - pcVv, (3.10)

or, more succinctly,

Cs + b = 0, (3.11)

with

b = -Tcm - pm + pcVv (3.12)

the total force (including inertia) exerted by the crystal and the melt
on the interface.

Next, (2.1), (2.6), and (3.1) yield

(C-Vm)8 = |8° - O-KV + VCs .m; (3.13)

thus, by (2.8), (2.11), (3.1), and (3.11), we have the power identity9

9Cf. [611 eqt. (3.4).
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+ Jb-(Vm)ds = J(|8°-crKV)ds + Jtf-t-v^ (3.14)

for any interfacial chunk <i,(t). This identity makes plausible the
assumption, made in the next section, that the interfacial force
expends power on an interfacial chunk over the velocities of its
endpoints. The term -o"KV represents power expended in creating new
interface; |8° represents power expended in changing the orientation
of the interface; the term involving cr-t-vd4, compensates for the
tangential motion of the endpoints of 3<̂ .

The scalar field

pc = -m-T c m (3.15)

describes the normal interaction between the interface and the crystal.
Using (3.5), (3.12), and (3.15), we can write the power identity in the
form

- p + (1 -£ )p c V 2 }Vds = J( !8*-o-KV)ds +

& d<i, (3.16)

The term involving (1-£)p cV 2 represents a supply of kinetic energy

induced by the di f ference in c rys ta l and melt densities.

3.4. Dissipation inequality.
The version of the second law that we shall use is the assertion

that, for any control volume D, the rate of energy increase plus the
energy outflow cannot be greater than the power supplied. The terms

{pv2)da + Jyds (3.17)

comprise the total energy of D, while



(3.18)

represents the loss in energy due to the flow of melt across (dD)^. A
basic postulate of the theory is that the interfacial force expend power
over the velocity10 of the endpoints of &; the total power expended
on D is therefore given by

- Jpv-nds. (3.19)

dd (dD)m

In view of this discussion, we assume that the dissipation
inequality11

(d /dt ) {J* c da + { ( * + Jpv2)da + f\j*ds} +

Dc D^ d

Jpv 2 ) (v -n )ds < J C - v d d - }pv -nds
3d ( d D ^ (3.20)

holds for every control volume D.
This relation is satisfied trivially when D lies solely in the

crystal, and, by (3.9)2, also when D lies solely in the melt. On the
other hand, if we apply (3.20) to a control volume D which contains
the interface, appeal to (2.11), (2.13), (3.4), (3.6), and (3.16), and shrink
D to the interface, we see that

10The formulation 1n [AG] (eqt. (3.7); cf. [G1], eqt. (1.3)) is based on the assumption that

the capillary force expend power over the normdl interfacial velocity Vm, while the

dissipation inequality in [AG] contains a term to account for an outflow of energy across

d$,, a term which I do not include here. These two views are consistent, since both

theories yield the identity o"«^. I believe the current formulation to be conceptually

preferrable.
11Cf. [611 §3; [G2] §5; [AG], eqt. (3.7).
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d
JU^-crH-v^} < o. (3.21)

dd
This Inequality must hold for every control volume D. Given a time
t0 and a subcurve d 0 of 4.(t0), we can always find a control volume
D such that d(to) = do , but the tangential velocities of the endpoints
of d are arbitrary at t0. Thus, as a consequence of (3.21). we have
the well known Identification of surface tension with energy:

cr = ^. (3.22)

Finally, it is clear from (3.22) that (3.21) can hold for all control
volumes only if

p)-ip cv2 + pc(1-£)V2} < 0. (3.23)

3.5. Interactive energy-balance.
One of the chief differences between theories involving phase

transitions and the more classical theories of continuum mechanics is
the creation and deletion of material points as the phase interface
moves relative to the underlying material. This is essentially a bulk
interaction between phases, which we now isolate by restricting
attention to the bulk material arbitrarily close to the interface. We
represent the action of the interface on the bulk material immediately
adjacent to it by two functions of xedc(t) and t:

6(x,t) Interactive dissipation,
g(x,t) Interactive force.

6(x,t) represents the net outflow of energy from the bulk material at
the interface, per unit length; this is energy associated with the
kinetics of attachment in the exchange of atoms between the crystal
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and the melt. g(x,t) is the net force, per unit length, exerted by the
interface on the bulk material; this force is assumed to expend power
over the normal velocity Vm.

The interactive fields enter our theory through the interactive
energy-balance

(d /d t ) {JW c da + f ( * + i p v 2 ) d a } + J(4f + { p v 2 ) ( v - n ) d s +
Dc D m ( d D V ( 3 2 4 )

J6ds = -Jpv-nds + Jg-(Vm)ds,
d (dD)n d

which we assume to hold in every control volume D (cf. Figure 2).
Using steps analogous to those used to derive (3.21), we find that (3.24)
is equivalent to

m-V) + *CV + pv-m - g-(Vm)}ds = -J6ds. (3.25)

A d
We now determine the specific form of the force g using the

invariance of (3.25) under Galilean changes in observer. Under such
a change the velocities transform according to12

v —» v + a, Vm —» Vm + a, (3.26)

with a the (constant) relative velocity of the observers. Under (3.26)
the term ^CV is invariant, since V there represents a velocity
relative to the crystal However, since the crystal is now not at rest,
but instead has velocity a, the term

J«ipca2)V + Tcm-a}ds.
&

should be added to the left side of (3.25). Granted this, and assuming
that 6 is invariant under (3.26), we find, since a and d are

12General transformations of observer during crystallization are studied by Gurtin and

Struthers [GS].
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arbitrary, that13

g =-b.

(The transformed energy-balance contains terms linear and quadratic
in a; the linear terms, set equal to zero, yield g=-b; the quadratic
terms yield balance of mass (3.4).) Thus, appealing to (3.5), (3.15), and
(3.22), we are led to the (local) interactive energy-balance:

} = -6. (3.27)

The interactive dissipation 6 is a basic physical quantity of the
theory, to be specified by a constitutive equation, and (3.27) is a
fundamental balance law to be satisfied in all crystallization
processes.

An important feature of (3.27) is that it allows us to rewrite
(3.23) as the dissipation inequality

ty* - £8° < 6. (3.28)

13ln view of (3.11), ve might have taken g«-b from the outset. Because of the presence

of inertial terms and because of the nonstandard nature of the power expended by an

interface, I find it more compelling to derive g«-b as a consequence of a standard

requirement of invariance.
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4. Constitutive equations for the interface.
As constitutive equations we allow the interfacial energy, the

interfacial force, and the interactive dissipation to depend on the
orientation of the interface through the angle 8 and on the kinetics
of the interface through the normal velocity V:

y = *(8,V), C = C(8.V). 6 = 6(B,V). (4.1)

We assume that the relations (4.1)., are consistent with (3.22), and, in
view of (3.27), we suppose that

6(8,0) = 0. (4.2)

Given an evolving crystal C(t), the constitutive equations (4.1)
may be used to compute a corresponding constitutive process. A
basic hypothesis14 of our theory is the dissipation axiom:

all constitutive processes must be consistent
with the local dissipation inequality (3.28),

an axiom which yields the following important constitutive
restrictions:15

14I rationalize this postulate as follows: Generalize the theory to include body forces

fc and fm in the crystal and melt, respectively, so that (3.9) are replaced by

divTc • 1c
mOt pv"«-gradp + fm (*). Assume that a constitutive process is given.

Construct a velocity field v in the melt that is consistent with balance of mass (3.5) and

incompressibility (3.2); use (3.10) and (3.27) (supplemented by (3.7)) to compute p and

Tcm on the interface; extend p and T c into the melt and into the crystal; compute

fc and fm through (*). The corresponding set of fields is consistent with the balance

laws of mass and momentum, as well as with the interactive energy-balance, and all that

remains is the dissipation inequality (3.28).
15These restrictions are obvious modifications of results given in [G1,AG] (Compatibity

Theorem), and I refer to [G1,AG] for their proof. The use of the second law to find

restrictions on constitutive equations traces back to Coleman and Noll [CN], who used this
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(i) the energy y and interfacial force C are independent of the

normal velocity V, and 1 (̂8) generates C(8) through^6

C(8) = ^(8H(8) + V(8)m(8); (4.3)

(ii) the interactive dissipation is given by a relation of the form

) = J3(8.V)V2, J3(8,V) 1 0. (4.4)

(Conditions (i) and (ii) are also sufficient that (3.28) hold in all
constitutive processes.)

We assume that the kinetic coefficient J3(8,V) depends only
on 8, and that

p(8) > 0. (4.5)

Remarks.
r By (4.3), cr-ffO) and | = |(8) with

or(B) = iji(8), |(8) = ^'(8). (4.6)

2* In view of (3.27) and (4.3), the left side of (3.23) is equal to -6,
which identifies 6 = p(8)V2 as the sole rate of energy dissipation;
indeed, tracing backwards the argument leading to (3.28), we find
that

-Jj3(8)V2ds
d

represents the left side of (3.20) minus the right.
3° (2.1), (2.6), and (4.3) yield the identity

C-(Vm)s . y - IJJKV. (4.7)

proceedure for single-phase thermoeiastic materials.
16f'(6) = df(8)/de.
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4' (3.27) and (4.4) furnish us vith a formula for the "crystal pressure"

pc = -J3(8)V + £P - F + ip cv 2 -p c (1 -£ )V 2 . (4.8)

vith F the constant

F = il/c - £U>. (4.9)

5° It might seem reasonable to allow the constitutive equations (4.1)
to depend on the tangential velocity v-w-l of the melt at the
interface. This generalization results in no essential change: the
dissipation inequality rules out the dependence of \p and C on
v, so that (4.3) remains valid, and (4.5) is replaced by

6(8.V.t>) = J3(8,V,t>)V2. p(8,V,t>) > 0. (4.10)
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5. Partial differential equations. Free-boundary conditions.
The thermodynamic restrictions (4.3) have important consequences

when applied to the interfacial balance law (3.10). Indeed, (2.1), (2.3),
and (4.3) imply that

Cs = ty(8) +V(8)]Km, (5.1)

while (3.5), (3.15), (3.10), and (4.8) yield

m.Cs = p - pc -pc(1-$)V2 = p(8)V • F - { p c v 2 - (£

The interfacial balance law therefore has the normal component

f ( 8 ) ] K = J3(8)V + F - {pcv
2 + (1-UP. (5.3)

a crucial relation as it and (3.5) comprise the free-boundary conditions
of the theory.

The tangential component of the interfacial balance law,

l'Tcm = pcW--t. (5.4)

gives the tangential component of the crystal traction at the
interface;17 since the crystal stress is indeterminate, (5.4) is of
little importance.

Summarizing, the basic system of equations consists of (3.2),
(3.5), (3.9)2, and (5.3):

'In addition, the interfacial shear induces a couple per unit length along the interface

which must be balanced by torques in the crystal (cf. [61], Remark 3.2).
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pv = -gradp, divv = 0, (melt) (5.5)

F " iPcV2

(interface) (5.6)
v-m

We will refer to (5.5) and (5.6) as the crystallization equations;
the melt equations (5.5) are to hold in Tll(t) for t>0, the interface
conditions (5.6) on dc(t) for t>0.

There should be cases of interest in which the melt velocity (and
its gradient) are small. Granted this, it would appear reasonable to
neglect the term ?pcv

2 in (5.6) and to replace the material time-
derivative v in (5.5) with the spatial time-derivative v t ; we will
refer to this proceedure as the veak-inertia approximation.

The crystallization equations can be simplified when the flow is
irrotational: we write v(x,t) as the gradient of a potential <p(x,t),

v = grad<p. (5.7)

and replace (5.5) by the Bernoulli equation18

P = "I

and the requirement that <p be harmonic. It is actually more
convenient to use the potential

u(x,t) = p(1-£)(p(x.t) - Ft; (5.9)

then

p($ - l ) v = -gradu (5.10)

18Cf.,e.g., [G4], p. 120.
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and the crystallization equations take the form:

Au = 0, (melt) (5.11)

ty(6) + y"(8)]K = P(8)V - ut - i(x'1(gradu)2. '

\ (interface) (5.12)
du/dm = ocV,

where du/dm = m«gradu, while

£)2. (5.13)

Under the weak-inertia approximation the term (gradu)2 in
(5.12)., is dropped, so that (5.12), becomes

= J3(8)V - u t , (5.14)

but (5.11) and (5.12)2 remain unchanged. Consistent with this
approximation, we neglect the term involving v2 in (5.8), so that, by
(5.9),

($-1)p = u t + F. (5.15)

Remark. For an isotropic crystal both y and J3 are constants;
for \]) constant and p = 0, and under the weak inertia approximation,
we have the equations

Au = 0, (melt) (5.16)

u t = - y K , du/am = ocV. (interface) (5.17)

It is interesting to compare the simplified equations (5.16) and (5.17)
to those of the (quasi-static) theory of Mullins and Sekerka for
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thermally-driven solidification when one of the two phases does not
conduct heat.19 There the temperature u of the conducting phase
satisfies (5.16) and (5.17)2, but the condition (5.17)1 is replaced by

19Cf.. e.g., [62], eqt. (11.9). (The curvature in [62] has sign opposite to that here.)
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6. The crystallization problem. Global balance relations.
Initial conditions appropriate to the crystallization equations

would appear to be a prescription of the region occupied by the crystal
(and hence also that occupied by the melt) together with a prescription
of the velocity v.

C(O) and v(x,0) prescribed. (6.1)

Since the melt is infinite, restrictions should be imposed on its
behavior at infinity. We here consider the far-field conditions:20

v(x,t) = o(lxl"1), p(x,t) = 0(1) as Ixl -> oo, (6.2)

for each t. Note that, by (6.2),

Jv-nds -» 0 as r -» oo, (6.3)

where £ r is a circle of radius r and n is the outward unit normal
on >8r. Thus the net flow of melt vanishes at infinity.

We will use the term crystallization problem to designate the
free-boundary problem defined by the crystallization equations (5.5)
and (5.6), the initial conditions (6.1), and the far-field conditions (6.2).
A solution of this problem will be termed regular if

(d/dt)Jv2da -» (d/dt)Jv2da as r -» oo, (6.4)
m r(t) TH(t)

where Tri^t) is the portion of Tri(t) interior to the circle £ r .
The next result yields Lyapunov functions for the crystallization

problem.

Global balance relations. Regular solutions of the
crystallization problem satisfy

2OAnother possibility will be considered in Section 11.
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(d/dt)area(C) = 0,
(6.5)

(d /d t ) { (v i (8 )ds + J ipv 2 da} « -fp(8)V2ds < 0.
dc Itl dC

Proof. By the divergence theorem, (2.14), (3.5), (5.5)2, and (6.3),
for r sufficiently large,

0 = Jv-nds - { v - m d s = ($ -1 ) }Vds = ($-1) (d/dt )area(C) , (6.6)
£ r 8C dC

which, by virtue of (3.7), implies (6 .5) r

The verification of (6.5)2 is more complicated. First of all,
(2.11), (4.7), and an integration by parts yield

s = - J V C s - m d s . (6.7)

dC dC
Less tr ivial is the identity

y ]vds,

* a C (6.8)
fc={pv2.

which we now prove. By (2.13)2,

(d/dt)jHda = Jfctda - JVfcds. (6.9)

THr Ttlr dC
Also, we may use (6.2) to conclude that, as r-»oo,

Jfcv«nds = o(1), Jpv-nds = o(1). (6.10)

Therefore, by (3.4), (3.5), (5.5), and (6.4), as r-»oo,
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-Jipcv2Vds = Jfe.(v-m-V)ds =
ac dc Tilr THr

= -Jfc/da + (d/dt)Jfcda + o(1)
tilr Titr

= Jv-gradpda + (d/dt)Jkda + o(1)
tri r Til

= -Jpv-mds + (d/dt)J*.da + o(1)
ac m

= -J(1-£)pVds + (d/dt)Jkda + o(1), (6.11)
ac TIL

and, letting r-»oo, (6.8) follows.
In view of (5.1), Cs-m is equal to the right side of (5.6)r Thus

we may conclude from (6.7) and (6.6) that the left side of (6.5)2 is
equal to

-|V[j3(8)V + F]ds, (6.12)
ac

which yields (6.5)2, since (6.6) implies that the integral of FV over
dC vanishes. •

Remark. The global balance relation (6.5)2 actually follows from
the global dissipation inequality (3.20) in conjunction with (6.5)1 and
Remark 2° of Section 4. Indeed, let D in (3.20) be the interior of the
circle £ r (with r large enough that D contains the crystal); note
that, by (6.5)v (d/dt)area(Dc)= (d/dt)area(D^) = 0; using (6.3), (6.4),
and (6.10), let r->oo in (3.20) (strengthened by Remark 2* of Section
4).
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7. Small motions about a flat interface.
7.1. Basic equations.

A flat interface furnishes an equilibrium of the crystallization
equations (5.5), (5.6) provided

= 0. (7.1)

and this relation, (4.8), and (4.9) yield

4>c + pc = £Oir + p). pc = p. (7.2)

We now consider solutions which are close to an equilibrium of
this form. We choose x and y as coordinates in R2 and, without
loss in generality, stipulate that the x-axis represent the
equilibrium position of the interface, oriented so that arc length
increases with x. We assume that:

(i) the interface is represented as a graph y = h(x,t) (Figure 3) with
interfacial height h "small";

(ii) the melt velocity v is irrotational and "small";

and we formally linearize the crystallization equations with respect to
h and v.

We begin with the system (5.11), (5.12). Considering V, K, and
8 as functions of (x.t),

V = htsin8, K = hxxsin38, ( 7 3 )

where subscripts denote partial differentiation with respect to the
corresponding variable. Noting that the interface has angle 8 = IT/2 at
equilibrium, we define

A - (>ji + MI "V BssP0'
 ( 7 4 )

where the subscript zero denotes evaluation at 8 = TT/2. Then the
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interface condition (5.12)^ linearized formally with respect to h and
v, is given by

Ahxx = Bht - u t . (7.5)

Consistent with the approximations leading to (7.5) is the assumption
that the melt equation (5.11) hold in the halfspace y>0, and that (7.5)
and the interface condition (5.12)2 be satisfied on the x-axis with
du/dm replaced by uy. Thus the crystallization equations, linearized

about equilibrium, take the form:21

uxx + uyy - ° (~oo<x<oo, y>0 , t >0 ) ,
(7 6)

Ah x x = Bh t - u t , uy = ocht (-oo<x<oo, y = O, t >0 ) .

7.2. Melting-freezing vaves.
Andreev and Parshin CAP] note that (7.6) has the solution

( 7 7 )

with
AX3 B2X2 BX

r - — . (7.8)
<x 4<x2 2oc

a solution which represents damped oscillations of the interface. For
B = O (and hence approximately for B small), w2 is proportional to
X3,

21These equations, for F*O, are due to Andreev and Parshin [API. F manifests itself

when boundary conditions (or conditions at infinity) are expressed in terms of the pressure

p«- (1 -£r 1 [u t +F] (cf. Section 11).
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to2 = . (7.9)

a proportionality found in the experiments of Keshishev, Parshin, and
Babkin [KPB].

Remark. The relation (7.8) corresponds to oscillations on a flat
interface at angle 8 only if

\p(8) + ^"(8) > 0. (7.10)

This inequality is essentially a condition of static stability for the
interface: it follows from the requirement that straight line-segments
locally minimize interfacial energy. There is no compelling physical
reason to suppose that (7.10) is satisfied; in fact, material scientists
often consider energies which violate (7.10) for particular ranges of 8
(cf. Gjostein [G], Cahn and Hoffman [CH]).

7.3. The linearized crystallization problem. Uniqueness.
Initial conditions for the linearized crystalization equations

are

gradu(x,y,O) (-oo<x<oo, y>o) and

h(x,0) (-oo<x<oo) prescribed, (7 11)

while possible far-field conditions are the following counterpart of
(6.2) (cf. (5.10), (5.15)):

gradu(x,t) = o(lxl"1), ut(x,t) = 0(1) as Ixl -> oo. (7.12)

Further, since the interface is not a closed curve, but begins and ends
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at infinity, an interfacial far-field condition is needed; one
possibility is:

hx(±oo,t) or h(±oo,t) prescribed. (7.13)

We will refer to the problem defined by (7.6) and (7.11)-(7.13) as the
linearized crystallization problem.22

The next result, an analog of the global balance relation (6.5)2,
yields uniqueness for the linearized problem. To state this result
precisely, let

. y ) : -oo<x<oo, y>0 },

o o . y ) : -oo<x<oo, y = 0 }; (

let TTlr denote the portion of Hl^ interior to a circle of radius r;
let n denote the outward unit normal on dTTtr; let £ r denote the
circular portion of dTTtr; let < r̂ denote the flat portion of dTftr.
We will refer to a solution of the linearized problem as regular if

(d/dt)Jlgradul2da -* (d/dt)Jlgradul2da.

^ r ^ « (7.15)
(d/dt)J(hx)

2ds -* (d/dt)J(hx)
2ds

^ r ^oo

as r-»oo.

Global balance relation. Consider a regular solution of the
linearized crystallization problem with
22An existence theorem for this problem has been established by Rogers [R], vho shovs

that: (i) for sufficiently smooth data the solution goes asymptotically to a steady state;

(ii) solutions propagate with finite speed. Rogers analyzes the crystallization equations in

the alternative form h t t « (an)"1X[Ahxx><-Bhxt], where X is the integral operator

consisting of spatial convolution on (-00,00) with respect to x"\ This integral equation

was derived independently by MacCamy (private communication).
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<hthx)(±oo.t)-0 (7.16)

for all t>0. Then

(d/dt){Jlgradul2da + <xA|(hx)
2ds} = -2<xBj(ht)

2ds < 0. (7.17)

Tlloo ^00 ^00

Proof. Since (du/dn) = -u y on <t,r, i f we apply the divergence

theorem to the integral of u t(du/dn) over dtrtr, we conclude, with

the aid of (7.6)1 and (7.12), that

Jutuyds = -i(d/dt)Jlgradul2da +

or THr

as r-»oo. On the other hand, (7.6)2 and (7.16) imply that

Jutuyds « <xjuthtds = <xJht(Bht-Ahxx)ds,

<t,r <t,r 4,r

= otBj(h t)
2ds + iocA(d/dt)J(hx)2ds +

If we equate the last two relations and let r-»oo using (7.15), we are
led to (7.17). •

The global balance relation yields a certain degree of stability
for the linear crystallization problem, since for ot,A,B>0 i t implies
decay with time of spatial L2 norms of Igradul and hx, as well as
the boundedness of the integral of (h t)

2 over TTtooxto.t).

An immediate corollary of (7.17) is the following result, in which
the assumptions oc>0, A>0, B>0 should be kept in mind. (Cf. (3.7),
(4.5), (5.13), (7.4), and (7.10); actually, B > 0 rather than B>0 is
used.)

Uniqueness theorem. The linearized crystallization problem
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(with given data) has at most one regular solution (modulo an additive
constant for u).

Proof. Let h and u denote the interfacial height and
potential corresponding to the difference between two solutions. Since
the problem Is linear, h and u furnish a regular solution of the
crystallization problem with null data, so that, in particular, (7.16) is
satisfied and gradu(x,y,O) = O, h(x,O)sO. We may therefore use (7.17)
to conclude that u = u(t), h = h(t), so that, by (7.6), h and u are
constant. But h(O) = O; thus hsO. •



33

8. The crystallization problem In a bounded container.
If the crystallization process takes place in a bounded

container Q, then Q is the union of the crystal C(t) and the melt
TH(t), and the interface between C(t) and TH(t) is generally not
dc(t), but rather

dC(t)ndtrt(t) (8.1)

(Figure 4). In this case we need boundary conditions on

= dQ(t)ndTHU). (8.2)

the portion of the container that bounds the melt, as well as a contact
condition on d^(t), the portion of the interface that meets the
container. Let n denote the outward unit normal to dQ. We shall
restrict attention to the boundary condition

v-n = 0 on (C)Q)TH : (8.3)

in conjunction with the contact condition23

C(8) parallel to n at points of fo,. (8.4)

The free-boundary problem defined by the crystallization
equations (5.5) and (5.6)24, the boundary condition (8.3), and the
contact condition (8.4) will be referred to as the crystallization
problem in a bounded container.

Global balance relations. Solutions of the crystallization
problem in a bounded container satisfy

2 3 I neglect contact energy between the container and the melt and between the container
and the crystal.
24(5.7) are here required to hold on «,(t).
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(d/dt)area(C) = 0,
(8.5)

(d/dt){Jy(8)ds + Jipv2da} =-Jj3(8)V2ds < 0.

Proof. The first of (8.5) follows using (8.3) and the argument
shown in (6.6) with dc replaced by <i, and £ r by

The verification of (8.5)2 is based on the identities:

= -JVCs-mds,
4, (8.6)

= JC(1-^)P - ip c v 2 ]Vds
Til <>,

with k = £pv2, and follows as in the paragraph containing (6.12).
Thus we have only to establish (8.6). By (2.7) and (8.4),

0.

and this relation, (2.8), (2.11), (3.22), and (4.7), yield (8.6) r The result
(8.6)2 follows from (3.4), (3.5), (5.5), and (8.3) using the steps outlined
in (6.9) and (6.11) with the o(1) symbol not present, and with dc
replaced by $,, Klr by %,. •
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9. Viscous melt.
We could also allow the melt to be an incompressible, viscous

fluid. In this case the melt stress is given by the constitutive
relation

T = -pi + ji(gradv + gradvT), (9.1)

with j i>0 the (constant) melt viscosity, and the melt equations
take the form

p v = -gradp + 2^Av, divv • 0. (9.2)

In accord with the presence of viscosity is the assumption that
the melt ddhere to the crystal, so that the tangential component of v
vanishes at the interface; by (3.5), this is equivalent to the
requirement that

. (9.3)

Balance of momentum now leads to an obvious counterpart of
(3.10):

Cs = Tcm - Tm - p cW. (9.4)

Regarding the dissipation inequality (3.20) and the interactive energy-
balance (3.24), we replace -pv-n by v-Tn, but the end results are
sti l l (3.27) and (3.28). Here we use the fact that, because of (9.2)2 and
(9.3),

m-(gradv)m - 0, (9.5)

so that, by (9.1),
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m • Tm - -p. (9.6)

We continue to postulate constitutive equations of the form (4.1);
the resulting thermodynamic restrictions (4.3) and (4.4) remain valid.

Summarizing, the basic equations for an incompressible,
viscous melt are:

p[v t + (gradv)v] = -gradp + 2jiAv,
\ (melt) (9.7)

divv = 0,

j3(8)V + F - ipcv
2 + (1 -£)p,

• (interface) (9.8)
v = (1£)V

with the terms (gradv)v and {pcv
2 dropped in the weak inertia

approximation.
For a bounded container we replace the boundary condition (8.3) by

v = 0 on (dQ)^. (9.9)

Granted these changes, the global balance relations (6.5) and
(8.5) remain valid provided we account for the additional (dissipative)
term

-i j iJ lgradv + gradvTl2da (9.10)

on the right sides of (6.5)2 and (8.5)2.
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10. Three-dimensional theory.
When the crystallization process takes place in IR3, the

interface evolves as a surfdce, rather than as a curve, but apart from
notation the theory is identical. Following the notation and
terminology of [G1], we write Vs u r f for the surface gradient,
L = -V s u r f m for the curvature tensor, and H = trL for twice the
mean curvature. Then the only essential changes regarding the
equations presented in Sections 5 and 9 are the replacement of
by y(m), J3(8) by j3(m), and

by vji(m)H+ 4»mm(m).L, (10.1)

where \i> (m) is the second gradient of u»(m) on the surface of the

unit ball.
In the three-dimensional theory the interfacial force is replaced

by an interfacial stress25 E, with C(x.t) a linear
transformation from the tangent space to dc(t) at x into IR3. For
crystallization in a bounded container, as discussed in Section 8, the
contact condition takes the form

C(x.t)iKx) parallel to n(x) at points X€d<t,(t), (10.2)

where F(x), a vector tangent to 4,(0 at x, is the outward unit
normal to the boundary curve d<4,(t). The global balance relations (6.5)
and (8.5) then hold with the obvious replacements (area-* vol. ds-»da,
da-»dv) provided we require, for (6.5), that

v(x.t) = o(lxl"2), p(x,t) = 0(1) as Ixl -• oo, (10.3)

estimates which imply (6.3).

2 5 Cf. [61]. The thermodynamic restrictions concerning C(m) are as given in [61], eqt.

(4.5)2 j and are strictly analogous to (4.3).
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11. Radial solutions for an isotropic crystal.
Consider an isotropic crystal, in the shape of a sphere,

undergoing spherically symmetric crystalization. For convenience, ve
use the weak-inertia approximation, so that the underlying equations
are (5.11), (5.12)2, and (5.14), as modified by (10.1). We do not require
that the far-field conditions (10.3) hold, as the only spherically
symmetric solution consistent with (10.3) has the melt and interface
stationary. (This is as expected: because of the incompressibility of
the melt, a net flow of melt at infinity is required for a nontrivial
spherically symmetric solution.)

The general radial solution u(r,t) of (5.11), exterior to a sphere,
is

u(r,t) = A(t) + B(t)/r, (11.1)

and, if the melt pressure is constant at infinity, with value P, then,
in view of (4.9) and (5.15),

A(t) = -Ct,

C = 4fc + p - £(u7 + p). ( 1 1 2 )

By (5.3), C = 0 for a flat interface at equilibrium; in fact, the sign of
C is related to the statical stability of the crystal and melt: the
melt is stable or unstable relative to the crystal according as
C>0 or C<0.26

The function B(t) determines the melt velocity: by (5.10), the
melt velocity is radial with radial component v given by

p($-1)v(r,t) = B(t)/r2. (11.3)

2 61 take this as a formal definition justified by the growth theorem. The energies Wc

and W are measured per unit volume; the definition may be more transparent in terms of

energies per unit mass; that 1s, In terms of PC"1C « p , . " 1 ^ + P)-p"101' + P).
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We assume, as is natural, that the crystal density is larger than the
melt density. Then

$ > 1. (11.4)

and the velocity field is (initially) directed outward, directed
inward, or null according as B(O)>O, B(O)<O, or B(O) = O.

Since the crystal is isotropic, y and p are constant. Further,
i f r = R(t) designates the interface, then the mean curvature is
-R(t)~\ while the normal velocity is dR(t)/dt. Thus, defining
constants

(p - 2TJ;IX > 0, 7 • COC, (11.5)

and writ ing

T = t/oc, R" = dR/dT, B" = dB/dT. (11.6)

the free-boundary conditions (5.12)2 and (5.14), with the change
indicated by (10.1), reduce to a pair of ordinary differential equations:

B' = <p + jR - PBR"\

R- - -BIT*. ( 1 1 7 )

The phase portrait for this system yields the following

Growth theorem. Let the melt be stable relative to the
crystal. Then (irrespective of the initial conditions) the crystal
melts in finite time.

Let the melt be unstable relative to the crystal.
(i) If the melt velocity is initially null, then crystals of radius

R(0) > R
cr1t
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grow unboundedly as t-»oo, crystals of radius R(0)<Rcr1t

melt completely in finite time.
(ii) For any initial radius, but for a melt velocity of sufficiently large

magnitude: if the melt velocity is directed outward, then the
crystal melts in finite time; if the melt velocity is directed
inward, then the crystal grows unboundedly as t-*oo.

Assume that the melt is unstable relative to the crystal, and
suppose that the initial data are such that the crystal grows
unboundedly as t-»oo. The large-time approximation of (11.7) is then
obtained formally by setting (p = 0 in (11.7):

B" = jR - J3BR'1,
( 1 U 3 )

This equation has a simple solution which, when expressed in terms of
t rather than T (cf. (11.6), has the form

R(t) = Vot, B(t) =-ocV0
3t2, (11.9)

with

-p + (J32-8r)*
v0 = . duo)

4ot

Thus, at least formally, the normal velocity of the interface has the
limiting value Vo as t-»oo. This limiting velocity has a more
transparent form when j3 = O; namely.

Vo = . (ii.li)

P c - P
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