
§1. Introduction

Let H be some fixed graph with r vertices and s edges. H is assumed to be strictly

balanced i.e.

for all non-trivial subgraphs H' of H, H' * H, where KH')> /4 H ' ) are t h e numbers of

vertices, edges in H' respectively. (From now on H' cH will always mean such subgraphs).

Consider now the random graph G chosen uniformly from p = {graphs with

vertex set [n] = {1,2,...,n} and m edges} and let Xg denote the number of distinct copies of

H in G . Suppose now m = ^ am ~~r's where u = ĉ (n). Erdos and Renyi [3] showed

that

Pr(XH = 0) = l - o ( l ) if

Pr(XH#O) = l - o ( l ) if

Here, as usual, we consider limits etc. as n -• o. Using a(n) ~ b(n) to stand for

a(n) = (1 - o(l)) b(n), we remark that

^ = A , say,

where a denotes the number of automorphisms of H.

Erdos and Renyi's result has been refined in many ways. In particular, Bollobas [1] and

Karonski and Rucinski [6] independently showed that if u tends to a constant and k is a

fixed non—negative integer then



(1.1) Pr(XH = k) ~ e"A ^

The aim of this paper is to show that the Poisson expression (1.1) is good for u -+ © reasonably-

fast. In particular we prove

TXEOIEM 1.1

Let H be strictly balanced and A be as defined above. Then there exists a positive

real constant 0 = 0(H) such that if u = o(n ) then

(1.2) Pr(XH = k) ~ e~A ^T 0 < k < (1 + e^

where e, = /^ 1 w/f>». i \ f°r some constant A* > 0.

(1.3) Pr(X = k) » e""A ^ (1 + e2)A < k < A logn

where e2 = A2( ^ f ^ r ) r *or s o m e constant Ag > 0, provided e2 -• 0.

(The notation a(n) > > b(n) is used for a(n)/b(n) -> OD).

Remarks

1. We are not able to obtain the largest possible values for 0(H) although we hope to

refine our analysis for particular graphs e.g. triangles.

2. Observe that e.A > > A ' and so (1.2) is valid into the tails of the Poisson

distribution.



3. A somewhat stronger result for k = 0 and Gn has been proved independently by

Boppanna and Spencer [2] and Jansen, Luczak and Rucinski [4]. Jansen [5] has extended

these result to estimate Pr(Xjr < k) for k < E(XTT).

4. See Rucinski [7] for a recent survey on the distribution of the number of copies of small

subgraphs of random graphs.

§2. Proof of Theorem 1.1.

We will not specify 0(H) immediately but upper bounds for it will be derived along with

the proof. We will use AjA^Ag,... to denote absolute constants whose values may or may not

be explicitly stated.

We distinguish between isolated copies of H and non—isolated copies. Here a copy of

H in G is isolated if it shares no edge with any other copy of H.

Now let

x^ ^ = Pr(Gn contains exactly k isolated and I

non-isolated copies of H)

and

GO

£ icv * = Pr(GTl contains exactly / non-isolated
k=0 ' '

copies of H)

and



k
p v = E T, , / = Pr(G_ contains exactly k copies of H).

The main work involved in the proof is to justify the following inequalities:

-A &1 -A £1
(2.1) n 3 <q^<n 4 0 < I< AQ = A(logn)4

-AQ

(2.2) ^ r ( ^ n m c o n t a * n s a t ^east ^n *s°late(* c°pies of H) = o(e )

and more importantly

where \ev A = o(Al ).

We devote the remainder of this section to showing how our theorem follows from

(2.1) — (2.3) and prove these inequalities later on.

Suppose now that 0 < I < AQ. It follows from (2.3) that

(2.4) V = ( 1 + 0 ( 1 ) ) VTT 0<i<AQ

and so



on using (2.2). Hence

-Ao
x M = ( l + o( l ) ) (q , -o(e U))e"

and by (2.4)

V1 l1 ~ A ~ A n

Thus

\ \k~Z —Aft
p k = ( l + o ( l ) ) E q ^ ~ A ^ = Z y T + o ( e U A Q ) 0 < k <

Now

-A(A Q ) 2 / r - A o
pk - qk - n > : > e ^0 s i n c e r - 3

a n d s o

k , , k - ^



(2-5)

where (k)^= k(k-l). . .(k-£fl).

To proceed from here we need qQ = 1 - o(l). To prove this we need a lemma on the edge

density of intersecting copies of H. We need a general version of this to prove (2.1) and we

prove this here. Let

1 H'cH

Note that 0^> 0 follows from the fact that H is strictly balanced. A collection

HpHrt,...,!!, of copies of H in G is said to be linked if for each i there is j ^ i such

that H.,H. share an edge.

LEMMA 2.1

k
Let E,,KO,...,E,, k> 2 be a linked collection of copies of H. Let K = U H-. Then

1 * *• i = i *

ti*) > (^ + |MK).

PiOOF

Assume w.l.o.g. that H. C U H. for i = 1,2....,k. We prove the result by induction on1 m J
k—1

k. We discuss the base case and the inductive step in tandem. Let K ' = U H-. Then
i = l J

') - |V(Hk) n



Furthermore

uv 6 E(Hk) n E(K') - u,v € V(Hk) nV(K')

and so if H' = (V(Hk) fl V(K'), E(Hk) n E(K'))

then H' is a non—trivial proper subgraph of H and, by (2.6)

K ) _ s

Base Case: k = 2
sHere K' = H2 and /<K)/i^K) > $1 + | Mows from the definition of

Inductive Step

Write

K _2s - /xfHM + MKO - s)
2i - v(tL') + (KK') - r)

and observe that

by induction.
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It is always more pleasant to do computation in the independent model G ,

p =• m/N, N = (g). We quote the following simple results (see BoUobas [ ], Section 2.1). Let

*4 be any property of graphs. Then

(2.7) P r ( G n m 6 JC) < 3m 1 / 2 Pr(G n p €

and if *4 is monotone then

(2.8) a.e. Gn n 6 ji -* a.e. Gnme^

LEMMA 2.2

If

(2.9) 0 < 01 r
2 /(s2 +

then qn = 1 — o(l).

PEOOF

If G has a pair of edge intersecting copies of H then it contains a set of k < 2r—1

vertices which span at least [k(| + $A\ edges. Now this property is monotone and

Pr(G contains a pair of edge intersecting copies of H)



2 r - l 2 2 k( |
E (?)2 2 r p r

k=r K

2 r - l , 9r2
E n k 2 2 r

k=r n
r / s

Now use (2.8).

Referring to (2.5), suppose first that 0 < k < A. then for 0 sufficiently small

(2.10)
k (k),
s —r
=2 r

k

Now let k = (1 + e)X where 0 < e < cx = 1 "" 1 ) /^" 1 ) . Then, using (2.1)

Case 1: I > Z eX

-A/'1
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Case 2: I < 3 e\

/ r (c^ 1 ~ 1 / r - A4 logn)}

l - l /r £2-l/r A l - l

r l o g n C a 1 - 1 / ^ - 1 ^ - A4)}.

So if we make A^ small enough so that A. > 4Af then we have

2n

which is also valid for Case 1.

Hence if A < k < (1 + e^)X and 9 is sufficiently small

k (k ) . a,
E - p q ; < l + 2 S n

1=2 X1 l 6=2

= 1 + o(l).

This together with (2.10) proves the first part of the theorem.

Suppose now that k = (1 + e)A where 1 > e > e2 =
 A

2 (

Then by (2.5)
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k!

2 A / 3 -2A3(cA)2/ r

2 — — 2 — — 1
A e x p { ^ ( l - 2A3c r Ar logn)}

— — 2
r

2 22 ? 1Now e A -* GD and we are free to choose A2 so that 1 — 2AgA2 = j and the

result is proved for this case.

When k > 2A we use

*sAs(k+1-*)! s~A s(k-s)!

to reduce to the previous case.

D

§3. Proof of (2.1) and (2.2)

The upper bound in (2.1) follows fairly easily from Lemma 2-2. Indeed suppose G
n,m

contains exactly I non-isolated copies of H. Let K denote the graph induced by the union

of these copies. If K has p vertices then, by Lemma 2.2, it has at least rp edges where
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T = h + r• Note that

where the lower bound on p is from (p) > I Hence, on using (2.7),

xl r 2

< 3 m l / 2 r |

and the upper bound in (2.1) follows provided

0(S(T-1) + T) < r^/s.

It is convenient to stop and prove a similar inequality which is needed later.

Let A x= |>/rs(logn)4r+1J. It follows from (3.1) that provided

(3.2) ^rs (r - l ) + r ) < r ^ / s
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that

1 —2A
(3.3) S qj = o(e

where q ) is the probability that G n 2 m contains precisely / non-isolated copies.

Furthermore, if G 2 m contains more than 2 A* non-isolated copies of H then we can

choose Aj of them. For each chosen copy of H that does not share an edge with another

chosen copy we choose a further copy that does share an edge. In this way we build a linked

collection of between Aĵ  and 2A.̂  copies. It then follows by the calculations above that

(3.4) S q£ = o(e °), also.

To prove the lower bound of (2.1) we consider the probability of the existence of a collection of

disjoint complete subgraphs of specific sizes. Thus let a, = ( ) — for t > r and observe that

K, contains a. distinct copies of H. For a given a define r = r(a) by a , j > a > a .
i

Next let t^ = t and ^ + 1 = ^ - <*^ \ and Tj = S r{t) for i = 1,2,...,k where

Now let S denote the event that

(3.5a) Gn m contains complete subgraphs with vertex set [T1],[T2]\[T1],...,[Tk]\[Tk_1]

and
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(3.5.b) Ar4-l C0P^es °f H containing the edge {1,2} but otherwise disjoint from all other

copies. Let their vertices belong to [T]\[TjJ where T - T k = (r-2

and

(3.5c) there are no other edges in [T] (this assumption simplifies the calculations but

may be a bit drastic!)

and

(3.6) there are no other non-isolated copies of H is Gn .

Thus if # occurs then G contains exactly I non-isolated copies of H. We can

write

Pr(«0 = tf

where

= Pr((3.5)) and *2 = Pr((3.6)|(3.5)).

But

m — u
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k V1
where u = E I 2 I + (s-l)lk+r So

n

n

since we show later that

(3.8) £ r(l)x = 0(^/ r) for any fixed positive integer x,
i l l

and we assume

(3.9) *<r(2-f)/4s:

We show next that TT2 = 1 — o(l). Note that (3.6) given (3.5)) is monotone and so we can use

the G model to estimate T^. NOW by the FKG inequality

where

TT£ = Pr (there are no non-isolated copies of H in [n]\[T])
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and

Tg = Pr(there are no extra copies of H which share an edge with those defined in (3.5)).

Now *£ = 1 - o(l) if (2.9) holds and

2 > 1 — E (number of such copies of H)

i - i lKH')

« 1 - 0 ( 1 ! nr
H'CH

on using (3.8) to simplify the second summation

= 1-0(1)

provided

(3.10) 0 < min

The proof of (2.1) is completed once we have proved (3.8). For then (3.7) implies
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Proof of (3.8)

When a is large we have, where r = r(a),

< rr1"1.

But

a > a -»(r) < a

(3.11) -» r <

and so

a — cr

which implies
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(3.12)

and

Now let in = [r logr] and assume I is large enough that in < k ((3.8) is trivial for

bounded C). Then (3.12) implies

(3.13)

1Or

where A = r .

Now r{L) < r^ ' r and r is monotone increasing and so

(3.14)

Jo

On the other hand it is easy to see that

a > r f o r r > r
T -

and thus
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= a

+ T^) + ... +

and so replacing / by £ above
*0

Hence

(3.15) E r(4)x<( S
i i l ii

- V1

by (3.13).

(3.8) follows from (3.14) and (3.16) and this completes the proof of (2.1).

We now turn to the proof of (2.2). For positive integer t

Pr(3 t isolated copies of H in G ) < rK^) (77) P

r /e nr r! ^s
^(t * rT ' o" * p
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Now put t = AQ and apply (2.7).

The same argument gives

-2AQ
Pr(Gn 2 m contains at least A. isolated copies) = o(e )

and so, using (3.3), (3.4), we find

-2AQ

(3.17) ^ ( ^ n 2m c o n t a i n s 2 ^ i o r m o r e copies of H) = o(e ).

§4. Proof of (2.3)

This section contains the main ideas of the proof of Theorem 1.1

Let <s6^i = {G 6 p : G has k isolated copies and / non-isolated copies of H}.

Let a ^ = | <A^ ̂  so that (2.3) is actually concerned with the ratio a^ il\_i £

Now for k > 0,1 > 0, let BPi M denote the bipartite graph with vertex partition J6^

^ k - 1 1 a n d e d g e s e t ^k I w l i e r e G1G2 € ^k t G l € ^ k t G2 e ^ k - 1 1 ^the e d g e s e t S o f

GjjGg are related by

E(G2) = (E(G1)\{e» U {*}

where e is an edge of some isolated copy of H in G^ and f is some edge which does not

create a new copy of H when added to G*fe.

If G e ^ y U ^fc_i i l e t d ( G ) denote its degree in BPk ^ Then
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(4.1) G G o4^ £ implies

ks(N - m - f (G)) < d(G) < ks(N - m)

where £(G) = the number of copies in G of a graph of the form H — x for some edge

x e E(H).

This is because we have ks choices for edge e in an isolated copy of H. Then of the

N - m possible edge replacements f there are at most f(G-e)- l choices which create a new

H when added. Finally observe that £(G-e)-l < £(G).

Also

(4.2) G € ^ k _ i i implies

(m - s(k+/))(«G) - 2C(G)) < d(G) < m«G)

where £(G) = the number of subgraphs of G of the form (IL U H2) — x where HpH2 are

copies of H which share x (so if e.g. H is a triangle then (IL U H2) — x must be a 4-cycle).

To see this we overestimate the number of choices of f by m and the number of

choices of e by £(G). To underestimate d(G) we underestimate the number of choices of f

by m — s(k+/) since we do not wish to touch a copy of H. The number of choices for e, given

f, is at least £(G-f) - C(G) > £(G) - 2((G) (crudely.)

The equation

d(G) = E d(G)
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and (4.1), (4.2) lead to

(4.3)
ks(N - m)

where l^pC^i denote the expectations of £(G), £(G) over ^, *. It only remains now to

estimate these quantities. For G G ^ ^ and e € E(G) (G = complement of G) let hfi

denote the number of new copies of H created when e is added to G. Let ^ ( G ) =

{e 6 E(G): he > 0} and ^T(G) = | ^ ( G ) | . Let X± be as in (3.2).

n,m

LEIOU 4.3

Let G = G

(a) Pr(3 e 6 E(G): hg > 2X]) = o(n2e~2A°).

(b) Pr(^G) > nr/sA1 logn) = o( e-2 A°) .

PEOOF

Let $ denote the event {Gn 2 m has at least 2Aj copies of H}. Think of Gn 2 m as

G plus m random edges.

(a)'

Let £ = {3 e e E(G) s.t. h > 2AJ. Then

a7

m
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Part

(b)

(a) now

Let A

follows

2 = n

from (3.17).

SA, logn and $* = > A2}. Then

Pr(*)>Pr(lf|lfb)Pr(£b)

and (b) follows if we show that Pr(£ | £ , ) > -. But to see this observe that the expected

number of copies of H created by adding the second m edges is at least ^ ?;(Gn m ) and

logn

»

Note that we see now that the actual number added, given #, , majorizes a binomial with mean

Let us now return to the consideration of (4.3). Suppose / < AQ. It follows from (2.1) and (2.2)

that there exists kQ such that

We prove that

(4.13) # , t /i. v* ~ T ~ 7 " v*"Yiy u ^ A ^ ^o*
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This is true for k = kQ and assume inductively that it is true for some 0 < k < kQ.

k > kg will be dealt with subsequently and this is why we are assuming that kQ > 0. We will

be able to verify (2.3) as we proceed with the induction. We will estimate h *, £, § by *^e

same method and to do this we let T denote a generic graph of the form H - x or

Hj U H2 - x . Let TQ denote some fixed copy of T with vertex set {1,2,...,t}, t = i/(T) and

let epe2,...,eu, u = fj(r) be an enumeration of its edges.

Let J(^ £ = {G € J6^ £ for i = 1,2,...,u we have either (i) ê  € E(G) and ê  does not

lie in any copy of H or (ii) ei I E(G) and ei I

LEMMA 4.4
*

PE.OOF

By symmetry, we have

N

where E, * denotes expectation over G in jt* t (4-13) and Lemma 4.3(b) imply that

- (* + Js*)A2 a n d t h e r e s u l t foUows-

D

So now let J6^ ^. = {G e J6^ I : E ( G ) n {ei»—>e } = {e l r . . ,e.}} for 0 < i < u and

consider the bipartite graph BP^ , j , i > 0, with bipartition ji^ ^ jt^ n__i and an edge

GjGg for Gĵ  € ji^ ^ G2 € ^Yli—X ** ^2 c a n ^ °^ t a i n e ^ ^r o m G i ^y deleting e^ and
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adding a new edge f. Using d to denote degree in BP^ ^. we have

(4.14) G 6 J(* a j implies

N - m - ? 7 ( G ) < d ( G ) < N - m .

There are at most N — m choices for f which gives the upper bound. On the other

hand, if f I E(G) U T/(G) then G - ej + f e jt^ / i - r T o s e e t h i s w e first n o t e t h a t G + f

has the same k + £ copies of H as G. But then if e. i J^(G — e. + f) we find that e.
1 1 i

*

belongs to a copy of H in G + f and hence in G, which is disbarred by G € <stv t

(4.15) G € jt* / -_i implies

m - s(k+/) < d(G) < m.

There are at most m choices for f and if we choose to delete an f which is not in any

copy of H then G + ê  — f is in *4^ * j . The latter fact following from ê  I

Hence if av 9. = | t^v 9. | we have, analogously to (4.3),
Jt,c,i &)£>*

•

m-s (k+{) , ak,/,i x m
N at #. ^ N — m —

It follows from (4.13) and Lemma 4.4 that there exists ifl such that

* > 1 A"1 n -

Now (4.16) implies that a^ fil\ ^ J_J > ̂ j - and so if i >
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* v 1 i - l -A3A?/ r /N

and hence we see from Lemma 4.3(b) that \n$ 2^2 *or * - V B u t t l l i s t t e n ^P^ 6 8 t l i a t

for i > iA

(4.17)

But - • " ' ' '" *if in > 1 we see from (4.21) that a, , . i > TOT&w- • This puts a bound of 2A0

on ^ / ; i a^d proves (4.18) for i = ig. Clearly we can repeat this argument a further

iQ - 1 times to show that (4.17) holds for i > 1.

It follows that

(4.18) Pr(G contains rQ | G 6 <A^ j) = (^) (1 + ek

where | e k ^ r | <AJs/n2~^s.

Let us now deal with £. Let A > denote the set of possible graphs of the form H — x.

Then, from (4.18),

(4.19) E(«G) | G € j j = ^ (?) | i Q*-1 (1 +

where orp = the number of automorphisms of I\

To handle E(f(G) | G G jiv f- *AV y) we note that for such G,
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( 4 2 0 ) - ' - e £ E ( G )

X»T(G) + n r |{e € E(G):

It follows now from Lemmas 4.3 and 4.4 that

(4.21) E(f(G) | G 6 Jiv

Lemma 4.4, (4.19) and (4.21) then imply that

where c^^p now satisfies, U v / p l < AOJ r s ~ s + /n r / s .

Before looking at ( observe that

since we obtain all copies of graphs of the form H — x in K by taking all copies of H and

deleting an edge. Thus we can write

where



Analogously to (4.19) we have

(4.22) E«(G) | G e S
reA > v ^ r Qv

where A > denotes the set of possible graphs of the form H, U H, - x.

LEMMI 4.5

T e A c implies |

PlOOF

K r = E1 U H2 - x let H' = Hj n Hg. Then

and

The result now follows from the definition of 0+.

It follows from (4.22) and Lemma 4.5 that

(4.23) E«(G) | G 6 J^ £) < Ao;28"1

For G e jfv f — jt* f we write, analogously to (4.20)

28
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hn 2 r | {eeE(G):h e >2A 1 } |

It now follows from Lemmas 4.3 and 4.4 that

E(£(G) | G 6 J&Y / "" ^ \

Combining this with (4.23) and &. < - and using Lemma 4.4 we obtain

(4.24) C M :

Remark: the above analysis, between here and (4.13) could equally well have been done

with (4.13) replaced by TTV f > e °. This would lead to slightly larger "hidden"

constants A.

Now (4.3) implies

<4 2 5>

ks(N-m-fw)

But clearly ^ ^ ^ < nr and so, using (4.13), T ^ ^ > e ° and by the above remark (4.21)

and (4.24) hold with k replaced by k — 1. But using these estimates now in (4.3) gives
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(4-26)

where, | / ? M | = O^n""1 + u?™^1*18-2) = oCA"1) provided

Note that (4.26) = (2.3) and that this completes the inductive step in the proof of (4.13)

for k < kQ. For k > kg the only thing that changes is that we replace (4.23) by

a k+l , / ' 2 ks(N-m)

which enables to use (4.21), (4.24) with k replaced by k+1. The rest is as before. This

completes the proof of (2.3) and the theorem.

Remark: we have identified 5 upper bounds (2.9), (3.2), (3.9), (3.10) and (4.27). It turns

out that (2.9) and (3.9) are implied by the others.
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