§1. Introduction

Let H be some fixed graph with r vertices and s edges. H is assumed to be strictly balanced i.e.

$$
\frac{\mathrm{s}}{\mathrm{r}}>\frac{\mu\left(\mathrm{H}^{\prime}\right)}{\nu\left(\mathrm{H}^{\prime}\right)}
$$

for all non-trivial subgraphs H^{\prime} of $H, H^{\prime} \neq \mathrm{H}$, where $\nu\left(\mathrm{H}^{\prime}\right), \mu\left(\mathrm{H}^{\prime}\right)$ are the numbers of vertices, edges in H^{\prime} respectively. (From now on $H^{\prime} \mathrm{CH}$ will always mean such subgraphs).

Consider now the random graph $G_{n, m}$ chosen uniformly from $\mathscr{G}_{\mathrm{n}, \mathrm{m}}=\{$ graphs with vertex set $[n]=\{1,2, \ldots, n\}$ and m edges $\}$ and let X_{H} denote the number of distinct copies of H in $G_{n, m}$. Suppose now $m=\frac{1}{2} \omega^{2-r / s}$ where $\omega=\omega(n)$. Erdös and Rényi [3] showed that

$$
\begin{array}{ll}
\operatorname{Pr}\left(X_{H}=0\right)=1-o(1) & \text { if } \omega \rightarrow 0 \\
\operatorname{Pr}\left(X_{H} \neq 0\right)=1-o(1) & \text { if } \omega \rightarrow \infty .
\end{array}
$$

Here, as usual, we consider limits etc. as $n \rightarrow \infty$. Using $a(n) \sim b(n)$ to stand for $a(n)=(1-o(1)) b(n)$, we remark that

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{H}}\right) \sim \frac{\omega^{\mathrm{s}}}{\alpha}=\lambda, \text { say }
$$

where α denotes the number of automorphisms of H.
Erdös and Rényi's result has been refined in many ways. In particular, Bollobás [1] and Karonski and Rucinski [6] independently showed that if ω tends to a constant and \mathbf{k} is a fixed non-negative integer then

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{X}_{\mathrm{H}}=\mathbf{k}\right) \sim \mathrm{e}^{-\lambda} \frac{\lambda^{\mathbf{k}}}{\mathrm{k}!} . \tag{1.1}
\end{equation*}
$$

The aim of this paper is to show that the Poisson expression (1.1) is good for $\omega \rightarrow \infty$ reasonably fast. In particular we prove

Theonem 1.1

Let H be strictly balanced and λ be as defined above. Then there exists a positive real constant $\theta=\theta(H)$ such that if $\omega=o\left(n^{\theta}\right)$ then

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{X}_{\mathrm{H}}=\mathrm{k}\right) \sim \mathrm{e}^{-\lambda} \frac{\lambda^{\mathbf{k}}}{\mathrm{k}!} \quad 0 \leq \mathrm{k} \leq\left(1+\epsilon_{1}\right) \lambda \tag{1.2}
\end{equation*}
$$

where $\epsilon_{1}=\frac{A_{1}(\operatorname{logn})^{r /(2 r-1)}}{\lambda^{(r-1) /(2 r-1)}}$ for some constant $A_{1}>0$.

$$
\begin{equation*}
\operatorname{Pr}(X=k) \gg e^{-\lambda} \frac{\lambda^{k}}{k!} \quad\left(1+\epsilon_{2}\right) \lambda \leq k \leq \lambda \log n \tag{1.3}
\end{equation*}
$$

where $\epsilon_{2}=A_{2}\left(\frac{\operatorname{logn}}{\lambda^{1-2 / r}}\right)^{\mathrm{r} / 2(r-1)}$ for some constant $A_{2}>0$, provided $\epsilon_{2} \rightarrow 0$.
(The notation $a(n) \gg b(n)$ is used for $a(n) / b(n) \rightarrow \infty)$.

Remarks

1. We are not able to obtain the largest possible values for $\theta(H)$ although we hope to refine our analysis for particular graphs e.g. triangles.
2. Observe that $\epsilon_{1} \lambda \gg \lambda^{1 / 2}$ and so (1.2) is valid into the tails of the Poisson distribution.
3. A somewhat stronger result for $k=0$ and $G_{n, p}$ has been proved independently by Boppanna and Spencer [2] and Jansen, Luczak and Rucinski [4]. Jansen [5] has extended these result to estimate $\operatorname{Pr}\left(\mathrm{X}_{\mathrm{H}} \leq \mathrm{k}\right)$ for $\mathrm{k} \leq \mathrm{E}\left(\mathrm{X}_{\mathrm{H}}\right)$.
4. See Rucinski [7] for a recent survey on the distribution of the number of copies of small subgraphs of random graphs.
§2. Proof of Theorem 1.1.
We will not specify $\theta(H)$ immediately but upper bounds for it will be derived along with the proof. We will use $\mathrm{A}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$ to denote absolute constants whose values may or may not be explicitly stated.

We distinguish between isolated copies of H and non-isolated copies. Here a copy of H in $G_{n, m}$ is isolated if it shares no edge with any other copy of H.

Now let

$$
\begin{gathered}
\pi_{k, \ell}=\operatorname{Pr}\left(G_{n, m} \text { contains exactly } k \text { isolated and } \ell\right. \\
\text { non-isolated copies of } \mathrm{H})
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{q}_{\ell}=\sum_{\mathbf{k}=0}^{\infty} \pi_{\mathbf{k}, \ell}=\operatorname{Pr}\left(\mathrm{G}_{\mathrm{n}, \mathrm{~m}} \text { contains exactly } \ell\right. \text { non-isolated } \\
\text { copies of } \mathrm{H})
\end{gathered}
$$

and

$$
\mathrm{p}_{\mathrm{k}}=\sum_{\ell=0}^{\mathrm{k}} \pi_{\mathrm{k}-\ell, \ell}=\operatorname{Pr}\left(\mathrm{G}_{\mathrm{n}, \mathrm{~m}} \text { contains exactly } \mathbf{k} \text { copies of } \mathrm{H}\right) .
$$

The main work involved in the proof is to justify the following inequalities:

$$
\begin{equation*}
\mathrm{n}^{-\mathrm{A}_{3} \ell^{2 / \mathrm{r}}} \leq \mathrm{q}_{\ell} \leq \mathrm{n}^{-\mathrm{A}_{4} \ell^{1 / \mathrm{r}}} \quad 0 \leq \ell \leq \lambda_{0}=\lambda(\operatorname{logn})^{4} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{G}_{\mathrm{n}, \mathrm{~m}} \text { contains at least } \lambda_{0} \text { isolated copies of } \mathrm{H}\right)=0\left(\mathrm{e}^{-\lambda_{0}}\right) \tag{2.2}
\end{equation*}
$$

and more importantly

$$
\begin{equation*}
\frac{\pi_{\mathrm{k}, \ell}}{\pi_{\mathrm{k}-1, \ell}}=\left(1+\epsilon_{\mathrm{k}, \ell}\right) \frac{\lambda}{\mathrm{k}} \quad 0 \leq \mathrm{k}-1, \ell \leq \lambda_{0} \tag{2.3}
\end{equation*}
$$

where $\left|\epsilon_{\mathrm{k}, \ell}\right|=o\left(\lambda_{0}^{-1}\right)$.
We devote the remainder of this section to showing how our theorem follows from
(2.1) - (2.3) and prove these inequalities later on.

Suppose now that $0 \leq \ell \leq \lambda_{0}$. It follows from (2.3) that

$$
\begin{equation*}
\pi_{\mathrm{i}, \ell}=(1+\mathrm{o}(1)) \pi_{0, \ell} \frac{\lambda^{\mathrm{i}}}{\mathrm{i}!} \quad 0 \leq \mathrm{i} \leq \lambda_{0} \tag{2.4}
\end{equation*}
$$

and so

$$
q_{\ell}=(1+o(1)) \pi_{0, \ell} \sum_{i=0}^{\lambda_{0}} \lambda_{i!}^{i}+{\underset{i>\lambda_{0}}{\sum} \pi_{i, \ell},{ }^{i} .}
$$

$$
=(1+o(1)) \pi_{0, \ell}\left(e^{\lambda}-o\left(e^{-\lambda} 0\right)\right)+o\left(e^{-\lambda_{0}}\right)
$$

on using (2.2). Hence

$$
\pi_{0, \ell}=(1+o(1))\left(q_{\ell}-o\left(e^{-\lambda} 0\right)\right) e^{-\lambda}
$$

and by (2.4)

$$
\pi_{i, \ell}=(1+o(1)) q_{\ell} e^{-\lambda} \frac{\lambda^{i}}{i!}+o\left(\frac{\lambda^{i}}{i!} e^{-\lambda-\lambda} 0\right) \quad 0 \leq i \leq \lambda_{0}
$$

Thus

$$
p_{k}=(1+o(1)) \sum_{\ell=0}^{k} q_{\ell} e^{-\lambda} \frac{\lambda^{k-\ell}}{(k-\ell)!}+o\left(e^{-\lambda^{2}} \lambda_{0}\right) \quad 0 \leq \mathbf{k} \leq \lambda_{0}
$$

Now

$$
p_{k} \geq q_{k} \geq n^{-A_{3}\left(\lambda_{0}\right)^{2 / r}} \gg e^{-\lambda_{0}} \lambda_{0} \quad \text { since } r \geq 3
$$

and so

$$
p_{k} \quad \sim \sum_{\ell=0}^{\mathbf{k}} q_{\ell} e^{-\lambda} \frac{\lambda^{k-\ell}}{(k-\ell)!} \quad 0 \leq \mathbf{k} \leq \lambda_{0}
$$

$$
\begin{equation*}
=\mathrm{e}^{-\lambda} \frac{\lambda^{\mathbf{k}}}{\mathbf{k}!}\left(\mathrm{q}_{0}+\sum_{\ell=2}^{\mathbf{k}} \frac{(\mathbf{k})}{\lambda^{\ell}} \mathrm{q}_{\ell}\right) \tag{2.5}
\end{equation*}
$$

where $(k)_{\ell}=k(k-1) \ldots(k-\ell+1)$.
To proceed from here we need $q_{0}=1-o(1)$. To prove this we need a lemma on the edge density of intersecting copies of H. We need a general version of this to prove (2.1) and we prove this here. Let

$$
\theta_{1}=\min _{H^{\prime} \subset H}\left(\frac{2 s-\mu\left(H^{\prime}\right)}{2 r-\nu\left(H^{\prime}\right)}-\frac{s}{r}>0 .\right.
$$

Note that $\theta_{1}>0$ follows from the fact that H is strictly balanced. A collection $H_{1}, H_{2}, \ldots, H_{k}$ of copies of H in $G_{n, m}$ is said to be linked if for each i there is $j \neq i$ such that H_{i}, H_{j} share an edge.

Lenou 2.1

Let $H_{1}, H_{2}, \ldots, H_{k}, k \geq 2$ be a linked collection of copies of H. Let $K=\bigcup_{i=1}^{k} H_{i}$. Then

$$
\mu(\mathrm{K}) \geq\left(\theta_{1}+\frac{\mathrm{s}}{\mathrm{I}}\right) \nu(\mathrm{K})
$$

Proof

Assume w.l.o.g. that $H_{i} \nsubseteq \underset{\mathrm{j} \neq \mathrm{i}}{U} \mathrm{H}_{\mathrm{j}}$ for $\mathrm{i}=1,2, \ldots, \mathrm{k}$. We prove the result by induction on
k. We discuss the base case and the inductive step in tandem. Let $K^{\prime}={\underset{i=1}{k}-1}_{H_{i}}$. Then

$$
\begin{equation*}
\frac{\mu(\mathrm{K})}{\nu(\mathrm{K})}=\frac{\mu\left(\mathrm{H}_{\mathrm{k}}\right)+\mu\left(\mathrm{K}^{\prime}\right)-\left|\mathrm{E}\left(\mathrm{H}_{\mathbf{k}}\right) \cap \mathrm{E}\left(\mathrm{~K}^{\prime}\right)\right|}{\nu\left(\mathrm{H}_{\mathrm{k}}\right)+\nu\left(\mathrm{K}^{\prime}\right)-\left|\mathrm{V}\left(\mathrm{H}_{\mathbf{k}}\right) \cap \mathrm{K}\left(\mathrm{~K}^{\prime}\right)\right|} . \tag{2.6}
\end{equation*}
$$

Furthermore

$$
u v \in E\left(H_{\mathbf{k}}\right) \cap E\left(K^{\prime}\right) \rightarrow u, v \in V\left(H_{\mathbf{k}}\right) \cap V\left(K^{\prime}\right)
$$

and so if $\mathrm{H}^{\prime}=\left(\mathrm{V}\left(\mathrm{H}_{\mathrm{k}}\right) \cap \mathrm{V}\left(\mathrm{K}^{\prime}\right), \mathrm{E}\left(\mathrm{H}_{\mathrm{k}}\right) \cap \mathrm{E}\left(\mathrm{K}^{\prime}\right)\right)$
then H^{\prime} is a non-trivial proper subgraph of H and, by (2.6)

$$
\frac{\mu(\mathrm{K})}{\nu(\mathrm{K})}=\frac{\mathrm{s}+\mu\left(\mathrm{K}^{\prime}\right)-\mu\left(\mathrm{H}^{\prime}\right)}{\mathrm{r}+\nu\left(\mathrm{K}^{\prime}\right)-\nu\left(\mathrm{H}^{\prime}\right)} .
$$

Base Case: $\mathbf{k}=2$
Here $\mathrm{K}^{\prime}=\mathrm{H}_{2}$ and $\mu(\mathrm{K}) / \nu(\mathrm{K}) \geq \theta_{1}+\frac{\mathrm{s}}{\mathrm{r}}$ follows from the definition of θ_{1}.

Inductive Step

Write

$$
\frac{\mu(\mathrm{K})}{\nu(\mathrm{K})}=\frac{2 \mathrm{~s}-\mu\left(\mathrm{H}^{\prime}\right)+\left(\mu\left(\mathrm{K}^{\prime}\right)-\mathrm{s}\right)}{2 \mathrm{r}-\nu\left(\mathrm{H}^{\prime}\right)+\left(\nu\left(\mathrm{K}^{\prime}\right)-\mathrm{r}\right)}
$$

and observe that

$$
\begin{aligned}
& \left(\mu\left(\mathrm{K}^{\prime}\right)-\mathrm{s}\right)-\left(\theta_{1}+\frac{\mathrm{s}}{\mathrm{r}}\right)\left(\nu\left(\mathrm{K}^{\prime}\right)-\mathrm{r}\right) \\
= & \left(\mu\left(\mathrm{K}^{\prime}\right)-\left(\theta_{1}+\frac{\mathbf{s}}{\mathrm{r}}\right) \nu\left(\mathrm{K}^{\prime}\right)\right)+\mathrm{r} \theta_{1}>0
\end{aligned}
$$

by induction.

It is always more pleasant to do computation in the independent model $G_{n, p}$, $\mathrm{p}=\mathrm{m} / \mathrm{N}, \mathrm{N}=\left(\frac{\mathrm{n}}{2}\right)$. We quote the following simple results (see Bollobas [], Section 2.1). Let \mathfrak{l} be any property of graphs. Then

$$
\begin{equation*}
\operatorname{Pr}\left(\mathrm{G}_{\mathrm{n}, \mathrm{~m}} \in \mathscr{C}\right) \leq 3 \mathrm{~m}^{1 / 2} \operatorname{Pr}\left(\mathrm{G}_{\mathrm{n}, \mathrm{p}} \in \mathscr{b}\right) \tag{2.7}
\end{equation*}
$$

and if \mathfrak{b} is monotone then

$$
\begin{equation*}
\text { a.e. } G_{n, p} \in \mathscr{b} \rightarrow \text { a.e. } G_{n, m} \in \mathscr{A} \tag{2.8}
\end{equation*}
$$

Lemu 2.2

If

$$
\begin{equation*}
\theta<\theta_{1} \mathrm{r}^{2} /\left(\mathrm{s}^{2}+\theta_{1} \mathrm{rs}\right) \tag{2.9}
\end{equation*}
$$

then $q_{0}=1-o(1)$.

Proof
If $G_{n, m}$ has a pair of edge intersecting copies of H then it contains a set of $k \leq 2 r-1$ vertices which span at least $\left\lceil\mathrm{k}\left(\frac{\mathrm{s}}{\mathrm{r}}+\theta_{1}\right)\right\rceil$ edges. Now this property is monotone and

$$
\operatorname{Pr}\left(G_{n, p} \text { contains a pair of edge intersecting copies of } H\right)
$$

$$
\begin{aligned}
& =0\left(\mathrm{n}^{\mathrm{r}\left\{\theta\left(\frac{\mathrm{~s}}{\mathrm{r}}+\theta_{1}\right)-\frac{\mathrm{T}}{\mathrm{~s}} \theta_{1}\right\}}\right) \\
& =\mathrm{o}(1) \text {. }
\end{aligned}
$$

Now use (2.8).

Referring to (2.5), suppose first that $0 \leq k \leq \lambda$. then for θ sufficiently small

$$
\begin{equation*}
1-o(1) \leq q_{0}+\sum_{\ell=2}^{k} \frac{(k)}{\lambda^{\ell}} q_{\ell} \leq q_{0}+\sum_{\ell=2}^{k} q_{\ell} \leq 1 \tag{2.10}
\end{equation*}
$$

Now let $k=(1+\epsilon) \lambda$ where $0 \leq \epsilon \leq \epsilon_{1}=A_{1}(\log n)^{r /(2 r-1)} / \lambda^{(r-1) /(2 r-1)}$. Then, using (2.1)

$$
\begin{aligned}
& \mathrm{u}_{\ell}=\frac{(\mathrm{k})_{\ell}}{\lambda^{\ell}} \mathrm{q}_{\ell} \leq 2\left(\frac{\mathrm{k}}{\lambda}\right)^{\ell} \mathrm{e}^{-\ell^{2} / 2 \mathrm{k}} \mathrm{n}^{-\mathrm{A}_{4} \ell^{1 / \mathrm{r}}} \\
& \leq 2 \exp \left\{\epsilon \ell-\frac{\ell^{2}}{2 \mathrm{k}}-\mathrm{A}_{4} \ell^{1 / \mathrm{r}} \operatorname{logn}\right\}
\end{aligned}
$$

Case 1: $\quad \ell \geq 3 \epsilon \lambda$

$$
\mathrm{u}_{\ell} \leq 2 \mathrm{n}^{-\mathrm{A}_{4} \ell^{1 / \mathrm{r}}}
$$

Case 2: $\quad \ell<3 \epsilon \lambda$

$$
\begin{aligned}
\mathrm{u}_{\ell} & \leq 2 \exp \left\{\ell^{1 / \mathrm{r}}\left(\epsilon \ell^{1-1 / \mathrm{r}}-\mathrm{A}_{4} \operatorname{logn}\right)\right\} \\
& \leq 2 \exp \left\{\ell^{1 / \mathrm{r}}\left(3^{1-1 / \mathrm{r}} \epsilon^{2-1 / \mathrm{r}} \lambda^{1-1 / \mathrm{r}}-\mathrm{A}_{4} \operatorname{logn}\right)\right\} \\
& \leq 2 \exp \left\{\ell^{1 / \mathrm{r}} \operatorname{logn}\left(3^{1-1 / \mathrm{r}} \mathrm{~A}_{1}^{2-1 / \mathrm{r}}-\mathrm{A}_{4}\right)\right\}
\end{aligned}
$$

So if we make A_{1} small enough so that $A_{4} \geq 4 A_{1}^{2}$ then we have

$$
\mathrm{u}_{\ell} \leq 2 \mathrm{n}-\mathrm{A}_{1}^{2} \ell^{1 / \mathrm{r}}
$$

which is also valid for Case 1.
Hence if $\lambda \leq k \leq\left(1+\epsilon_{1}\right) \lambda$ and θ is sufficiently small

$$
\begin{gathered}
1-o(1) \leq q_{0}+\sum_{\ell=2}^{k} \frac{(k)}{\lambda^{\ell}} q_{\ell} \leq 1+2 \sum_{\ell=2}^{\infty} n^{-A_{1}^{2} \ell^{1 / r}} \\
=1+o(1)
\end{gathered}
$$

This together with (2.10) proves the first part of the theorem.
Suppose now that $k=(1+\epsilon) \lambda$ where $1 \geq \epsilon \geq \epsilon_{2}=A_{2}\left(\frac{\operatorname{logn}}{\lambda^{1-2 / r}}\right)^{\mathrm{r} / 2(r-1)}$.
Then by (2.5)

$$
\begin{aligned}
& p_{k} /\left(\frac{e^{-\lambda} \lambda^{k}}{k!}\right) \geq \frac{1}{2} \frac{k!}{\lambda^{k}-[\lambda]}\lfloor\lambda]! \\
& q_{k}-\lfloor\lambda\rfloor \\
& \geq A\left(\frac{k}{\mathrm{e} \lambda}\right)^{k} e^{\lambda} n_{n}^{-A_{3}(\epsilon \lambda+1)^{2 / r}} \\
& \geq A e^{\epsilon^{2} \lambda / 3} n_{n}^{-2 A_{3}(\epsilon \lambda)^{2 / r}} \\
&=A \exp \left\{\frac{\epsilon^{2} \lambda}{3}\left(1-2 A_{3} \epsilon^{\frac{2}{r}-2} \lambda^{\frac{2}{r}-1} \operatorname{logn}\right)\right\} \\
& \geq A \exp \left\{\frac{\epsilon^{2} \lambda}{3}\left(1-2 A_{3} A_{2}^{\frac{2}{r}-2}\right)\right\}
\end{aligned}
$$

Now $\epsilon^{2} \lambda \rightarrow \infty$ and we are free to choose A_{2} so that $1-2 A_{3} A_{2}^{\frac{2}{r}-2}=\frac{1}{2}$ and the result is proved for this case.

When $k \geq 2 \lambda$ we use

$$
\frac{(k+1)!}{\lambda^{s}(k+1-s)!} q_{s} \geq \frac{k!}{\lambda^{s}(k-s)!} q_{s}
$$

to reduce to the previous case.

§3. Proof of (2.1) and (2.2)

The upper bound in (2.1) follows fairly easily from Lemma 2.2. Indeed suppose $G_{n, m}$ contains exactly ℓ non-isolated copies of H. Let K denote the graph induced by the union of these copies. If K has ρ vertices then, by Lemma 2.2 , it has at least $\tau \rho$ edges where
$\tau=\theta_{1}+\frac{\mathrm{s}}{\mathrm{r}}$. Note that

$$
\ell^{1 / \mathrm{r}} \leq \rho \leq \mathrm{r} \ell \leq \mathrm{r} \lambda_{0}
$$

where the lower bound on ρ is from $(\rho)_{\mathrm{r}} \geq \ell$ Hence, on using (2.7),

$$
\begin{aligned}
& \left.\leq 3 \mathrm{~m}^{1 / 2} \underset{\rho=\ell^{\mathrm{r}} \mathrm{I}_{1 / \mathrm{r}}^{\ell}\left(\frac{\mathrm{ne}}{\rho}\right)^{\rho}\left(\frac{\rho^{2} \mathrm{e}}{2 \tau \rho} \mathrm{p}\right.}{\mathrm{g}}\right)^{\tau \rho}
\end{aligned}
$$

and the upper bound in (2.1) follows provided

$$
\theta(\mathrm{s}(\tau-1)+\tau)<\mathrm{r} \theta_{1} / \mathrm{s} .
$$

It is convenient to stop and prove a similar inequality which is needed later.
Let $\lambda_{1}=\left\lfloor\omega^{\mathrm{Ts}}(\operatorname{logn})^{4 \mathrm{r}+1}\right\rfloor$. It follows from (3.1) that provided

$$
\begin{equation*}
\theta(\mathrm{rs}(\tau-1)+\tau)<\mathrm{r} \theta_{1} / \mathrm{s} \tag{3.2}
\end{equation*}
$$

that

$$
\begin{equation*}
\sum_{\ell=\lambda_{1}}^{2 \lambda_{1}} q_{\ell}^{\prime}=o\left(e^{-2 \lambda_{0}}\right) \tag{3.3}
\end{equation*}
$$

where q_{ℓ}^{\prime} is the probability that $G_{n, 2 m}$ contains precisely ℓ non-isolated copies. Furthermore, if $G_{n, 2 m}$ contains more than $2 \lambda_{1}$ non-isolated copies of H then we can choose λ_{1} of them. For each chosen copy of H that does not share an edge with another chosen copy we choose a further copy that does share an edge. In this way we build a linked collection of between λ_{1} and $2 \lambda_{1}$ copies. It then follows by the calculations above that

$$
\begin{equation*}
\sum_{\ell=2 \lambda_{1}+1}^{\infty} q_{\ell}^{\prime}=o\left(e^{-2 \lambda_{0}}\right), \text { also. } \tag{3.4}
\end{equation*}
$$

To prove the lower bound of (2.1) we consider the probability of the existence of a collection of disjoint complete subgraphs of specific sizes. Thus let $\sigma_{t}=\binom{t}{r} \frac{r!}{\alpha}$ for $t \geq r$ and observe that K_{t} contains σ_{t} distinct copies of H . For a given a define $\tau=\tau(\mathrm{a})$ by $\sigma_{\tau+1}>\mathrm{a} \geq \sigma_{\tau}$. Next let $\ell_{1}=\ell$ and $\ell_{i+1}=\ell_{i}-\sigma_{\tau\left(\ell_{i}\right)}$ and $\mathrm{T}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{i}} \tau\left(\ell_{\mathrm{j}}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{k}$ where $\ell_{k} \geq \frac{(r+1)!}{\alpha}>\ell_{k+1}$.

Now let \mathscr{E} denote the event that

$$
\begin{equation*}
G_{n, m} \text { contains complete subgraphs with vertex set }\left[T_{1}\right],\left[T_{2}\right] \backslash\left[T_{1}\right], \ldots,\left[T_{k}\right] \backslash\left[T_{k-1}\right] \tag{3.5a}
\end{equation*}
$$

and
$\boldsymbol{\ell}_{\mathrm{k}+1}$ copies of H containing the edge $\{1,2\}$ but otherwise disjoint from all other copies. Let their vertices belong to $[T] \backslash\left[T_{k}\right]$ where $T-T_{k}=(r-2) \ell_{k+1}$
and
there are no other edges in [T] (this assumption simplifies the calculations but may be a bit drastic!)
and there are no other non-isolated copies of H is $G_{n, m}$.

Thus if \mathscr{E} occurs then $G_{n, m}$ contains exactly ℓ non-isolated copies of H. We can write

$$
\operatorname{Pr}(\mathscr{E})=\pi_{1} \pi_{2}
$$

where

$$
\pi_{1}=\operatorname{Pr}((3.5)) \text { and } \pi_{2}=\operatorname{Pr}((3.6) \mid(3.5))
$$

But

$$
\pi_{1}=\left[\begin{array}{c}
\left(N-\binom{\frac{T}{2}}{2}\right. \\
m-u
\end{array}\right] /\binom{N}{m}=\left(\frac{m_{N}^{N}}{N}\right)^{u}\left(1-0\left(\frac{T^{4}}{N}+\frac{u^{2}}{m}\right)\right)
$$

where $u=\sum_{i=1}^{k}\left[\begin{array}{c}\tau\left(\ell_{\mathrm{i}}\right) \\ 2\end{array}\right]+(\mathrm{s}-1) \ell_{\mathrm{k}+1}$. So

$$
\begin{align*}
& \pi_{1}=\left(\frac{\omega}{n^{r / s}}\right)^{u}\left(1-0\left(\frac{T^{4}}{n}+\frac{\mathbf{u}^{2}}{m}+\frac{u}{n}\right)\right) \\
& =\left(\frac{\omega}{n^{r / s}}\right)^{u}(1-o(1)) \tag{3.7}
\end{align*}
$$

since we show later that

$$
\begin{equation*}
\sum_{i=1}^{k} \tau\left(\ell_{1}\right)^{x}=0\left(\ell^{x / r}\right) \quad \text { for any fixed positive integer } x \tag{3.8}
\end{equation*}
$$

and we assume

$$
\begin{equation*}
\theta<\mathrm{r}\left(2-\frac{\mathrm{r}}{\mathrm{~s}}\right) / 4 \mathrm{~s} \tag{3.9}
\end{equation*}
$$

We show next that $\pi_{2}=1-o(1)$. Note that (3.6) given (3.5)) is monotone and so we can use the $G_{n, p}$ model to estimate π_{2}. Now by the FKG inequality

$$
\pi_{2} \geq \pi_{2}^{\prime} \pi_{2}^{\prime \prime}
$$

where

$$
\pi_{2}^{\prime}=\operatorname{Pr}(\text { there are no non-isolated copies of } \mathrm{H} \text { in }[\mathrm{n}] \backslash[\mathrm{T}])
$$

and
$\pi_{2}^{\prime \prime}=\operatorname{Pr}($ there are no extra copies of H which share an edge with those defined in (3.5)).

Now $\pi_{2}^{\prime}=1-o(1)$ if (2.9) holds and

$$
\pi_{2}^{\prime \prime} \quad \geq 1-\mathrm{E}(\text { number of such copies of } \mathrm{H})
$$

$$
\begin{aligned}
& \geq 1-\underset{H^{\prime} \mathrm{CH}}{\mathbf{E}}\left(\begin{array}{c}
\mathrm{n} \\
\mathrm{n} \\
\left(\mathrm{H}^{\prime}\right)
\end{array}\right) 2^{\mathrm{r}} \mathrm{p}^{\mathrm{s}-\mu\left(\mathrm{H}^{\prime}\right)}\left(\underset{\mathrm{i}=1}{\mathrm{k}}\left[\begin{array}{l}
\tau\left(\ell_{\mathrm{i}}\right) \\
\nu\left(\mathrm{H}^{\prime}\right)
\end{array}\right] \nu\left(\mathrm{H}^{\prime}\right)!+0(1)\right) \\
& =1-0\left(\underset{H^{\prime} C H}{ } \mathbf{n}^{\mathrm{T}-\nu\left(\mathrm{H}^{\prime}\right)} \frac{\omega^{\mathrm{s}-\mu\left(\mathrm{H}^{\prime}\right)}}{\mathrm{r}-\frac{\mathrm{r}}{\mathrm{~s}} \mu\left(\mathrm{H}^{\prime}\right)} \ell^{\nu\left(\mathrm{H}^{\prime}\right) / \mathrm{r}}\right)
\end{aligned}
$$

on using (3.8) to simplify the second summation

$$
=1-o(1)
$$

provided

$$
\begin{equation*}
\theta<\min _{\mathrm{H}^{\prime} \mathrm{CH}} \frac{\nu\left(\mathrm{H}^{\prime}\right)-\frac{\mathrm{r}}{\mathrm{~s}} \mu\left(\mathrm{H}^{\prime}\right)}{\mathrm{s}-\mu\left(\mathrm{H}^{\prime}\right)+\nu\left(\mathrm{H}^{\prime}\right) \frac{\mathbf{S}^{\frac{s}{r}}}{\mathrm{r}}} \tag{3.10}
\end{equation*}
$$

The proof of (2.1) is completed once we have proved (3.8). For then (3.7) implies

$$
\pi_{1} \geq\left(\frac{\omega}{\mathrm{n}^{\mathrm{r} / \mathrm{s}}}\right)^{0\left(\ell^{2 / \mathrm{r}}\right)}(1-o(1))
$$

Proof of (3.8)

When a is large we have, where $\tau=\tau(\mathrm{a})$,

$$
\begin{aligned}
\mathrm{a}-\sigma_{\tau} \quad & \leq \sigma_{\tau+1}-\sigma_{\tau} \\
& =\mathrm{r}(\tau-1)_{\mathrm{r}-1} \alpha^{-1} \\
& <\mathrm{r} \tau^{\mathrm{r}-1}
\end{aligned}
$$

But

$$
\begin{align*}
\mathrm{a} \geq \sigma_{\tau} & \rightarrow\binom{\tau}{\mathrm{r}} \leq \mathrm{a} \\
& \rightarrow\left(\frac{\tau}{\mathrm{r}}\right)^{\mathrm{r}} \leq \mathrm{a} \\
& \rightarrow \tau \leq \mathrm{ra} \mathrm{a}^{1 / \mathrm{r}} \tag{3.11}
\end{align*}
$$

and so

$$
\mathrm{a}-\sigma_{\tau} \leq \mathrm{r}^{\mathrm{r}} \mathrm{a}^{1-1 / \mathrm{r}}
$$

which implies

$$
\begin{equation*}
\ell_{1} \leq \mathrm{r}^{\mathrm{ir}} \ell^{\left(1-\frac{1}{\mathrm{r}}\right)^{\mathrm{i}}} \quad 1 \leq \mathrm{i} \leq \mathrm{k} \tag{3.12}
\end{equation*}
$$

and

$$
\tau\left(\ell_{1}\right) \leq r^{(i+1) r} \ell^{\left(1-\frac{1}{r} \mathrm{i} / \mathrm{r}\right.} .
$$

Now let $\mathrm{i}_{0}=\lceil\mathrm{r} \operatorname{logr}\rceil$ and assume ℓ is large enough that $\mathrm{i}_{0} \leq \mathrm{k}((3.8)$ is trivial for bounded ℓ). Then (3.12) implies

$$
\begin{equation*}
\hat{1}_{0} \leq A l^{1 / \mathrm{T}} \tag{3.13}
\end{equation*}
$$

where $A=r^{i_{0} r}$.
Now $\tau\left(l_{1}\right) \leq r \ell^{1 / r}$ and τ is monotone increasing and so

$$
\begin{equation*}
\sum_{i=1}^{\mathrm{i}_{0}} \tau\left(\ell_{i}\right)^{\mathrm{x}} \leq \mathrm{i}_{0} \mathrm{r}^{\mathrm{x}} \ell^{\mathrm{x} / \mathrm{r}} \tag{3.14}
\end{equation*}
$$

On the other hand it is easy to see that

$$
\sigma_{\tau} \geq \tau \quad \text { for } \quad \tau \geq \mathrm{r}+1
$$

and thus

$$
\ell=\left(\ell_{1}-\ell_{2}\right)+\left(\ell_{2}-\ell_{3}\right)+\ldots+\left(\ell_{k}-\ell_{k+1}\right)+\ell_{k+1}
$$

$$
\begin{aligned}
& =\sigma_{\tau\left(l_{1}\right)}+\sigma_{\tau\left(l_{1}\right)}+\sigma_{\tau\left(l_{2}\right)}+\ldots+\sigma_{\tau\left(l_{\mathrm{k}}\right)}+\ell_{\mathrm{k}+1} \\
& \geq \tau\left(l_{1}\right)+\tau\left(l_{2}\right)+\ldots+\tau\left(l_{\mathrm{k}}\right)
\end{aligned}
$$

and so replacing ℓ by $\ell_{1_{0}}$ above

$$
\tau\left(l_{1_{0}}+1\right)+\ldots+\tau\left(l_{k}\right) \leq \ell_{1_{0}}+1
$$

Hence

$$
\begin{align*}
& \sum_{\mathrm{i}=\mathrm{i}_{0}+1}^{\mathrm{k}} \tau\left(\ell_{1}\right)^{\mathrm{x}} \leq\left({\left.\underset{\mathrm{i}=\mathrm{i}_{0}+1}{\mathrm{k}} \tau\left(\ell_{\mathrm{i}}\right)\right)^{\mathrm{x}}} \begin{array}{rl}
& \leq \ell_{1_{0}+1} \mathrm{x} \\
& =0\left(\ell^{\mathrm{x} / \mathrm{r}}\right) \quad \text { by }(3.13) .
\end{array} . . \begin{array}{l}
\text {. }
\end{array}\right. \tag{3.15}\\
&
\end{align*}
$$

(3.8) follows from (3.14) and (3.16) and this completes the proof of (2.1).

We now turn to the proof of (2.2). For positive integer t
$\operatorname{Pr}\left(\exists \mathrm{t}\right.$ isolated copies of H in $\left.\mathrm{G}_{\mathrm{n}, \mathrm{p}}\right) \leq \frac{1}{\mathrm{t}!}\binom{\mathrm{n}}{\mathrm{r}}^{\mathrm{t}}\left(\frac{\mathrm{r}!}{\alpha}\right)^{\mathrm{t}} \mathrm{p}^{\mathrm{ts}}$

$$
\leq\left(\frac{\mathrm{e}}{\mathrm{t}} \cdot \frac{\mathrm{n}^{\mathrm{r}}}{\mathrm{r}!} \cdot \frac{\mathrm{r}!}{\alpha} \cdot \mathrm{p}^{\mathrm{s}}\right)^{\mathrm{t}}
$$

$$
\leq\left(\frac{3 \omega^{s}}{t \alpha}\right)^{t}
$$

Now put $t=\lambda_{0}$ and apply (2.7).
The same argument gives

$$
\operatorname{Pr}\left(G_{n, 2 m} \text { contains at least } \lambda_{1} \text { isolated copies }\right)=o\left(e^{-2 \lambda_{0}}\right)
$$

and so, using (3.3), (3.4), we find

$$
\begin{equation*}
\operatorname{Pt}\left(G_{n, 2 m} \text { contains } 2 \lambda_{1} \text { or more copies of } H\right)=o\left(e^{-2 \lambda_{0}}\right) \tag{3.17}
\end{equation*}
$$

§4. Proof of (2.3)

This section contains the main ideas of the proof of Theorem 1.1
Let $\mathscr{b}_{\mathrm{k} \ell}=\left\{\mathrm{G} \in \mathscr{g}_{\mathrm{n}, \mathrm{m}}: G\right.$ has k isolated copies and ℓ non-isolated copies of H$\}$. Let $a_{k \ell}=\left|\mathscr{C}_{k, \ell}\right|$ so that (2.3) is actually concerned with the ratio $a_{k, \ell} / a_{k-1, \ell}$

Now for $\mathrm{k}>0, \ell \geq 0$, let $\mathrm{BP}_{\mathrm{k}, \ell}$ denote the bipartite graph with vertex partition ${ }^{\mathscr{b}}{ }_{\mathbf{k}, \ell}$
$\mathscr{\mathscr { L }}_{\mathrm{k}-1, \ell}$ and edge set $\mathscr{C}_{\mathrm{k}, \ell}$ where $\mathrm{G}_{1} \mathrm{G}_{2} \in \mathscr{C}_{\mathrm{k}, \ell} \mathrm{G}_{1} \in \mathscr{C}_{\mathrm{k}, \ell} \mathrm{G}_{2} \in \mathscr{C}_{\mathrm{k}-1, \ell}$ if the edge sets of $\mathrm{G}_{1}, \mathrm{G}_{2}$ are related by

$$
E\left(G_{2}\right)=\left(E\left(G_{1}\right) \backslash\{e\}\right) \cup\{f\}
$$

where e is an edge of some isolated copy of H in G_{1} and f is some edge which does not create a new copy of H when added to G_{1} / e.

If $G \in \mathscr{L}_{k, \ell} \cup \mathscr{L}_{k-1, \ell}$ let $\mathrm{d}(\mathrm{G})$ denote its degree in $\mathrm{BP}_{\mathbf{k}, \ell}$ Then

$$
\begin{equation*}
\mathrm{G} \in \mathscr{\mathscr { C }}_{\mathbf{k}, \ell} \text { implies } \tag{4.1}
\end{equation*}
$$

$$
k s(N-m-\xi(G)) \leq d(G) \leq k s(N-m)
$$

where $\xi(\mathrm{G})=$ the number of copies in G of a graph of the form $H-x$ for some edge $x \in E(H)$.

This is because we have ks choices for edge e in an isolated copy of H. Then of the $N-m$ possible edge replacements f there are at most $\xi(G-e)-1$ choices which create a new H when added. Finally observe that $\xi(\mathrm{G}-\mathrm{e})-1 \leq \xi(\mathrm{G})$.

Also

$$
\begin{align*}
& G \in \mathscr{C}_{k-1, \ell} \text { implies } \tag{4.2}\\
& \qquad(m-s(k+\ell))(\xi(G)-2 \zeta(G)) \leq d(G) \leq m \xi(G)
\end{align*}
$$

where $\zeta(G)=$ the number of subgraphs of G of the form $\left(\mathrm{H}_{1} \cup \mathrm{H}_{2}\right)-x$ where H_{1}, H_{2} are copies of H which share x (so if e.g. H is a triangle then $\left(H_{1} \cup H_{2}\right)-x$ must be a 4-cycle).

To see this we overestimate the number of choices of f by m and the number of choices of e by $\xi(G)$. To underestimate $d(G)$ we underestimate the number of choices of f by $m-s(k+\ell)$ since we do not wish to touch a copy of H. The number of choices for e, given f, is at least $\xi(G-f)-\zeta(G) \geq \xi(G)-2 \zeta(G)$ (crudely.)

The equation

$$
\underset{\mathrm{G} \in \mathscr{\mathscr { b }}_{\mathrm{k}, \ell}^{\mathrm{L}}}{\mathrm{~d}(\mathrm{G})=} \underset{\mathrm{G} \in \mathscr{\mathscr { b }}_{\mathrm{k}-1, \ell}^{\Sigma}}{\mathrm{d}(\mathrm{G})}
$$

and (4.1), (4.2) lead to

$$
\begin{equation*}
\frac{(m-s(k-\ell))\left(\xi_{k-1, \ell}-2 \bar{\zeta}_{k-1, \ell}\right)}{k s(N-m)} \leq \frac{a_{k, \ell}}{a_{k-1, \ell}} \leq \frac{m \bar{\xi}_{k-1, \ell}}{k s\left(N-m-\bar{\xi}_{k, \ell}\right)} \tag{4.3}
\end{equation*}
$$

where $\bar{\xi}_{k, \ell} \bar{\zeta}_{k, \ell}$ denote the expectations of $\xi(G), \zeta(G)$ over $\mathscr{L}_{k, \ell}$. It only remains now to estimate these quantities. For $G \in \mathscr{b}_{k, \ell}$ and $e \in E(\bar{G})(\bar{G}=$ complement of $G)$ let h_{e} denote the number of new copies of H created when e is added to G. Let $\mathscr{N}(G)=$ $\left\{\mathrm{e} \in \mathrm{E}(\overline{\mathrm{G}}): \mathrm{h}_{\mathrm{e}}>0\right\}$ and $\mathscr{N}(\mathrm{G})=|\mathscr{N}(\mathrm{G})|$. Let λ_{1} be as in (3.2).

Lemma 4.3

Let $G=G_{n, m}$.
(a) $\operatorname{Pr}\left(\exists \mathrm{e} \in \mathrm{E}(\overline{\mathrm{G}}): \mathrm{h}_{\mathrm{e}} \geq 2 \lambda_{1}\right)=\mathrm{o}\left(\mathrm{n}^{2} \mathrm{e}^{-2 \lambda_{0}}\right)$.
(b) $\operatorname{Pr}\left(\eta(\mathrm{G}) \geq \mathrm{n}^{\mathrm{r} / \mathrm{s}} \lambda_{1} \operatorname{logn}\right)=o\left(\mathrm{e}^{-2 \lambda_{0}}\right)$.

Proof
Let \mathscr{E} denote the event $\left\{G_{n, 2 m}\right.$ has at least $2 \lambda_{1}$ copies of $\left.H\right\}$. Think of $G_{n, 2 m}$ as $\mathrm{G}_{\mathrm{n}, \mathrm{m}}$ plus m random edges.
(a)

Let $\mathscr{E}_{\mathrm{a}}=\left\{\exists \mathrm{e} \in \mathrm{E}(\overline{\mathrm{G}})\right.$ s.t. $\left.\mathrm{h}_{\mathrm{e}} \geq 2 \lambda_{1}\right\}$. Then

$$
\begin{aligned}
\operatorname{Pr}(\mathscr{E}) & \geq \operatorname{Pr}\left(\mathscr{E} \mid \mathscr{E}_{\mathrm{a}}\right) \operatorname{Pr}\left(\mathscr{E}_{\mathrm{a}}\right) \\
& \geq \frac{m}{N} \operatorname{Pr}\left(\mathscr{E}_{\mathrm{a}}\right)
\end{aligned}
$$

Part (a) now follows from (3.17).
(b)

Let $\lambda_{2}=\mathrm{n}^{\mathrm{r} / \mathrm{s}} \lambda_{1} \operatorname{logn}$ and $\sigma_{\mathrm{b}}=\left\{\eta(\mathrm{G}) \geq \lambda_{2}\right\}$. Then

$$
\operatorname{Pr}(\mathscr{E}) \geq \operatorname{Pr}\left(\mathscr{E} \mid \mathscr{E}_{\mathrm{b}}\right) \operatorname{Pr}\left(\mathscr{E}_{\mathrm{b}}\right)
$$

and (b) follows if we show that $\operatorname{Pr}\left(\mathscr{E} \mid \mathscr{E}_{b}\right) \geq \frac{1}{2}$. But to see this observe that the expected number of copies of H created by adding the second m edges is at least $\frac{m}{N} \eta\left(G_{n, m}\right)$ and

$$
\begin{aligned}
\frac{m}{N} \lambda_{2} & \approx \omega \lambda_{1} \operatorname{logn} \\
& \gg \lambda_{1}
\end{aligned}
$$

Note that we see now that the actual number added, given \mathscr{E}_{b}, majorizes a binomial with mean $\gg \lambda_{1}$.

Let us now return to the consideration of (4.3). Suppose $\ell \leq \lambda_{0}$. It follows from (2.1) and (2.2) that there exists \mathbf{k}_{0} such that

$$
\pi_{\mathrm{k}_{0}, \ell} \geq \mathrm{n}^{-\mathrm{A}_{3} l^{2 / \mathrm{r}}}\left(2 \lambda_{0}\right)^{-1}
$$

We prove that

$$
\begin{equation*}
\pi_{k, \ell} \geq\left(1-\frac{1}{\lambda_{0}}\right)^{\left|k-k_{0}\right|} n^{-\mathrm{A}_{3} \ell^{2 / r}}\left(2 \lambda_{0}\right)^{-1} \quad 0 \leq k \leq \lambda_{0} \tag{4.13}
\end{equation*}
$$

This is true for $k=k_{0}$ and assume inductively that it is true for some $0<k \leq k_{0}$. $k>k_{0}$ will be dealt with subsequently and this is why we are assuming that $k_{0}>0$. We will be able to verify (2.3) as we proceed with the induction. We will estimate $\bar{\xi}_{\mathrm{k}, \ell} \bar{\zeta}_{\mathrm{k}, \ell}$ by the same method and to do this we let Γ denote a generic graph of the form $H-x$ or $H_{1} \cup H_{2}-x$. Let Γ_{0} denote some fixed copy of Γ with vertex set $\{1,2, \ldots, t\}, t=\nu(\Gamma)$ and let $e_{1}, e_{2}, \ldots, e_{u}, u=\mu(\Gamma)$ be an enumeration of its edges.

Let $\mathscr{b}_{k, \ell}^{*}=\left\{G \in \mathscr{C}_{k, \ell}\right.$ for $i=1,2, \ldots, u$ we have either $(i) e_{i} \in E(G)$ and e_{i} does not lie in any copy of H or (ii) $\mathrm{e}_{\mathrm{i}} \notin \mathrm{E}(\mathrm{G})$ and $\left.\mathrm{e}_{\mathrm{i}} \notin \mathscr{N}(\mathrm{G})\right\}$.

Lemas 4.4

$\left.1-\frac{1}{N} \geq \frac{\left|\mathscr{C}_{\mathrm{k}, \ell}^{*}\right|}{\left|\mathscr{b}_{\mathrm{k}, \ell}\right|} \geq 1-\frac{2 \mathrm{~s} \lambda_{2}}{\mathrm{~N}}\right)$.

Proof

By symmetry, we have

$$
\frac{s k}{N} \leq 1-\frac{\left|\mathscr{b}_{k, \ell}^{*}\right|}{\left|\mathscr{b}_{k, \ell}\right|} \leq E_{k, \ell}\left(\frac{(2 s-1)(\eta(G)+s(k+\ell))}{N}\right)
$$

where $E_{k, \ell}$ denotes expectation over G in $\mathscr{L}_{k, \ell}$ (4.13) and Lemma 4.3(b) imply that $\mathrm{E}_{\mathrm{k}, \ell}(\eta(\mathrm{G})) \leq\left(1+\frac{1}{2 \mathrm{~s}}\right) \lambda_{2}$ and the result follows.

So now let $\mathscr{C}_{\mathrm{k}, \ell, \mathrm{i}}^{*}=\left\{G \in \mathscr{C}_{\mathrm{k}, \ell}^{*}: E(G) \cap\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathbf{u}}\right\}=\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{i}}\right\}\right\}$ for $0 \leq \mathrm{i} \leq u$ and consider the bipartite graph $\mathrm{BP}_{\mathrm{k}, \ell, \mathrm{i}}^{*}, \mathrm{i} \geq 0$, with bipartition $\mathscr{b}_{\mathrm{k}, \ell, \mathrm{i}}^{*}, \mathscr{\mathscr { C }}_{\mathrm{k}, \ell, \mathrm{i}-1}^{*}$ and an edge $G_{1} G_{2}$ for $G_{1} \in \mathscr{b}_{k, \ell, \mathrm{i}}^{*}, G_{2} \in \mathscr{b}_{k, \ell, \mathrm{i}-1}^{*}$ if G_{2} can be obtained from G_{1} by deleting e_{i} and
adding a new edge f. Using d to denote degree in $\mathrm{BP}_{\mathbf{k}, \ell, \mathrm{i}}^{*}$ we have

$$
\begin{align*}
& \mathrm{G} \in \mathscr{\mathscr { G }}_{\mathrm{k}, \ell, \mathrm{i}}^{*} \text { implies } \tag{4.14}\\
& \mathrm{N}-\mathrm{m}-\eta(\mathrm{G}) \leq \mathrm{d}(\mathrm{G}) \leq \mathrm{N}-\mathrm{m} .
\end{align*}
$$

There are at most $N-m$ choices for f which gives the upper bound. On the other hand, if $f \notin E(G) \cup \eta(G)$ then $G-e_{i}+f \in \mathscr{C}_{k, \ell, i-1}^{*}$. To see this we first note that $G+f$ has the same $k+\ell$ copies of H as G. But then if $e_{i} \notin \mathscr{N}\left(G-e_{i}+f\right)$ we find that e_{i} belongs to a copy of H in $G+f$ and hence in G, which is disbarred by $G \in \mathscr{C b}_{\mathrm{k}, \ell}^{*}$

$$
\begin{align*}
& \mathrm{G} \in \mathscr{\mathscr { b }}_{\mathrm{k}, \ell, \mathrm{i}-1}^{*} \text { implies } \tag{4.15}\\
& \mathrm{m}-\mathrm{s}(\mathrm{k}+\ell \leq \mathrm{d}(\mathrm{G}) \leq \mathrm{m}
\end{align*}
$$

There are at most m choices for f and if we choose to delete an f which is not in any copy of H then $\mathrm{G}+\mathrm{e}_{\mathrm{i}}-\mathrm{f}$ is in $\mathscr{C}_{\mathrm{k}, \ell, \mathrm{i}}^{*}$. The latter fact following from $\mathrm{e}_{\mathrm{i}} \notin \mathscr{N}(\mathrm{G})$.

Hence if $\mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}}^{*}=\left|{ }^{*}{ }_{\mathrm{k}, \ell, \mathrm{i}}^{*}\right|$ we have, analogously to (4.3),

$$
\begin{equation*}
\frac{m-s(k+\ell)}{N} \leq \frac{a_{k, \ell, i}^{*}}{a_{k, \ell, i-1}^{*}} \leq \frac{m}{N-m-\bar{\eta}_{k, \ell, i}} . \tag{4.16}
\end{equation*}
$$

It follows from (4.13) and Lemma 4.4 that there exists i_{0} such that

$$
a_{k, \ell, i_{0}}^{*} \geq \frac{1}{6} \lambda_{0}^{-1} n^{-A_{3} \lambda_{0}^{2 / r}}\binom{\mathrm{~N}}{\mathrm{~m}}
$$

Now (4.16) implies that $a_{k, \ell, \mathrm{i}}^{*} / a_{k, \ell, i-1}^{*} \geq \frac{m}{2 N}$ and so if $\mathrm{i}>\mathrm{i}_{0}$

$$
\mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}}^{*} \geq \frac{1}{6} \lambda_{0}^{-1} \mathrm{n}^{-\mathrm{A}_{3} \lambda_{0}^{2 / r}}\binom{\mathrm{~N}}{\mathrm{~m}}\left(\frac{\mathrm{~m}}{2 \mathrm{~N}}\right)^{\mathrm{i}-\mathrm{i}_{0}}
$$

and hence we see from Lemma 4.3(b) that $\bar{\eta}_{\mathrm{k}, \ell, \mathrm{i}} \leq 2 \lambda_{2}$ for $\mathrm{i} \geq \mathrm{i}_{0}$. But this then implies that for $\mathrm{i}>\mathrm{i}_{0}$

$$
\begin{equation*}
\left(1-\frac{2 \mathrm{~s} \lambda_{0}}{\mathrm{~m}}\right) \frac{\mathrm{m}}{\mathrm{~N}} \leq \frac{\mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}}^{*}}{\mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}-1}} \leq\left(1+\frac{3\left(\mathrm{~m}+\lambda_{2}\right)}{\mathrm{N}}\right) \frac{\mathrm{m}}{\mathrm{~N}} \tag{4.17}
\end{equation*}
$$

But if $\mathrm{i}_{0} \geq 1$ we see from (4.21) that $\mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}_{0}-1}^{*} \geq \frac{\mathrm{m}}{2 \mathrm{~N}} \mathrm{a}_{\mathrm{k}, \ell, \mathrm{i}_{0}}^{*}$. This puts a bound of $2 \lambda_{2}$ on $\bar{\eta}_{\mathrm{k}, \ell, \mathrm{i}_{0}-1}$ and proves (4.18) for $\mathrm{i}=\mathrm{i}_{0}$. Clearly we can repeat this argument a further $\mathrm{i}_{0}-1$ times to show that (4.17) holds for $\mathrm{i} \geq 1$.

It follows that

$$
\begin{equation*}
\operatorname{Pr}\left(G \text { contains } \Gamma_{0} \mid G \in \mathscr{b}_{k, \ell}^{*}\right)=\left(\frac{m}{N}\right)^{u}\left(1+\epsilon_{k, \ell, \Gamma}\right) \tag{4.18}
\end{equation*}
$$

where $\left|\epsilon_{\mathrm{k}, \ell, \Gamma}\right| \leq A \omega^{\mathrm{ss}} / \mathrm{n}^{2-r} / \mathrm{s}$.
Let us now deal with ξ. Let Λ_{ξ} denote the set of possible graphs of the form $\mathbf{H}-\mathbf{x}$. Then, from (4.18),

$$
\begin{equation*}
\mathrm{E}\left(\xi(\mathrm{G}) \mid \mathrm{G} \in \mathscr{\mathscr { G }}_{\mathbf{k}, \ell}^{*}\right)=\underset{\left.\Gamma \in \Lambda_{\xi}\binom{\mathrm{n}}{\mathrm{r}} \frac{\mathrm{r}}{\alpha_{\Gamma}}\left(\frac{\mathrm{m}}{\mathrm{~N}}\right)^{\mathrm{s}-1}\left(1+\epsilon_{\mathbf{k}, \ell, \Gamma}\right), ~\right) .}{ } \tag{4.19}
\end{equation*}
$$

where $\alpha_{\Gamma}=$ the number of automorphisms of Γ.
To handle $E\left(\xi(G) \mid G \in \mathscr{b}_{k, \ell}-\mathscr{b}_{k, \ell}^{*}\right)$ we note that for such G,

$$
\begin{align*}
& \xi(G) \leq \underset{e \in E(\bar{G})}{\sum} h_{e}+s(k+\ell) \tag{4.20}\\
& \leq 2 \lambda_{1} \eta(G)+n^{r}\left|\left\{e \in E(\bar{G}): h_{e}>2 \lambda_{1}\right\}\right|+s(k+\ell) .
\end{align*}
$$

It follows now from Lemmas 4.3 and 4.4 that

$$
\begin{equation*}
\mathrm{E}\left(\xi(\mathrm{G}) \mid \mathrm{G} \in \mathscr{b}_{\mathrm{k}, \ell}-\mathscr{b}_{\mathrm{k}, \ell}^{*}\right) \leq 3 \lambda_{1} \lambda_{2} . \tag{4.21}
\end{equation*}
$$

Lemma 4.4, (4.19) and (4.21) then imply that

$$
\bar{\xi}_{\mathrm{k}, \ell}=\omega^{s-1} \mathrm{n}^{\mathrm{r} / \mathrm{s}} \underset{\Gamma \in \Lambda_{\xi}}{\Sigma} \frac{1}{\alpha_{\Gamma}}\left(1+\epsilon_{\mathrm{k}, \ell, \Gamma}\right)
$$

where $\epsilon_{\mathrm{k}, \ell, \Gamma}$ now satisfies, $\left|\epsilon_{\mathrm{k}, \ell, \Gamma}\right| \leq \mathrm{A} \omega^{3 \mathrm{rs}-\mathrm{s}+1} / \mathrm{n}^{2-\mathrm{r} / \mathrm{s}}$.
Before looking at ζ observe that

$$
\sum_{\Gamma \in \Lambda_{\xi}} \frac{r!}{\alpha}=\frac{s r!}{\alpha}
$$

since we obtain all copies of graphs of the form $H-x$ in K_{r} by taking all copies of H and deleting an edge. Thus we can write

$$
\begin{equation*}
\bar{\xi}_{\mathrm{k}, \ell}=\frac{\mathrm{s} \omega^{\mathrm{s}-1}}{\alpha} \mathrm{n}^{\mathrm{r} / \mathrm{s}}\left(1+\epsilon_{\mathrm{k}, \ell}\right) \tag{4.21}
\end{equation*}
$$

where $\left|\epsilon_{\mathrm{k}, \ell}\right| \leq A \omega^{3 \mathrm{rs}-\mathrm{s}+1} / \mathrm{n}^{2-\mathrm{r} / \mathrm{s}}$.

Analogously to (4.19) we have

$$
\begin{equation*}
\left.\mathrm{E}\left(\zeta(\mathrm{G}) \mid \mathrm{G} \in \mathscr{b}_{\mathrm{k}, \ell}^{*}\right)=\underset{\Gamma \in \Lambda_{\zeta}}{\Sigma}(\stackrel{\mathrm{n}}{\nu})_{\Gamma}^{\mathrm{r}}\right) \frac{\mathrm{l}}{\alpha_{\Gamma}}\left(\frac{\mathrm{m}}{\Gamma}\right)^{\mu(\Gamma)}\left(1+\epsilon_{\mathrm{k}, \ell, \Gamma}\right) \tag{4.22}
\end{equation*}
$$

where Λ_{ζ} denotes the set of possible graphs of the form $H_{1} \cup H_{2}-x$.

Lemua 4.5

$\Gamma \in \Lambda_{\zeta}$ implies $\frac{\mathrm{r}}{\mathrm{s}}(\mu(\Gamma)+1)-\nu(\Gamma) \geq 1+\frac{\mathrm{r} \theta_{1}}{\mathrm{~s}}$.

Proof

$$
\begin{aligned}
& \text { If } \Gamma=H_{1} \cup H_{2}-x \text { let } H^{\prime}=H_{1} \cap H_{2} \text {. Then } \\
& \\
& \mu(\Gamma)=2 s-\mu\left(H^{\prime}\right)-1
\end{aligned}
$$

and

$$
\nu(\Gamma)=2 \mathrm{r}-\nu\left(\mathrm{H}^{\prime}\right)
$$

The result now follows from the definition of θ_{1}.

It follows from (4.22) and Lemma 4.5 that

$$
\begin{equation*}
\mathrm{E}\left(\zeta(\mathrm{G}) \mid \mathrm{G} \in \mathscr{b}_{\mathrm{k}, \ell}^{*}\right) \leq \mathrm{A} \omega^{2 \mathrm{~s}-1} \mathrm{n}^{\mathrm{r} / \mathrm{s}\left(1-\theta_{1}\right)} \tag{4.23}
\end{equation*}
$$

For $G \in \mathscr{C}_{\mathrm{k}, \ell}-\mathscr{\mathscr { b }}_{\mathrm{k}, \ell}^{*}$ we write, analogously to (4.20)

$$
\begin{aligned}
\zeta(\mathrm{G}) & \leq \sum_{\mathrm{e} \in \mathrm{E}(\overline{\mathrm{G}})}\binom{\mathrm{h}_{\mathrm{e}}}{2}+2 \mathrm{~s}\binom{\ell}{2} \\
& \leq 2 \lambda_{1}^{2} \eta(\mathrm{G})+\mathrm{n}^{2 \mathrm{r}}\left|\left\{\mathrm{e} \in \mathrm{E}(\overline{\mathrm{G}}): \mathrm{h}_{\mathrm{e}}>2 \lambda_{1}\right\}\right|+\mathrm{s} \ell^{2} .
\end{aligned}
$$

It now follows from Lemmas 4.3 and 4.4 that

$$
\mathrm{E}\left(\zeta(\mathrm{G}) \mid \mathrm{G} \in \mathscr{\iota}_{\mathrm{k}, \ell}-\mathscr{\mathscr { b }}_{\mathrm{k}, \ell}^{*}\right) \leq 3 \lambda_{1}^{2} \lambda_{2}
$$

Combining this with (4.23) and $\theta_{1} \leq \frac{1}{\mathrm{I}}$ and using Lemma 4.4 we obtain

$$
\begin{equation*}
\bar{\zeta}_{\mathrm{k}, \ell} \leq \mathrm{A} \omega^{2 \mathrm{~s}-1} \mathrm{n}^{\mathrm{r}\left(1-\theta_{1}\right) / \mathrm{s}} \tag{4.24}
\end{equation*}
$$

Remark: the above analysis, between here and (4.13) could equally well have been done with (4.13) replaced by $\pi_{\mathrm{k}, \ell} \geq \mathrm{e}^{-\lambda_{0}}$. This would lead to slightly larger "hidden" constants A.

Now (4.3) implies

$$
\begin{equation*}
a_{k-1, \ell} \geq a_{k, \ell} \frac{k s\left(N-m-\bar{\xi}_{k, \ell}\right)}{m \bar{\xi}_{k-1, \ell}} \tag{4.25}
\end{equation*}
$$

But clearly $\bar{\xi}_{\mathrm{k}-1, \ell} \leq \mathrm{n}^{\mathrm{r}}$ and so, using (4.13), $\pi_{\mathrm{k}-1, \ell} \geq \mathrm{e}^{-\lambda_{0}}$ and by the above remark (4.21) and (4.24) hold with \mathbf{k} replaced by $\mathbf{k}-1$. But using these estimates now in (4.3) gives

$$
\begin{equation*}
\frac{a_{k, \ell}}{a_{k-1, \ell}}=\frac{\lambda}{k}\left(1+\beta_{k, \ell}\right) \tag{4.26}
\end{equation*}
$$

where, $\left|\beta_{\mathrm{k}, \ell}\right|=0\left(\omega^{\mathrm{s}} \mathrm{n}^{-\theta_{1} \mathrm{r} / \mathrm{s}}+\omega^{3 \mathrm{rs}-\delta+1_{\mathrm{n}} \mathrm{rs}-2}\right)=o\left(\lambda_{0}^{-1}\right)$ provided

$$
\begin{equation*}
\theta<\min \left\{\frac{\mathrm{r} \theta_{1}}{2 \mathrm{~s}^{2}}, \frac{2 \mathrm{~s}-\mathrm{r}}{\mathrm{~s}(3 \mathrm{~s}+1)}\right\} \tag{4.27}
\end{equation*}
$$

Note that $(4.26)=(2.3)$ and that this completes the inductive step in the proof of (4.13) for $k \leq k_{0}$. For $k>k_{0}$ the only thing that changes is that we replace (4.23) by

$$
a_{k+1, \ell} \geq \frac{\left(m-s(k+\ell)\left(\bar{\xi}_{k, \ell}-2 \bar{\zeta}_{k, \ell}\right)\right.}{k s(N-m)} a_{k, \ell}
$$

which enables to use (4.21), (4.24) with k replaced by $k+1$. The rest is as before. This completes the proof of (2.3) and the theorem.

Remark: we have identified 5 upper bounds (2.9), (3.2), (3.9), (3.10) and (4.27). It turns out that (2.9) and (3.9) are implied by the others.

References

[1] B. Bollobás, "Threshold functions for small subgraphs", Math. Proc. Camb. Phil. Soc. 90 (1981) 197-206.
[2] R. Boppana and J. Spencer, "A useful correlation inequality", J. Combinatorial Theory A 50 (1989) 305-307.
[3] P. Erdös, an A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17-61.
[4] S. Janson, T. Łuczak and A. Rucinski, "An exponential bound for the probability of nonexistence of a specified subgraph in a random graph", in Random Graphs '87 (to appear).
[5] S. Janson, "Poisson approximation for large deviations", to appear.
[6] M. Karonski and A. Rucinski, "On the number of strictly balanced subgraphs of a random graph", Graph Theory Lagów 1981, Lecture Notes in Mathematics 1018 Springer-Verlag (1983) 79-83.
[7] A. Rucinski, "Small subgraphs of random graphs (a survey)", to appear.

DEC 042009

