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ABSTRACT. A recent series of papers [G.AG.GS] began an
investigation whose goal is a thermomechanics of two-phase
continua based on Gibbs's notion of a sharp phase-interface
endowed with thermomechanical structure. In [G] a new balance
law. balance of capillary forces, was introduced and then applied in
conjunction with suitable statements of the first two laws of
thermodynamics; the chief results are thermodynamic restrictions
on constitutive equations, exact and approximate free-boundary
conditions at the interface, and a heirarchy of free-boundary
problems. [AG] applied this theory to perfect conductors, in which
the underlying equations reduce to a single evolution equation for
the interface. [G] and [AG] were limited to rigid systems; [GS]
extends the theory to include bodies that deform as they solidify
or melt. These theories involve several new concepts, examples
being: the creation of new material points; work intrinsic to a
moving interface; the formulation of conservation laws for a
moving interface. Here I shall discuss some of the new ideas
involved in [GS].

MECHANICS AND ENERGETICS OF DEFORMING, ACCRETING
CRYSTALS. In [GS],2 the body, ostensibly a crystal, is allowed:

Supported by the U. S. Army Research Office.
2[GS] vas motivated by studies of Leo and Sekerka [LS], Alexander and Johnson

[AJ,JA], and Larche and Cahn [LC], vhich derive equilibrium relations for the crystal

surface as Euler-Lagrange equations corresponding to a stationary global Gibbs

function. Such derivations are appropriate to statics but tend to obscure the

fundamental nature of balance lavs as basic axioms In any dynamical framework

vhich includes Inertia and dissipation.
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(1) to crystallize through the addition or deletion of material
points at the crystal surface, a process termed accretion;

(ii) to deform.
In conjunction with these kinematical processes, two distinct
force systems ore introduced:
(1) a system of decretive forces which acts within the crystal

lattice to drive the crystallization process;
(ii) a system of deformdtional forces to be identified with the

more or less standard forces that act in response to the local
motion of material points.

Because of the nonclassical nature of accretive forces, it is
not at all clear that there should be an accompanying balance law,
let alone what it should be and how it should relate to the
deformational system. For that reason the underlying mechanical
balance laws are derived from the requirement that the
mechanical production - the rate of kinetic energy minus the rate
of working - be independent of the observer. Here it is necessary
to introduce a new idea, that of a lattice observer: in addition to
the standard observer who measures the gross velocities of the
continuum, there is a second observer? who studies the lattice
and measures the velocity of the accreting crystal surface. This
proceedure leads, not only to the "standard" balance laws for linear
and angular momentum, but to new laws expressing balance of
(micro)forces and (micro)moments within the crystal lattice at the
crystal surface.

One of the chief differences between theories involving phase
transitions and the more classical theories of continuum mechanics
is the creation and deletion of material points as the phase
interface moves relative to the underlying material. We associate
with this process internal forces whose working provides an
outflow of "mechanical energy" associated with the attachment and
release of atoms as they are exchanged between phases. We write
an energy balance relating these internal forces, the forces
3The use of more than one observer might be useful In other continuum theories,

such as theories of liquid crystals, of structured continua, or of mixtures, in which

"force'-balance lavs over end above the standard lavs arise.



described previously, and the bulk energy of the two phases at the
crystal surface.

COHERENT CRYSTAL-CRYSTAL INTERACTIONS. To
illustrate the results of the general theory,4 consider an
isothermal crystal-crystal interaction,5 in which the environment
consists of a second solid phase of the crystal material, and in
which the reference lattices can be chosen to match exactly at the
interface, even though the states of stress and deformation will
generally differ across the interface. For such an interface
balance of linear momentum has the form

div*S + (Sp-SJn - p v ( v a - v p ) . (LM)

while the accretive laws for force and energy may be combined to
form a single accretive balance lav

W p - ^ a « (Spn).(Fpfi) - ( S a n ) . ( F a n ) +

{pv 2 { IF a n l 2 - IFpnl2} + (AB)

n - O-K - div^e + ( F T i ) - L .

Here oc and p identify the two phases; S, v, W, and F
(appropriately labelled) designate the bulk Piola-Kirchhoff stress,
the bulk velocity, the bulk free energy, and the bulk deformation
gradient; p is the common referential density of the two phases;
tf, S, e and IT are the surface tension, the interfacial Piola-
Kirchhoff stress, the accretive shear, and the normal attachment
force; n is the outward unit normal to phase a ; v. L, K, and
div4 are the normal velocity, the curvature tensor, twice the mean
curvature, and the surface divergence for the interface.

The balance laws (LM) and (AB) are general relations,
independent of the particular material under consideration. [GS]
gives a thermodynamic argument in support of the interfacial
4[GS] also derives equations for a solid crystal In a liquid melt.
5Cf. Larche and Cahn [LC].



constitutive equations

(F,n). ( C E )

e = -D n ^(F .n) ,

IT = p(F.n)v,

where tj/XF.n) Is a constitutive function for the interfacial free
energy, F Is the tangential deformation gradient, Dn is the
derivative with respect to n following the interface, and
p(F.n) > 0 is a material function.

Note added: The accretive balance law (AB), for the special case
in which ff = O, S = O, e = O, IT = pv, was discovered
independently and earlier by Abeyaratne and Knowles (On the
driving traction on the surface of a strain discontinuity.
Forthcoming).
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