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Abstract. A continuous—time, consumption/investment problem on a finite horizon is

considered for an agent seeking to maximize expected utility from consumption plus expected

utility from terminal wealth. The agent is prohibited from selling stocks short, so the usual

martingale methods for solving this problem do not directly apply. A dual problem is posed

and solved, and the solution to the dual problem provides information about the existence and

nature of the solution to the original problem. When the market coefficients are constant, the

value functions for both problems are provided in terms of solutions to linear, second—order,

partial differential equations. If, furthermore, the utility functions are of the power form, the

solutions to these equations take a particularly simple form, as do the formulas for the optimal

consumption and investment processes.
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1. INTRODUCTION

This paper treats a consumption/investment decision problem for a single agent,

endowed with some initial wealth, who can consume the wealth at some rate C(t) and invest it

in any of d+1 available assets. The agent is attempting to maximize a linear combination of

two quantities: namely:

fT
(i) E Ui(t,C(t))dt, the total expected discounted utility from consumption over

JQ

the time interval [0,T], and

(ii) EU2(X(T)), the expected utility from terminal wealth.

The d+1 assets or securities available to the agent are very general. One of them is a

bond, a security whose instantaneous rate of return may fluctuate (possibly randomly), but

which is otherwise riskless. The other assets are stocks, risky securities whose prices have

randomly fluctuating mean rates of return bi(t) and dispersion coefficients ay(t). Section 2

provides a careful exposition of these matters. The stock prices are driven by independent

Wiener processes; these represent the sources of uncertainty in the market model, which we

assume to be complete in the sense of Harrison & Pliska (1981,1983) and Bensoussan (1984).

In our context, completeness amounts to nondegeneracy of the "diffusion" matrix

a(t) = <r(t)<7T(t), as imposed in condition (2.3). This condition guarantees, roughly speaking,

that there are exactly as many stocks as there are sources of uncertainty in the market model.

It also enables us to construct a new probability measure under which the stock prices,

discounted at the rate r(t) of the bond, become a local martingale; this fact is of great

importance in the modern theory of financial economics, and we refer the reader to Harrison &

Pliska (1981, 1983) for a fuller account of its ramifications.

The processes r(t), bi(t), <Jij(t), 1 < i, j < d, will be collectively referred to as the

coefficients of the market model We assume that our agent is a "small investor," in that his



decisions do not influence the asset prices, which are treated as exogenous.

Single agent consumption/portfolio problems have been investigated by a number of

authors. A significant plateau was reached by Merton (1969, 1971), who found closed-form

solutions to the Hamilton-Jacobi-Bellman equation for a constant—coefficient model with

power utility functions. Karatzas, Lehoczky, Sethi & Shreve (1986) generalized this work to

allow general utility functions. More recently, Cox & Huang (1987), Pliska (1986), and

Karatzas, Lehoczky & Shreve (1987) used martingale methods to study the problem with

non—constant market coefficients. Using the Girsanov Theorem to change to a probability

measure under which all the stock prices discounted by the bond rate become martingales,

these authors found a simple expression for the optimal consumption process. The fact that

every martingale relative to a Brownian filtration can be represented as a stochastic integral

with respect to the underlying Brownian motion played a key role in the proof that this

consumption process can be financed, i.e., that there is a corresponding portfolio process which,

together with the consumption process, results in a nonnegative wealth process. However, the

portfolio process which is obtained by this method may require short-selling of the stocks.

This paper examines the model in which such short-selling is prohibited.

The approach of this paper is to define a dual problem for the original

consumption/portfolio problem, hereafter referred to as the primal problem. Rockafellar &

Wets (1976) have developed such a duality theory for discrete-time stochastic control, and

Bismut (1973) has studied the continuous—time case. This approach has been used to get

necessary conditions for optimal control processes, e.g., Rockafellar k Wets (1978), Frank

(1984). For the problem at hand, one can establish existence of an optimal dual control process

under fairly general conditions, and then use complementary slackness to obtain existence in

the primal problem and to characterize the optimal consumption and portfolio processes in that

problem. The dual problem is defined in Section 3, and the relations between the two problems

are developed in Section 4. Section 5 proves the existence of the optimal dual and primal

control processes. Section 6 specializes the earlier sections to the constant coefficient market.



When the market coefficients are constant, the value functions for the primal and dual

problems can be characterized by respective Hamilton--Jacobi—Bellman equations. The

Hamilton—Jacobi—Bellman equation for the dual problem turns out to be linear, and its

solution can be transformed into a solution for the nonlinear HJB equation corresponding to the

primal problem. The end result is that the value function for the primal problem is obtained in

terms of the solutions to a pair of linear, second—order, partial differential equations. For

general utility functions, the solutions to the latter are available in Karatzas, Lehoczky &

Shreve (1987). In Section 6, we provide all the relevant formulas when the market coefficients

are constant and the utility functions are of the power form.

This paper is derived from the first author's PhD dissertation. The duality method

presented in this paper is also useful in the study of optimal consumption and investment in

incomplete markets; we refer the reader to Karatzas, Lehoczky, Shreve & Xu (1989) for an

analysis of the maximization of the utility of terminal wealth in an incomplete market. He &

Pearson (1989) have developed a closely related approach for both the incomplete market

problem and the complete market problem with short-selling prohibition.



2. FORMULATION OF THE PRIMAL PROBLEM

In this section we formulate the problem of optimal consumption and investment when

short—selling of the stocks is prohibited.

2.1 Assets. To model uncertainty, we will consider our problem on a probability space

(fi^jP). We assume that the a—field & is rich enough to support a d—dimensional

Brownian motion {w(t), ^( t ) ; 0 < t < T}, where T is a fixed finite horizon and {^(t)} is the

augmentation by null sets of the filtration generated by w. There are d + 1 assets being

traded continuously on the finite horizon [0,T]. One of them is a bond, whose price po(t) at

time t evolves according to the differential equation

(2.1) dpo(t) = r(t)po(t)dt, 0 < t < T.

The remaining d assets are stocks, and their prices are modelled by the stochastic differential

equations
d

(2.2) dpi(t) = Pi(t)[bi(t)dt + E aij(t)dw< J) (t)l, 0 < t < T,

for i = l,...,d.

The interest rate process r(-) as well as the vector process b(-) = (bi(•),...,bd(*))T °*

mean rates of return and the d * d matrix volatility process &(•) = (0ij(*)) are assumed to be

{^(t)}—progressively measurable and uniformly bounded. We introduce the covariance process

a(-) = cr(*)a (•) and assume the strong nondegeneracy condition

(2.3) £Ta(t) £ > *0||£||2 v £z «df V t € [0,T], a.s.,



for some *o > 0. This implies that there is a constant K\ such that (see, e.g., Karatzas &

Shreve (1987), Problem 5.8.1 with solution on page 393)

(2.4) max{||(aT(t))-U IIMt))-1^} < *, ||£|| V £ G Rd, V t G [0,T], a.s.,

(2.5) minflK^t))-1^!, ||(c7(t))-^||} > -̂ - ||^|| V £ e Rd, V t G [0,T], a.s.

For specificity, we assume that pi(0) = 1, i = 0,...,d. The solutions to (2.1) with this

ft
initial condition is po(t) = exp( r(s)ds). We define for future reference a discount process

J0

(2.6) 4 _ ^ = exp(-Jr(s)ds), 0 < t < T.

2.2 Portfolio and consumption processes.

oc

rT

T

DEFIIITIOM 2.1. A portfolio process **(•) = (fl"i(-)>•••>*"<!(•)) is a measurable,

rT

Rd—valued process satisfying ||^r(t)||2dt < w a.s. A consumption process C(-) is
J nmeasurable, {<9r(t)}-adapted, dt x dP-almost everywhere nonnegative process satisfying

rT

C(t)dt < CD a.s.
J 0

In Definition 2.1 we regard ?ri(t) as the amount of money invested by an agent in stock

i at time t and we regard C(t) as the rate of the agent's consumption at time t. If X(t)

denotes the wealth of the agent at time t, then the amount of money invested in the bond is

X(t) — l1^*)) where 1 denotes the d-dimensional vector of ones. In view of (2.1), (2.2), the

agent's wealth must evolve according to the equation



(2.7) dX(t) = (r(t)X(t) - C(t))dt + /(t)(b(t) - r(t)l)dt + /(t)o(t)dw(t), 0 < t < T,

whose solution is given by

(2.8) /?(t)X(t) = x + f #s)[-C(s) + *T(s)(b(s) - r(s)l)]ds + f /?(s)7rT(s)a(s)dw(s),
Jo " J °o

where x > 0 denotes the agent's initial wealth.

DEFIIITIOI 2.2. Let an initial wealth x > 0 and a consumption/portfolio process pair (C,TT) be

given. We say that (C,TT) is admissible for x if for i = l,-..,d, we have

(2.9) *i(t) > 0, dt x dP - a.e.,

and the wealth process X(-) defined by (2.8) satisfies

(2.10) X(t)>0, 0 < t < T , a.s.

The set of all consumption/portfolio process pairs which are admissible for x will be denoted

by A(x).

Condition (2.9) rules out short-selling of stocks. However, X(t) — 1 7r(t) is allowed to

become negative, i.e., borrowing from the bond is permitted.

Following the notation of Karatzas & Shreve (1987), Section 5.8, we define the relative

risk process



(2-11) *t) 4 (o{t)yl[b{t) - r(t)l], 0 < t < T.

We then introduce the martingale

(2.12) Z(t) 4 exp{- f* 0T(s)dw(s) - i fpOOfds}, 0 < t < T,
Jo Jo

and the new probability measure P defined by

(2.13) P(A) = E[Z(T) 1J V A 6 9,

and the drifted Brownian motion

A r*
(2.14) w(t) = w(t) + 0(s)ds, 0 < t < T.

J0

According to Girsanov's theorem, w is a standard Brownian motion under P. In terms of w,

we may rewrite (2.8) as

t T
(2.15) flt)X(t) + f /?(s)C(s)ds = x + f /?(s)7rT(s)cr(s)dw(s).

Jn J n

The left—hand side of (2.15) is nonnegative and the right—hand side is a local

{^(t)}—martingale under P. But Fatou's lemma shows that any nonnegative local martingale

is a supermartingale, and the supermartingale property in (2.15) yields

T T
(2.16) E[flT)Z(T)X(T) + f 0(t)Z(t)C(t)dt] = E[/3(T)X(T) + f /?(t)C(t)dt] < x.

J n J n



We have obtained the following necessary condition for admissibility.

2.3 P*OPOSITIOI. If (C,TT) € A(x) and X(-) is the corresponding wealth process, then (2.16) is

satisfied.

2.3 Utility functions.

2.4 DEFIIITIOI. A utility function U is a strictly increasing, strictly concave, twice

continuously differentiable, real—valued function defined on [O,OD) which satisfies

(2.17) U(0) = 0,

(2.18) U'(0) = l im U'(x) = o, U'(a>) = l i m U'(X) = 0,
JO

(2.19) 0 < U(X) < m{l + Xp<>) V x > 0,

for some constants K\ > 0, 0 < po < 1.

Condition (2.17) can be replaced by the assumption that U(0) > -©; we assume (2.17)

only for notational convenience. However, our model does not include utility functions such as

log for which U(0) = -m. Condition (2.18) ensures that the strictly decreasing, C1 function

IT maps (O,OD) onto (O,OD), and hence has a strictly decreasing, C1 inverse I: (O,GD) -* (O,CD), i.e.,

(2.20) U'(I(y)) = y V y > 0, I(U'(x)) = x V x > 0.

We define



(2.21) I(O) =
ylo

the last equality resulting from U'(a>) = 0.

Throughout the remainder of the paper, we will have a terminal wealth utility Junction

U2: [O,OD) -> R satisfying the properties in Definition 2.4 and with I2 denoting the inverse of

U^, and we will have a consumption utility function V\: [0,T] x [O,QD) -* IR which is (jointly)

Borel measurable. For every t € [0,T], Ui(t,-) is assumed to satisfy Definition 2.4 with K\

and po independent of t. We denote by U't(t,x) the derivative of Ui with respect to its

second variable, and we denote by Ii(V) the inverse of U'^t,-).

2.4 The value function.

For x > 0 and (C,?r) G A(x), we define the expected utility of (C,TT) as

T
(2.22) J(X,C,T) 4 E f U,(t,C(t))dt + EU2(X(T)),

where X( •) is given by (2.8) (or equivalently, (2.15)). The primal value junction is

(2.23) V(x) 4 sup{J(x,C,7r) | (C,T) € A(x)}, V x > 0.

An optimal consumption/portfolio process pair is one which attains the supremum in (2.23).

Because of the strict concavity of Ui(V) and U2, if such a pair exists, the consumption

process component C(*) and the corresponding terminal wealth X(T) are uniquely determined

(see Xu (1990), Theorem 2.4.5).

Our goal is to characterize V, to obtain conditions under which an optimal

consumption/portfolio process pair exists, and to characterize this pair. We begin with the

following description of V.
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2.5 PEOPOSITIOH. The primal value function V : [O,OD) ->[0,a>) is a continuous, nondecreasing

concave function.

PROOF: We first obtain an upper bound on V(x). With p0 as in (2.19), choose qi G [1, —)

and define q2 = 1 - qip0 E (0,1). Given (C,TT) 6 A(x) and the corresponding wealth process

X(-) of (2.15), we use (2.19), the inequality (a + bf1 < 2Ql(aqi + bqi) V a,b > 0, and the

boundedness of r( •) to write

rT „ „ rT

io1
T T

E f [U^.CWjNt < (2«0QlE f [1 + (C(t))Qie°]dt

rCOI E

' o

Holder's inequality and Proposition 2.3 imply

T T
E f [#t)C(t)]qiQ°dt = E f z"qiQ°(t)[/?(t)Z(t)C(t)]qiQ°dt

J n J n

T T
< (E f ^"qie°/q2(t)dt)<l2(E f )9(t)Z(t)C(t)dt)qie

J n J n

Because 0 appearing in (2.12) is bounded, E Z^lQ°'q2(t) is bounded uniformly in t 6 [0,T].

Therefore, for some constant /c(qi) independent of x, C and TT, we have

T
(2-24) E f [U,(t,C(t))]qidt

J0
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A similar estimation applied to E([U2(X(T))]qi) results in the inequality

(2.25) E([U2(X(T))]qO < «(qi) (1 +

Setting qi = 1 in (2.24), (2.25), we obtain an upper bound on J(x,C,7r) which is independent

of C and T} the finiteness of V(x) follows.

Since the sets A(x) increase with x, V must be nondecreasing. To prove concavity,

note that for xi, x2 > 0, A G (0,1), (CI,TI) € A(xi), and (C2,^2) G A(x2), the linearity of the

wealth equation (2.7) implies that (ACi + (1 - A)C2, Axi + (1 - A)7r2) G A(AX! + (1 - A)x2).

The concavity of Ui(t,-) and U2 allows us to conclude that

A J(x1,C1,7r1) + (1 - A) J(x2,C2,x2)

< J(AXl + (1 - A)x2, ACi + (1 - A)C2, A7n + (1 - A)TT2)

<V(AX!+(1-A)X2).

Maximize the left—hand side of this inequality over (CI,TTI) G A(XI) and (02,^2) £ A(x2) to

obtain the concavity of V.

The concavity of V implies its continuity on (0,a>). Now V(0) = 0 (recall (2.17)), so to

establish the continuity of V at zero, it suffices to show

(2.26) l i m V ( x ) < 0 .
xjO

For every e G (0,1), choose (C£,TT€) G A(e) such that
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(2.27) V(e) < J(e,Cc,ire) + e.

Let X€( •) be the associated wealth process. Inequality (2.16) implies

rT

E #T)Z(T)Xe(T) < e , E flt)Z(t)C€(t)dt < e.
J 0

Because L1 convergence implies convergence almost everywhere along a subsequence, we can

choose {cn}n=i such that cn | 0, /3(T)Z(T)X, (T)-*0 P-a .e . , and 0(-)Z(-)Ce (•) -* 0
n n

dtxdP ~ a.e. But (2.25) with qi > 1 implies that {/?(T)Z(T)X€ (T)}n=i is uniformly

P-integrable, and (2.24) with qi > 1 implies that {/3(-)Z(-)C£ (-)}n=i is uniformly dtxdP

integrable. Therefore, l im J(€n,C€ ,7r€ ) = 0, and (2.26) follows from (2.27). D
n n n

€ , € )
n n

3. FORMULATION OF THE DUAL PROBLEM

In this section we introduce a stochastic control problem which is dual to the problem of

Section 2. We define the dual value function and establish its basic properties. The

relationship between the dual problem of this section and the primal problem of Section 2 will

be explored in Sections 4 and 5.

3.1 Concave/convex conjugate function pairs.

3.1 DEFIIITIOI. Let U be a utility function (Definition 2.4). The convex conjugate of U is

defined by

(3.1) U(y)4sup{U(x)-xy} V y > 0.
x>0

It is an easy exercise to verify that
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(3.2) U(0) 4 lim U(y) = U(OD), U(OD) 4 l i m % ) = U(0) = 0.
y |0

From (2.20) we have

(33) %) = U(I(y))-yI(y), V y > 0 ,

so

(3-4) U'(y) = -I(y) , U" (y) = - I'(y) > 0, V y > 0.

In particular, U is a strictly decreasing, strictly concave, C2 function. Equation (3.1) implies

(3.5) U(x) < U(y) + xy, V x > 0, V y >0 ,

and equality holds if and only if x = I(y), or equivalently, y = U'(x). It follows that

(3.6) U(x) = inf {%) + xy} = U(U'(x)) + xU'(x), V x > 0.
y>0

Finally, (3.1) and (2.19) imply

(3.7) 0 < %) < s up{«i(l + xC°) - xy} < K2 (1 + y^) V y > 0,
x>0

V A

where K2 is a positive constant and a = TZJT-

Associated with the utility functions Ui and U2 introduced in Section 2.3, we have

the convex conjugate functions Ui, U2 defined by
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(3.8) Ui(t,y) = s up{U,(t,x) - xy} V t € [0,T], V y > 0,
x>0

(3.9) U2(y) = s u p { U 2 ( x ) - x y } V y > 0.
x>0

We define these functions at y = 0 and y = » as in (3.2). We denote by U^t.y) the

derivative of XJi with respect to its second argument.

3.2 Dual control processes.

3.2 DEFIIITIOI. A dual control process is a measurable, {<?"(t)}-adapted, Rd—valued process

rT
*(.) = (5ri(-),...,xd(-)) which satisfies E ||7r(t)||2dt < •> and

Jn

(3.10) 5ri(t) > 0, dtxdP - a.e.

The set of all dual control processes will be denoted by A.

For i 6 A, we define the nonnegative local martingale (hence supermartingale)

t) 4 exp{- [ [«(B) + cri(s)*(s)]Tdw(s) - i f*|«(s) + <ri(s)5r(s)||2ds}, 0 < t < T
J 0 J0

[ ( ) ( ) ( ) ] ( ) f
0 J0

3.3 LEMMA. The set of processes % = {Z~(-) | 5r € A} is convex.

PEOOF: For every A > 0, (x > 0 with A + /x = 1, and for every *1} 5r2 6 A, define

e = A Z . i + ^iZ.a,5r = | ( A i r 1 Z - i + /i?r2Z-2). Then f e A, £(0) = 1, and
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dflt) = A dZ-ft) + p dZ.2(t)

= - A Z - ^ O W ) + er"(t)*,(t)]Tdw(t) - A Z~2(t)[0(t) + a-1(t)5r2(t)]
Tdw(t)

a-»(t)5r(t)]dw(t).

Therefore, £ = Z~ € ST.

3.3 The dual control problem.

Let Ui and U2 be defined by (3.8), (3.9). For y > 0 and 5r e A, define the dual

objective function

(3.12) J(y,5r) 4 E J Ui(t,y/?(t)Z.(t))dt

The dual problem is to minimize J(y,5r) over A for fixed y. The dual value function V is

defined by

(3.13) V(y) ^ inf {J(y,5r) | Jr € A} V y > 0.

An optimal process for the dual problem with initial condition y is a process jcy 6 A which

attains the infimum in (3.13). Because of the strict convexity of Ui (V) and U2, if such a

process exists, it must be unique (see Xu (1990), Theorem 3.3.1).

3.4 TKEOUCII. Restricted to (0,a>), the dual value function V is finite, nonnegative, continuous,
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nonincreasing, and convex. Moreover,

T
(3.14) V(0) = f Ui(t,O)dt + U2(0) = l i m V(y),

J0 y|0

but V(0) may be infinite. If V(0) is finite, then

(3.15) V'(0) 4 li
l

= - m .

PIOOF: Because Ui(t,-)and U2 are nonincreasing and nonnegative, V is also. Let 6 denote

the identically zero dual control process, and note that Zx is the martingale Z defined by

(2.12). Inequality (3.7) implies that for every y > 0,

- . rT

V(y) < J(y,0) < E *2[1 + (y/?(t)Z(t)Hdt
J n

+ E *2[1 + (y/?(T)Z(T)H.

Because P( •) and 6( •) are uniformly bounded, the above expectations are finite, so

0 < V(y) < CD V y > 0.

We now prove convexity of V. For y!,y2 > 0, \,(i > 0 such that A + fi = 1, and

5ri,5r2 6 A, by Lemma 3.3 there exists f € A such that Z- = -r—^— (AytZ~ + i£y2Z- ).
T Ayi+/zy2

 v J Ti ™ TT2'
Therefore,

< J(Ayi

= E J U1(t,/?(t)(Ay1Z-i(t) + /<y2Z-2(t)))dt
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+ EUiCflT)(Ay,Zf ̂ T) +

rT

+

= A J(yi,xi) + n J(y2,?r2).

Minimization of the right—hand side of this inequality over 5ri,T2 € A yields the convexity of

V. The continuity of V on (O,OD) follows from its convexity.

The monotonitity of V implies V(0) > l i m V(y). For the reverse inequality, let K be

"yio
an upper bound on /?(•). The monotonidty of Ui(t,-)and U2, Jensen's inequality, and the

supermartingale property imply that for y > 0,5r e A,

J(y,7r) > E f Ui(t,y/tZ~(t))dt + EU2(y«Z3,(T))

> J U2(t, JK EZ-(t))dt + U2(y«EZ-(T))

rT -
> U,(t,y«)dt

Jn

Therefore, V(y) > Ui(t,y/c)dt + V^JK), and the monotone convergence theorem implies
J n

rT .
l i m V(y) > Ui(t,O)dt + U2(0) = V(0).
y|0 J0
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If V(0) < a,, then

= lim{±E[
yio

+ ±E[U2(0)-U2(y/?(T)Z(T))]}

>limlE[U2(0)-U2(y^(T)Z(T))].
yjO y

The convexity of U2, equations (3.4), (2.21), and the monotone convergence theorem imply

1 im I E[U2(0) - U2(y/?(T)Z(T))] > l i m /?(T)Z(T)I2(y/?(T)Z(T)) = co.
y i o y y|o

3.5 COIOLLHY. For every x > 0, there exists yx > 0 such that

(3.16) V(yx) + xyx = i n f { % ) + xy}.
y>0

PiOOF: Define f: (O.OD) -• R by f(y) = V(y) + xy. Note that f is continuous and

l im f(y) = ID. If V(0) = a>, then l i m f(y) = CD, and f attains its minimum on (0,a>). If
y-»a> y | 0

V(0) < OD, then f has a continuous extension to [0,») and must attain its minimum at some

yx e [0,a>). According to (3.15), f (0) = -OD, SO yx must be positive, D
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4. RELATIONS BETWEEN THE PRIMAL AND DUAL PROBLEMS

In this section we show that, for any dual control process 5r, the objective function

J(- ,5r) in the dual problem provides a bound on the value function V for the primal problem.

Moreover, the existence of an optimal dual control process 5r implies the existence of an

optimal consumption/portfolio process pair (C,ir), and ir is related to 5r by the

complementarity condition (4.4) below.

4.1 Weak duality.

4.1 WEAK DUALITY TMEOIEM. For every x > 0, y > 0 , (C,ir) e A(x) and 5r6A, the inequality

(4.1) J(x,C,x) < J(y,5r) + xy

holds. Equality holds in (4.1) if and only if

(4.2) C(t) = Ii(t,y/?(t)Z-(t)), dtxdP - a.e.

(4.3) X(T) = I2(y/?(T) Z~(T)), a.s.,

(4.4) TT(t)5r(t) = 0, dt « dP - a.e.

(4.5) E f Z~(t)/?(t)C(t)dt + E Z~(T)/?(T)X(T) = x,

where X( •) is the wealth process associated with x, C(•) and ir(•) (see (2.8)), and Z-(•) is

given by (3.11).

PlOOF: From (2.8), (3.11), (2.11) and Ito's rule, we have
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= - Z~(t)/?(t)C(t)dt - Z~(t)/?(t)*T(t)5r(t)dt

h <r«t)5r(t))T]dw(t),

SO

Z~(t)/?(t)X(t) + f Z~(s)/?(s)C(s)ds + f Z~(s)/?(s)7rT(s)5r(s) ds, 0 < t < T,

is a nonnegative local martingale, hence a supermartingale. This supermartingale has initial

condition x, so

T T
(4.6) E Zt(T)/?(T)X(T) + E J Z.(s)/?(s)C(s)ds + E J Z-(s)/?(s)*T(s)*(s)ds < x.

From (3.5) we have

Ui(t,C(t)) < U1(t,y)3(t)Z-(t)) + y/3(t)Z-(t)C(t), dtxdP -a . e .

U2(X(T)) < U2(y/?(T)Z-(T)) + y/?(T)Z-(T)X(T), a.s.,

and equality holds if and only if (4.2), (4.3) hold. Therefore,

rT
(4.7) J(x,C,ir) < J(y,5r) + y{E ^(t)Z>(t)C(t)dt + E0(T)Z-(T)X(T)}

J 0

< J(y,7r) + yx
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because of (4.6) and the fact that xT(t)5r(t) > 0, 0 < t < T, a.s. Equality holds in (4.7) if and

only if (4.2)-(4.5) hold. D

4.2 COROLLAIY. For every x > 0 and y > 0,

(4.8) V(x) < V(y) + xy.

If (C,7Ty) 6 A(x) and 5ry e A satisfy (4.2) — (4.5), then they are optimal in their respective

problems, i.e.,

(4.9) V(x) = J(x,C,*y), V(y) = J(y,5ry).

4.3 REMAHK. Corollary 4.2 implies that

(4.11) V(y) > sup {V(x) - xy} V y > 0,
x>0

i.e., V dominates the convex conjugate of V. We provide conditions in Corollary 4.9 and

Remark 5.7 and under which the reverse inequality holds.

4.2 Strong duality.

In order to construct pairs (C,TT) 6 A(x) and 5r 6 A which are related by the duality

conditions (4.2) — (4.5), we begin with y > 0 and 5r € A. We can define C( •) by (4.2) and x

by (4.5) (with X(T) given by (4.3)), and we must then ask whether there is a portfolio process

7T e A(x) satisfying (4.4) such that the wealth process X(-) associated with x, C(-) and TT(-)

satisfies (4.3). We first construct a portfolio process x such that (4.3) is satisfied, but % may

take negative values and so may fail to be admissible. We subsequently show that if 5r is
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optimal, then T is indeed admissible and (4.4) holds.

LEIOII4.4. Let y > 0 and 5reA be given. Define C(-) by (4.2) and assume the finiteness

of

T
(4.11) x 4 E J Z-(t)/?(t)C(t)dt + E[Z~(T)/?(T)I2(y/?(T)Z~(T))].

Then there exists a portfolio process *(•), which may take negative values, and there exists a

continuous, nonnegative process X(-), such that

(4.12) X(0) = x, X(T) = I2(y/3(T)Z~(T)),

(4.13) dX(t) = (r(t)X(t) - C(t))dt + /( t )(b(t) - r(t)l + 5r(t))dt

+ /(t)o(t)dw(t), 0 < t < T.

PiOOF: Define

T
D = J Z-(t)/?(t)C(t)dt + Z.(T)/?(T)I2(y/?(T)Z.(T)),

so x = ED. We may assume that P - a.e. path of the martingale B(t) = E(D | ̂ ( t )) is

right-continuous (Karatzas & Shreve (1987), Theorem 1.3.13), and so B has a representation

as

B(t) = x + f YT(s)dw(s), 0 < t < T,
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where Y( •) is an Rd—valued, {^(t)}—progressively measurable process satisfying

rT
||Y(t)||2dt < OD a.s. (use Karatzas & Shreve (1987), Theorem 3.4.15 and a localization

J 0

argument). In particular, B is actually continuous. Define

= B(t) - fV(s)C(s)Z.(s)ds,
Jo

X(t) =

(4.14)

Then X(0) = x, X(T) = I2(y/?(T)Z~(T)). To verify (4.13), we observe that

dtft) = YT(t)dw(t) - /?(t)C(t)Z~(t)dt,

[r(t) + ||0(t) +

Therefore

dX(t) = X(t)[r(t) + \\0(t)

Bj YT(t)dw(t) - C(t)dt + S U YT(t)[5(t) + <

= (rX(t) - C(t))dt + TT(t)<7-(t)[0(t) + a-^tj^tjjdt + TT(t)o(t)dw(t),
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which agrees with (4.13).

4.5 REMAIK. Note that (4.13) differs from the wealth equation (2.8) because of the term

?rT(t)7r(t)dt in (4.13); when the complementary slackness condition (4.4) holds, the two

equations agree. The solution to (4.12), (4.13) satisfies

r*
(4.15) flt)X(t) = M(t) - #s)C(s)ds, 0 < t < T,

Jn

where

(4.16) M(t) = x + /?(s)7rT(s)a(s)dw~(s), 0 < t < T,
Jo

(4.17) w~(t) 4 w(t) + f (0(s) + a-1(s)5r(s))ds, 0 < t < T.
JQ

From the definitions in the proof of Lemma 4.4, we also have the useful formula

(4.18) Z~(r)/?(r)X(r) = J

for any {^(tjj-stopping time r taking values in [0,T]. i

Let y > 0 be given, and assume the dual problem with initial condition y has an

optimal solution 5ry, i.e.,
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(4.19) j(y,7ry) = % ) .

In the remainder of this section, we show that the corresponding portfolio TT given by Lemma

4.4 is optimal in the primal problem with initial wealth x given by (4.11) when 5ry is

substituted for 5r. In order to obtain this result, we define

T
(4.20) gy(A) 4 J(Ay,5ry) = E [ Ui(t,Ay/?(t)Z~ (t))dt + EU2(Ay/?(T)Z- (T)), V A > 0,

j n ^y *y

and we need to assume

(4.21) 3 6y e (0,1) such that gy(A) < GO V A 6 (1-^y,

A sufficient condition for (4.21) is that for some a 6 (0,1), 7 6 (1,<D),

(4.22) aU;(t,x) > U;(t )7x), aU^(x) > U^(TX) V t 6 [0,T], x > 0;

see Karatzas, Lehoczky, Shreve & Xu (1989), Lemma 11.5.

4.6 LEMMA. Let y > 0 be given, assume 5ry € A satisfies (4.19), and assume (4.21). Then gy

is differentiate at 1, and

(4.23) g;(l) = - E

PIOOF: Because of the convexity of U2, we have for A e ( l - / , ©),

y/?(T)Z-y(T)) -
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f I *U(1\< f
j

\ «r)7«T)Z- (T)) - U2(y/?(T)Z- (T)) |.

The right—hand side is integrable, so the dominated convergence theorem and (3.4) imply

| f EU2(Ay/?(T)Z-y (T)) | x=1 = - E[y/?(T)Z-y(T)I2(y/3(T)Z~y(T))].

A similar analysis applies to Ui, and we thereby obtain (4.23). D

Let 7Ty e A satisfy (4.19), and let ?r be another process in A. For any e 6 [0,1], the

"perturbed" process 5r€ = 5ry + e(5r — 5ry) is also in A, so we can study the sensitivity of

J(y,5rc) to variations in c. In order to carry out this program, we introduce some notation.

Define

(4.24) N(t) 4 jV"»(s)(5Ks) - 5ry(s))]Tdw~y(s), 0 < t < T,

where w .̂ is defined by (4.17). Corresponding to 5ry, let xy be the portfolio process

constructed in Lemma 4.4 and let C(-) and X(-) be given by (4.2), (4.12) and (4.13) when IT

and 5r are replaced by ?ry and 5ry, respectively. For each positive integer n, define the

stopping time

(4.25) rn 4 T A inf{t 6 [0,T] | |N(t)| + |X(t)| + |Z~y(t)| + J*||«[B) + ^ ( s ^ H M s

+ f /9(s)C(s)ds+ ft|k-1(s)(5Ks)-Ty(s))||
2ds+ [V(s)ay(s)||2ds>n},

and note that
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(4.26) rn | T as n -»».

Set < ( t ) 4 * £ ( t ) l { t < T n } , 0 < t < T.

4.7 LEMMA. Assume (4.21). Then

(4.27) y E | / Z-y(t)/?(t)7rJ(t)(*(t) - *y(t))dt = l im | j ( y , ^ ) - J(y,5ry)] > 0.

PEOOF: Because 5ry satisfies (4.19), the inequality

40

holds. As for the equality in (4.27), direct computation reveals

(4.28) Z-n(t) = Z~ (t) exp{-e N(t A rn) - i e2 ||cr-1(s)(5r(s) - Sy(s))||2ds}.
^ *y z Jo

From the definition of rn, we have

Z^(t) < Z-jn(t) < ene z ^ t ) V n > 1, e € [0,1], t 6 [0,T].

Choose Co 6 (0,1] such that l-e-^^<^6y for all e e (0,e0). If c e (0,c0) and Z^(t)

Z- (t), then the convexity of U2 implies
7Ty
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|U2(y/?(T)Z??(T)) -
!

| ( y / ( ) ( - \
< i max{l - e*2n€,

If Z~n(t) = Z~ (t), the first expression in the above string of inequalities is still dominated by
7Te 7Ty

the last expression. The last expression is the product of a bounded function of e 6 (0,e0] and

an integrable random variable, because of assumption (4.21). By the dominated convergence

theorem, (4.28), and (3.4), we have

(4-29) 1 im i[U2(y/?(T)Z^(T)) - U2(y/?(T)Z-y(T))]

U2[yi9(T)Z^(T)exp{-eN(rn) - \ e2 f* | | ^ B ) ( 5 ( B ) - 5ry(s))||2ds}] | c=

= E[y^(T)Z.y(T)I2(y/9(T)Z.y(T))N(rn)]y(T)I2(y/9(T)Z.y(

E[y^(T)Z-y(T)X(T)N(rn)].

A similar analysis for Ui results in the formula

HP T
(4.30) l im I E[f U1(t,y^(t)Z-n(t))dt - f U1(t,y^(t)Z. (t))dt]

= E[J y)9(t)Z-y(t)C(t)N(tArn)dt].
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Summing (4.29) and (4.30), we obtain

(4.31) l im \ [J(y,?|o) - J(y,5ry)]

= y E[J Z.y(s)/?(s)C(s)N(sArn)ds + Z~y(T)/?(T)X(T)N(rn)].

It remains to show that the right-hand side of (4.31) agrees with the left-hand side of

(4.27). Note first that (4.18) with 5fy replacing 5r implies

rT

(4.32) E[ Z- (s)/?(s)C(s)N(sArn)ds + Z- (T)/?(T)X(T)N(rn)]
J o y y

= E JrnZ-y(s)/3(s)C(s)N(s)ds

+ E{N(rn) E[| Z^ (s)/?(s)C(s)ds + Z~ (T)^(T)X(T)|^(rn)]}
Tn y y

so it suffices to prove that this last expression equals

E J ^ Z.y(t)/?(t)a*(t)(5r(t) - 3r,(t))dt.

Since \\${s) + a-1(s)5ry(s)||2ds < n a.s., the Novikov condition (see, e.g., Karatzas & Shreve,
J 0

\
0

Corollary 3.5.13) implies that Z~ (tArn) is an {.^(t)}—martingale. Define a new probability
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measure Pn on & by Pn(A) = E[l Z~ (rn)] V A € Sf. Girsanov's Theorem implies that,

under Pn, the process w~ (tArn) is a standard Brownian motion stopped at time rn.

According to Remark 4.5,

= dM(t)-/?(t)C(t)dt,

where dM(t) = /?(t)7Ty(t)o(t)dw- (t). Therefore,

(4.33) d(flt)X(t)N(t)) = /3(t)X(t)dN(t) + N(t)dM(t) - N(t)#t)C(t)dt

Integrating (4.33) and taking expectation under Pn, with respect to which N(tArn) and

M(tArn) are martingales, we obtain

(4.34) E[Z.y(rn)/?(rI1)X(rn)N(rn)

= E

Equation (4.27) foUows from (4.31), (4.32) and (4.34). D

4.8 STEOIG DUALITY TMEOEEM. Let y > 0 be given and let 5ry e A be optimal for the dual

problem with initial condition y. Assume that (4.21) holds. With 7ry replacing TT, let C(-)

be given by (4.2), x by (4.11), and let icy be the portfolio process whose existence is

guaranteed by Lemma 4.4. Then 7ry 6 A(x) and
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(4.35) Ty(t)5r(t) = 0, d t * d P - a . e .

In particular, the pair (C,7ry) is optimal in the primal problem with initial wealth x, i.e., (4.9)

holds.

PROOF: According to Corollary 4.2 and Lemma 4.4, we need only to verify that

(4.36) 7ry(t) > 0, dt x dP - a.e.,

and that (4.35) holds. Define 5r = (7ri,...,5r<i) € A by

1 7 1 5 * ^ w < «}• ° - ' -T> j=1-'d-

Lemma 4.7 implies

- E

from which we conclude that (7ry)j > 0 dt x dP — a.e. on the set {t,a;) | 0 < t < rn((J)}. Because

of (4.26), we have (4.36).

Now take ic = ^ 5ry and apply Lemma 4.7 again to conclude

(4.37) - E JT\y(t)/?(t) Tr^tJ^tJdt > 0, n = 1,2,....

Since 7ry(t) > 0, 5ry(t) > 0, dt x dP - almost everywhere, (4.37) implies ^ry(t)7ry(t) = 0, first on

{(t,o;) | 0 < t < rn((J)} and then on [0,T] x n, dt x dP - almost everywhere, D
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4.9 COIOLLAIY. Under the assumptions of Theorem 4.8,

P*OOF: With 5ry, iry and x as in Theorem 4.8, we have from the Weak Duality Theorem 4.1

V(y) = J(y,5ry) = J(x,C,7ry) - xy < V(x) - xy < Bup{V(fl - fir}.

The reverse inequality follows from Remark 4.3. D

The Strong Duality Theorem 4.8 begins with a dual variable y > 0 and an optimal

dual process 5ry, and then constructs an optimal consumption/portfolio process pair (C,7ry) for

the primal problem with initial wealth x, where x is defined in terms of y and 5ry by (4.11)

with 5r replaced by xy. We now show how, beginning with x, to find the corresponding dual

variable y which permits this construction.

4.10 THEOREM. Assume that for every y > 0, there exists an optimal control process l y e A

for the dual problem with initial condition y. Assume further that (4.21) holds for every

y > 0. For every x > 0, let yx > 0 be a minimizer of V(y) + xy (the existence of yx is

guaranteed by Corollary 3.5). Then (4.11) holds with 5r replaced by 5ryx. In particular, the

consumption/portfolio process (C,?ryx) constructed in Theorem 4.8 is optimal for the primal

problem with initial wealth x.

PIOOF: We are given that yx satisfies (3.16), and must prove that
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rT
(4.38) x = E f Z- (t)^(t)I1(t,y^t)Z. (t))dt + E[Z~ (T)/?(T)I2(y/?(T)Z- (T))]

•-&>«•

the last equality being a restatement of (4.23). We have

i nf {J(Ayx, $ryx) + Ax yx} = i nf {J(y,5ryx) + xy} > i nf { % ) + xy}
A>0 y>0 y>0

= V(yx) + xyx = J(yx, fYx) + xyx.

Therefore the function A H gyx(A) + Axyx is minimized by A = 1, and consequently,

g' (1) + xyx = 0. n

4.11 COKOLLI&Y. Under the hypotheses of Theorem 4.8, we have

(4.39) V(x) = m i n {V(y) + xy} V x > 0.
y>0

PIOOF: Given x > 0, let yx, 5ryx, and (C,iryx) be as in theorem 4.8. These processes were

constructed to satisfy (4.2) — (4.5), so (4.1) holds with equality. From (4.6) we have

V(x) < m i n{V(y) + xy} = V(yx) + xyx = J(yx, 5ryx) + xyx= J(x,C,ir) < V(x). a
y > 0

5. EXISTENCE OF OPTIMAL DUAL PROCESSES

A key assumption in the Strong Duality Theorem of the previous section was the

existence of an optimal dual process. In this section, we show that if
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(x) xUf (t,x)

then for every y > 0, the dual problem with initial condition y has an optimal solution. The

ratios appearing on the left—hand side of the inequalities in (5.1) are called the Arrow-Pratt

indices of relative risk aversion.

5.1 LEMMA. Let U : [O,OD) I [O,OD) be a utility function (Definition 2.4). Then

(5.2) _ 5 g ^ l < i V x > 0

if and only if the mapping from IR to [0,a») given by s H U(es) is convex. In this case,

(5.3) U(CD) = U(0) = OD.

PlOOF: From (2.20) and (3.3), we have

gjtJ(e8) = V'(I{e8))r(es)es - e ^ e 8 ) -e*T(e»)

•x=I(es)

Therefore, U(e8) is a convex function of s if and only if

(5-4) 4(xU'(x))>0 Vx>0.

But (5.4) is equivalent to (5.2). Moreover, (5.4) implies U'(x) > ̂ -ill V x > 1, and

integration of this inequality yields U(CD) - U(l) = OD. The remainder of (5.3) is a restatement
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of (3.2). c

Let H denote the set of all measurable, {^(t)}—adapted, Rd—valued processes 5r

fT
satisfying E ||5r(t)||2dt < ©. We impose on H the inner product

J n

T
(5.5) <xi,5r2> = E f 5rT(t) 5r2(t)dt, V S^Sfe € H,

J n

and we denote the associated norm by | [5r] | == \ <5r,5r> V 5r e H. The set of dual control

process A of Definition 3.2 is a closed convex set in the Hilbert space H. For every fixed

y > 0, J(y,*) given by (3.12) is a possibly ar-valued nonlinear functional on A. The finiteness

of J(y,x) for at least some Sr e A follows from Theorem 3.4. For 5r 6 H\A, we define

J(y,5r) = CD.

5.2 LEMMA. For every y > 0, the extended real—valued functional J(y,0 is lower

semicontinuous on H.

PEOOF: It suffices to show that if {5rn}°° is a sequence in A which converges in norm to

5r e A, then

(5.6) J(y,5r) < liffi %,5rn).

T
Define yn = 0 + a"1?,,, y 4 0 + a-% and note that l im E f ||yn(t) - y(t)||2dt

= l i m | [ y n - y ] | = 0 ,
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T T
l i m E f | | |yn(t)| |2-| |y(t)| |2 |dt = l i m E [ | (yn(t) - y(t))T(yn(t) + y(t)) | dt

|[yn + y] | = 0.

It follows that

(5.7) l im E [ |[ftyn(s)dw(s) + \ f ||yn(s)l|2ds] - [[V^dwCs) + \ f*||y(s)||2ds]|dt = 0,
n-»oo J 0 J 0 J 0 J 0 J 0

(5.8) l imE|[f yn(t)dw(t) + H ||yn(t)||2dt] - [ f y(t)dw(t) + \ f ||y(t)||2dt]| = 0.
n-»a> J 0 J0 J0 Ju

Because L1 convergence implies convergence almost surely along a subsequence, there exists a

subsequence, also denoted by {yn}°° , along which the convergences in (5.7), (5.8) are almost
n=l

sure. Consequently, l im Z~ (t) = Z~(t), dt x P almost everywhere on [0,T] x fl, and

l im Z .̂ (T) = Z (T), almost surely on fi. Inequality (5.6) follows from Fatou's lemma and

the nonnegativity of Uj and U2. D

5.3 LEMMA. If Ui and U2 satisfy (5.1), then for every y > 0, J(y,*) is a convex, extended

real—valued functional on H.

PROOF: It suffices to prove convexity of J(y,-) on the convex set A. Let 5ri,7r2 € A and

Ai > 0, A2 > 0 with Ai + A2 = 1 be given. The convexity of the Euclidean norm implies
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The monotonicity of U2 and Lemma 5.1 imply

, a.s.

A similar inequality holds for Ui, and the convexity of J(y,*) follows, D

5.4 LEMMA. If U2 satisfies (5.1), then for every y > 0, we have

(5.9) lim J(y,5r) = a>.

IF] I -

PIOOP: Let K be a constant such that /?(t) < K> 0 < t < T, a.s. From the monotonicity of U2,

Lemma 5.1, and Jensen's inequality, we have for all 5r € A,

y,5r) > EtJ2(yKZ^(T)) > U2(y«exp(~i

The result follows from (2.5) and (5.3). •

5.5 DUAL EUSTEICE TKEO&EM. Assume that the utility functions Ui and U2 satisfy (5.1).

Then, for each y > 0, there exists an optimal solution 5ry 6 A to the dual problem (3.13) with

initial condition y.

P*OOF: This follows immediately from Lemmas 5.2, 5.3 and 5.4. See, e.g., Ekeland & Temam

(1976), Corollary 1.2.2. •
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We now state the principal result of this work. In Section 6, we will use Corollary 5.6 to

compute optimal solutions.

5.6 CO*OLLII.Y. Assume that Ui and U2 satisfy (5.1), and (4.21) (or (4.22)) is satisfied as

well. Then, for every x > 0, the optimal consumption/investment problem has an optimal

solution (C,x). Moreover, let y > 0 solve the equation

(510) xy + gj(l) = 0,

and let 5ry 6 A be the optimal solution for the dual problem with initial condition y. Then

optimal consumption and wealth processes are given by

(5.H) C(t) = I,(t,y/?(t)Z-y(t)), 0 < t < T, a.s.,

(5.12) X(T) = I2(y/?(T)Z~y(T)), a.s.

(5-13) X(t) = £(t) Wt)Z-y(t)]-», 0 < t < T, a.s.,

where

rt
(5-14) £(t) = B(t) - 0(s)C(s)Z~ (s)ds, 0 < t < T, a.s.,

JQ *y

and B is a continuous version of

rT

(5.15) B(t) = E[ Z- (t)/?(t)C(t)dt + Z- (T)^(T)X(T)|«?(t)], 0 < t < T, a.s.
J n y ^y
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The process B(-) has a representation as

rt _
(5.16) B(t) = x + YT(s)dw(s), 0 < t < T,

J0

T
for some Revalued, {<?*(t)}—progressively measurable process satisfying ||Y(t)||2dt < a>

J0
a.s., and in terms of Y, the optimal portfolio process is

(5.17) *(t) = X(t)(aT(t))-W) + a'\t)*#) + |JTJ Y(t)], 0 < t < T, a.s.

PiOOP: This corollary is a restatement of Theorem 4.10 which takes advantage of the Dual

Existence Theorem 5.5 and the characterization (4.38) of the minimizer yx of V(y) + xy. D

5.7 REMAU. Under the assumptions of the Dual Existence Theorem 5.5, Corollary 4.9 implies

that the dual value function V is the convex conjugate of the primal value function V. When

there is no utility for terminal wealth, i.e., U2 = 0, the proof of the Dual Existence Theorem

breaks down and we do not know if the conclusion of that theorem holds. However, the

conclusion of Corollary 4.9 still holds, as can be proved by introducing an artificial utility for

terminal wealth U2(x) = ejx, and then letting e j 0. See Xu (1990), Theorem 5.2.1 for

details.

6. THE MODEL WITH CONSTANT COEFFICIENTS

The martingale and duality methods of the previous sections are powerful tools for

proving the existence of optimal solutions. However, they do not provide much information

about the properties of the optimal solutions. To amend this drawback, the present section

considers the case of constant market coefficients, and obtains in feedback form an optimal

consumption/portfolio pair for the primal problem. We also show in this case that even when
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the hypotheses of the Dual Existence Theorem 5.5 are not satisfied, there exists a dual optimal

process, and this process is constant and independent of the initial condition and the utility

functions.

We assume throughout this section that

(6.1) b(t) = b, r(t) = r, a{t) = cr, 0 < t < T, a.s.,

where r e R, b 6 Rd, and a is a nonsingular, d*d matrix. We define the vector

(6.2) O^a^h-il).

6.1 The mean comparison theorem.

In this subsection we prove a comparison theorem which will be instrumental in solving

the dual problem. It is an easy consequence of Jensen's inequality for conditional expectations

that if M(-) is a martingale and (p : R -> IR is convex and satisfies E| y>(M(t))| < © for all

0 < t < T, then y>(M(*)) is a submartingale. If M is only a local martingale, then <p(M(-))

can fail to be a submartingale. To see this, let M( •) be a positive local martingale which is

not a martingale (and is therefore a supermartingale), and let <p be the identity function.

However, we have the following result for a convex function of a local martingale.

6.1 LEMMA. Let {M(t), ^ ( t ) ; 0 < t < T} be a continuous, positive, local martingale, and let

<p: (0,a>) -• R be a nonincreasing, lower-bounded, convex function satisfying

(6.3) E <p(M(t)) < GO V t € [0,T].

Then {y<M(t)), ^ ( t ) ; 0 < t < T} is a submartingale.



41

PEOOF: Let {rn} be a sequence of stopping times converging up to T almost surely such

that for each n, {M(tArn), ^ ( t ) ; 0 < t < T} is a martingale. For e > 0, define the bounded,

nonincreasing, convex function y>e by

V(c) + (x-e)^'(e) if 0 < x < e,

<p(x) if x > e.

Then {^c(M(tArn)), ^(t); 0 < t < T} is a bounded submartingale, so for every s < t and

A 6 ^(s), we have

f p£(M(sArn))dP < f y>£(M(tArn))dP.
J A J A

Now let n -• OD, using the bounded convergence theorem, and then let e j 0, using the monotone

convergence theorem, to obtain

f v<M(s))dP<[
J A J

Hajek (1985) and Borkar (1987) have proved mean comparison theorems for solutions to

stochastic differential equations. In the cited references, the dominating process is a Markov

process and a martingale; in the following theorem, the situation is reversed.

6.2 MEAI COUPI&ISOI TKEOBJBM. Let (p : (0,©) -• R be a nonincreasing, lower—bounded,

fT
convex function, let p be an {<5r(t)}-adapted, Rd—valued processes satisfying ||p(t)||2dt < OD

J0
almost surely, and let p e Rd be a vector such that
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(6.4) ||p(t)|| > ||p|| , dt * dP a.e. on [0,T] * fl.

Define

ft T i rt
Z(t) = exp{- £T(s)dw(s)-£ ||£(s)||2ds}, 0 < t < T,

JQ JO

Z(t) = exp{- pw(t) - \ \\p\\h}, 0 < t < T.

Then

(6.5) E ^Z(t)) > Ep(Z(t)), 0 < t < T.

PIOOF: The process Z is a local martingale. According to Lemma 6.1, Ey>(Z(t)) >

(p(l) for all t 6 [0,T]. If p = 0, then Z = 1 and (6.5) follows.

We now assume that p$0. Consequently, \\p{t)\\ > 0 for all t, and we can find an

, d*d orthonormal matrix—valued process O(«)such that

J i t L = Q(t) 4 " , dt x dP - a.e. on [0,T] x fi.

Define

, 0 < t < T ,

so A'(t) > 1 for all t. The inverse function A'1 is defined on [0,A(T)] D [0,T], and for each
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T e [0,T], A^r) is an {^(t^-stopping time. Set

W(t) 4 j * M i l 0T(s)dw(8), 0 < t < T,

W ( r ) 4 w ( A - V ) ) , 0 < r < T .

Relative to the filtration {^(A'^r))}, the process W is a martingale and

r^) llai
<Wi, Wj>(r) = 6ij l lmiiL ds = 6ijT, 0 < r < T

J 0 llpll2

By Levy's Theorem (Karatzas & Shreve (1987), Theorem 3.3.16), {W(r), ^(A'^r)); 0 < r < T}

is a standard, d—dimensional Brownian motion. According to Proposition 3.4.8 of Karatzas &

Shreve (1987),

(6.6) l-JTZ(A-1(i/))pTdW(i/) = l - J T Z(s)£TdW(s)

= 1 - Z(s
J 0 ' \\P\\

= 1 — Z(s) pT(s)d>
J 0

= Z(\-\T)), 0 < r < T.

But dZ(r) = - Z(r)pT dw(r), 0 < r < T, so
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(6.7) Z(r) = 1 - f Z(r)pTdw(r), 0 < r < T,
J0

and weak uniqueness of the solution to (6.7) implies that Z(A"*( •)) appearing in (6.6) has the

same distribution as Z(«). Therefore, for any t 6 [0,T],

But A"*(t) < t and Lemma 6.1 implies that ^Z(- ) ) is a submartingale, so

<

6.2 The optimal dual control.

In this section we show that the optimal dual control process is identically equal to the

constant vector which is the unique minimizer of

over 5r 6 [0,oo)d. Clearly f is a continuous, strictly convex function satisfying l i m f(5r) = OD.

Therefore, f has a unique minimizer T 6 [0,a>)d, i.e.,

(6.9) ||0 + G'1T\\ <\\0 + a-*i\\ V 5r€ [0,*).

We define

(6.10) 0=0+ a'xh

6.3 TKBOIEM. Under assumption (6.1), for every y > 0, the dual control process identically
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equal to 5r is optimal for the dual control problem with initial condition y.

PEOOF: Let TT 6 A be given. From (6.9) we have

0 < t < T.

Applying the Mean Comparison Theorem 6.2 to the nonincreasing, lower—bounded, convex

functions z H U^t, ye t̂fc) and z H U2(ye~~r z) with p(t) = 0 + cr'1:h(t) and p = 0, we obtain

> J(y,5r). D

6.4 REMAIX Theorem 6.3 states that under condition (6.1), J(Ay,x) == V(Ay) for every y > 0,

A > 0. According to Theorem 3.4, V(Ay) is finite, so condition (4.21) is satisfied. Theorem

4.10 now implies that for any x > 0, there is an optimal consumption/portfolio process pair for

the primal problem with initial wealth x. The complementary slackness condition (4.35)

shows that the optimal portfolio process thus obtained does not invest in any stock i for which

ir\ > 0. We show in the next subsection that this optimal portfolio is a scalar process times

(a )~*0, so 0 = 0 corresponds to never investing in stocks at all.

6.3 The Hamilton—Jacobi—Bellman equation.

The assumption of constant coefficients allows us to employ the

Hamilton—Jacobi—Bellman (HJB) equation from dynamic programming. This nonlinear

equation is often intractable, but using duality theory as a guide, we will be able to decompose

it into two linear Cauchy problems much as has been done by Cox & Huang (1987) and

Karatzas, Lehoczky & Shreve (1987) for the problem without a prohibition on short-selling. In

terms of the solutions to these Cauchy problems, we will obtain formulas for optimal

consumption and portfolio processes. When the utility functions are power functions, these

formulas become very explicit.
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It is assumed through this subsection that the utility function Ui(t,x) has the special

form e^U^x), where 6 is a real constant and Ui(x) is a utility function. In addition to the

conditions of Definition 2.4, we assume that there exist constants K and a such that

(6.H) Uj(Ij(y)) + ylj(y) < < 1 + y* + y-*) V y > 0, j = 1,2.

A sufficient condition for (6.11) is that for some a > 2,

(6.12) l im „>; , v exists and lim^Sj>WI = 0, j = 1,2
xjO u i W X-KD UJ W

(see the appendix of Karatzas, Lehoczky & Shreve (1987)).

We will need to consider the optimal consumption/portfolio problem of Section 2 for

initial times other than zero. For (t,x) € [0,T] x (0,©), we consider such a problem with

consumption utility function (s,x) H e^( s - t ) Ui(x). The value function for this problem is

T
(6.13) V(t,x) 4 sup E{ f e « *+> Ui(C(s))ds

(C,x)eA(t,x) Jt

where A(t,x) consists of those consumption/portfolio process pairs (C,TT) for which TT is

nonnegative and the wealth process determined by

(6.14) X^x\s) = x + f(rX(t'x)(u) - C(u))du + fV(u)(b - rl)du + fS7
Jt Jt • Jt

remains nonnegative for all s € [t,T], almost surely.

The convex conjugate of the function x H e"**Uj(x) is the function y H e^Uj^e^y), so

the dual problem associated with (6.13) is defined for 0 < t < T, y > 0 by
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T
(6.15) V(t,y) 4 inf E{ f e-*< «t) XJiCy e< «•*•> <s-t) Z-(t,s))ds

tEA J t *

where

(6.16)Z~(t,s) 4 e x p { - J V + ^5r(u))Tdw(u) - J j , t < s < T, y > 0.

According to Theorem 6.3, the optimal dual control process is identically equal to the vector TT

satisfying (6.9). With 0 given by (6.10), we have

(6.17) Z^(t,s) = exp{- &T(w(s) - w(t)) - \ ||^||2(s-t)}, t < s <T,

and we define

(6.18) C(M) = e<6-TH*-t) z.(t,s), t < s < T

Then

T
(6.19) V(t,y) = E{ [ e*c s-t) U1(y^(t,s))ds + e-^T- t)u2(yC(t,T))}, t < 8 < T, y > 0.

1 *- fl2 fi
The Markov process C(*>-) has differential generator ^ p | | 2 ^ + (^-r)y -^-, and we

may use this fact to derive a linear partial differential equation satisfied by V. It is convenient

to apply this Feynman—Kac analysis to two functions whose difference is V, rather than to V

directly. For (t,y) E [0,T] x (o,a>), define
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T
(6.20) G(t,y)4E{[

Jt

(6.21) S(t,y) 4 E{ f e«< •-« yC(t,s)I1(yC(t,s))ds + c"^T"*) yC(t,T)I

According to Lemma 7.1 of Karatzas, Lehoczky & Shreve (1987), under condition (6.11), G

and S are finite and continuous on [0,T] x (0,©), of class C1'2 on [0,T) x (0,©), and are the

unique solutions to the respective linear Cauchy problems

(6.22) (^- + L) G(t,y) + Ui(Ii(y)) = 0, 0 < t < T, y > 0,

(6-23) G(T,y) = U2(I2(y)), y > 0,

and

(6.24) (^ + L) S(t,y) + yl^y) = 0, 0 < t < T, y > 0,

(6-25) S(T,y) = yI2(y), y > 0

where L is the second-order differential operator defined by

1 *
(6.26) Lip = 5 || 9\\2y2<Pyy + (̂ ~ )̂y<Py ~ fy-

From (3.3) and (6.19), we have

(6-27) V(t,y) = G(t,y) - S(t,y), 0 < t < T, y > 0,
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so V is continuous on [0,T] x (O,OD), of class C1'2 on [0,T) x (0,©), and solves the Cauchy

problem

(6.28) (^•+L)V(t ,y ) + tJ1(y) = O, 0 < t < T, y > 0,

(6.29) V(T,y) = U2(y), y > 0.

6.5 TIEOIEM. Under assumptions (6.1) and (6.11), V is given by (6.27) and satisfies the

Hamilton—Jacobi—Bellman equation

(6.30) Vt(t,y) + (*-r)yVy(t,y) -

+ inf {i || 0 + rtHV^yytt.y)} + Ui(y) = 0, 0 < t < T, y > 0.

PJ.OOF: Recall from Theorem 3.4 that V(t,*) is convex, so

(6.31) inf {i || 0 + a'1 iHlV^yyC^y)} = i

Therefore, (6.30) reduces to (6.28). i

The HJB equation for V turned out to be linear. The HJB equation for V is

considerably more complicated, but it is possible to obtain it as a transformation of the

equation for V. We begin by difiFerentiating in (6.19), using the argument in the proof of

Lemma 4.6, to obtain
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T
(6.32) - Vy(t,y) = E{[ e^^ C(t,s)I1(yC(t,s))ds

= i s ( t , y ) , 0 < t < T , y > 0 .

Because Ii and I2 are strictly decreasing mappings from (0,x) onto (O,OD),—Vy(t,-) is also a

strictly decreasing mapping from (0,a>) onto (0,OD). Indeed, the Mean Value Theorem implies

that for (t,y) e [0,T] x (0,CD) and 0 < e < 1,

7(Vy(t,y+e) - Vy(t,y)] > E^V**"" C(t,s) min |i;(zC(t,s))| ds
J t [ + i ]

) min |I^C(t,T))|} > 0,
ze[y,y+l]

so

(6.33) Vyy(t,y) > 0, 0 < t < T, y > 0.

Define Y(t,-): (0,(D) -»(0,a>) to be the inverse of -Vy(t,-), i.e.,

(6.34) Vj^t^^.x)) = x, Y(t, - Vy(t,y)) = y, 0 < t < T, x > 0, y > 0.

Then Y is of class C1 and

(6.35) Yx(t,x) = 1 < 0 , 0 < t < T, x > 0.
Vyy(t,Y(t,x))

The expression V(t,y) + xy is minimized over y > 0 by Y(t,x), so Corollary 4.11 implies
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(6.36) V(t,x) = V(t,Y(t,x)) + xY(t,x), 0 < t < T, x > 0.

Differentiation in (6.36), coupled with (6.34) and (6.35), yields

(6.37yt(t,x) = Vt(t,Y(t,x)), Vx(t,x) = Y(t,x), V^tpc) = -^ , 0 < t < T, x > 0.

Substitution of (6.34), (6.36) and (6.37) into the HJB equation (6.30), where (6.31) is taken

into account, results in the equation

, . V'(t,x)
(6.38) Vt(t,x) - 6V(t,x) + rxVx(t,x) + U,(Vx(t,x)) -\ M* V x x ( t ,x ) = °'

0 < t < T, x > 0.

To see that (6.38) is the HJB equation for the primal stochastic control problem, we need the

following lemma.

6.6 LEMMA. For every nonnegative number a, the unique minimizer of

(6.39) g ( T ) 4 ^ T
a c r T 7 r - a / ( b - r l )

over ir € [0,a>)d is a(aT)"1tf. Furthermore, xT(trT)~1& = 0 and

(6.40)

PIOOF: The Kuhn-Tucker conditions for the minimization of f in (6.8) over [0,a>)d imply the

existence of a vector A e [0,a>)d such that
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A = Vf(x) = (<r T r t AT* = 0.

For T e [O,oo)d, we have

g(7r) = g(aA) + (̂TT - aA)W(7r - aA) + (* - aA)T[(7aTaA - a(b - rl)]

\ |kT(7r- aA)||

Because a(7r — aA) r = a7r5r > 0, we see that g attains its minimum at v = aA = a(a

Furthermore

- r l + x) + aAT* = - ^ a2||^||. o

6.7 THEOLEM. Under assumptions (6.1) and (6.11), the primal value function V is given by

(6.41) V(t,x) = G(t,Y(t,x)), 0 < t < T, x > 0,

and satisfies the Hamilton—Jacobi—Bellman equation

(6.42) Vt(t,x) - W(t,x) + sup{[(rx - c) + irT(b - rl)]Vx(t,x)
c>0

+ ^||<rTir||2Vxx(t,x) + Ui(c)} = 0, 0 < t < T, x > 0.

PiOOF: Equation (6.41) follows from (6.36), (6.27), (6.34) and (6.32). From Lemma 6.6 with

a = — -
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(6-43) sup { / ( b - rl)Vx(t,x) + i ||crT7r||2Vxx(t,x)}
7T>0 " Z

inf {1 TTW* + M A /(b -rl)}

Therefore, equation (6.42) is equivalent to (6.38).

The supremum in the HJB equation (6.42) is attained by

(6-44) c = Ii(Vx(t,x)) = Ii(Y(t,x))

We have thus obtained optimal consumption and portfolio processes in feedback form, a fact we

now state precisely and verify properly.

6.8 THEOuai. Let (t,x) e [0,T] x (O,OD) be given. Under assumptions (6.1) and (6.11), the

optimal wealth process for the consumption/portfolio problem with initial time t and initial

wealth x is

(6.46) X ( t ' x ) ( s ) i S ( 5 ( f f * $ « * ) S » , t < s < T .

This process satisfies (6.14) with C(»)and *(•) replaced by
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PIOOF: To simplify notation, we define the function H : [0,T] x (0,a>) -»(O,oo) by H = - Vy,

i.e., (see (6.32))

(6.48) H(t,y) = I S(t,y), 0 < t < T, y > 0.

Because S is continuous on [0,T] x (O,OD) and of class C1'2 on [0,T) x (0,OD), H has these

properties as well. From (6.24), (6.25), we derive the formulas

(6.49) Ht(t,y) + £ || flHV'Hyy^y) + (6 - r + || 0||2)yHy(t,y)

-rH(t,y) + I1(y) = O, 0 < t < T, y > 0,

(6-50) H(T,y) = I2(y), y > 0.

In terms of H, (6.46) becomes

(6.51) x( t 'x)(s) = H(s,Y(t,x)C(t,s)), t < s < T.

Because d C(t,s) = (£-r)C(t,s)ds - C(t,s)Fdw(s), Ito's lemma and (6.49) imply

(6.52) dx( t 'x)(s) = [H8 + \ U&||2Y2(t,x)C2(t,s)Hyy + (^-r)Y(t,x)C(t,s)Hy]ds
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-Y(t,x)C(t,s)H/0Tdw(s)

= [rH(s,Y(t,x)C(t,s)) -

- 1 | 0||2Y(t,x)C(t,s)Hy(s,Y(t,x)C(t,s))ds

)> t < s < T.

We now examine the three terms on the right—hand side of (6.52). The functions H(s, •) and

Y(s,«) are inverses (see (6.34)), so (6.51) can be rewritten as

(6.53) Y(s,x(t'x)(s)) = Y(t,x)C(t,s), t < s< T.

Therefore,

(6.54) C*(s) = I1(Y(t,x)C(t,s))

and

(6.55) r H(s,Y(t,x))C(t,s) - I ^ t ^ ^ t . s ) ) = r X ^ s ) - C*(s).

Because H(t,-) and Y(t,-) are inverses, we also have

(6.56) Hy(s,y) = yx(s>H

From the equality 7rT(aTyl0 obtained in Lemma 6.6 we see that
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(6.57) || $||2 = 0Ta'\b - rl + TT) = F a'\b - rl).

Therefore,

(6.58) - |MI2 Y(t,x)C(t,s)Hy(s,Y(t,x)C(t,s)) = ( / ) T ( s ) (b-r l ) .

Finally,

(6.59) - Y(t,x)C(t,s)Hy(s,Y(t,x)C(t,s))^T = (ir*f(s)a.

Substituting (6.55), (6.58), and (6.59) into (6.52), we verify the last sentence in the theorem.

To verify optimality for the problem with initial time t and initial wealth x, we first

note that

x(*'x)(t) = H(t,Y(t,x)) = x.

According to (6.50),

(6.60) x(*>x)(T) = H(T, Y(t,x)C(t,T)) = I2(Y(t,x)C(t,T)).

By (6.54), (6.60), (6.20) and (6.41), the utility associated with (C ,ic ) is

T
e*»-»Ui(I,(Y(t>x)<(s,t)))ds + e-^T-t)u2(I2(Y(t,x)C(t,T)))}

= G(t, Y(t,x)) = V(t,x).
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6.9 REMARK. Karatzas, Lehoczky & Shreve (1987) obtain the analogues of Theorems 6.7 and 6.8

for the problem with no prohibition on short—selling. Under the additional assumption that the

utility functions are of class C3, Proposition 7.3 of Karatzas et al provides integral formulas for

G and S; these formulas can be adapted to our model by replacing 0 in them by 0.

6.4 Power utility functions.

In this subsection, we specialize the formulas of the previous subsection to the case of

power utility functions

(6.61) Ui(x) = i xP', U2(x) = £ x'2, x >0,

where pi, p2 e (0,1). We have then

(6-62) Ui(y) = h 7*\ U2(y) = ±- y^2, y > o,

where <fc = ^ 7 , j = 1,2. Direct evaluation of (6.19) yields

(6.63) V(t,y) = 5 l ( i l y ^ + ^ y ^ , 0 < t < T, y > 0 ,

where

(6.64) a,(t) ^

T-t, if k(Pl) =

(6.65) a2(t) 4

and
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(6-66)

It is straight—forward to verify that V solves the Cauchy problem (6.28), (6.29).

For each t € [0,T], the function

1 1

-Vy(t,y) = a,(t) y ^ 1 + a2(t) y P ^

is strictly decreasing with l im (—Vy(t,y)) = © and l im (—Vy(t,y)) = 0. Thus, there is an
y | 0 y->a>

inverse function Y(t,*) as in (6.34), and the value function for the primal problem and the

optimal consumption and portfolio policies in feedback form are given by (6.36) and (6.47). In

the special case pt = p2 = p, these formulas become

(6.67) Y(tpc) = ( a i ( t J
X

+ a ^ / " 1 , 0 < t < T, x > 0,
a i ( t J

(6.68) V(t,x) = ( ^ ) (a i(t) + a2(t))P-' xP , 0 < t < T, x > 0,

( 6 6 9 ) C^ = a i(t) + a2(t)
 x ( t ' X ) ( 8 ) ' ' * « = JZp x( t'x)(s)(aT)-^, t < s < T

a i(t) + a2(t)

Note that the optimal consumption and portfolio policies are linear in wealth.

It is also possible to obtain explicit formulas when either Ui = 0 and U2(x) = -x p or

else Ui(x) = — xp and U2 = 0. In the former case, one simply omits ai(t) from (6.67) —

(6.69); in the latter case, a2(t) should be omitted.
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