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1. Introduction.
Previous studies1 began an investigation whose goal is a

nonequiiibrium thermomechanics of two-phase continua based on
Gibbs's notion of a sharp phase-interface endowed with energy, entropy
and superficial force. In these studies the underlying continuum is
rigid, an assumption that forms the basis for a large class of
problems discussed by material scientists,2 but there are situations
in which deformation is the paramount concern, examples being shock-
induced transformations and mechanical twinning.

In this paper3 we consider deformable two-phase continua in
which one of the phases is solid, the other4 either solid or liquid.
The extension to deformable media is not as straightforward as it
might appear. One of the chief differences between theories involving
phase transitions and the more classical theories of continuum
mechanics is the presence of accretion, the creation and deletion of
material points as the phase interface moves relative to the underlying
material, and the interplay between accretion and deformation leads to
conceptual difficulties. A major complication is that — because there
are two distinct kinematical processes — it seems necessary to

[1986,19883,198861 in which the underlying physical process is heat conduction:

dynamical processes generally out of eqilibrium are considered, and restrictions on

constitutive equations as veil as free-boundary conditions at the interface are derived

from balances for force and energy in conjunction with a law of entropy growth. (Cf.

Angenent and Gurtin [1989], who discuss the isothermal evolution of the interface.)
2Cf., e.g., Mullins and Sekerka [1963,19641
3Our study was motivated by papers of Cahn [1980], Mullins [1981,1984], Cahn and Larche

[1982], Alexander and Johnson [1985,1986], and (especially) Leo and Sekerka [1968], all of

whom consider deformable media and derive equilibrium balance laws for the interface as

Euler-Lagrange equations for a global Gibbs function to be stationary. In these references,

as in this paper, the individual phases have different constitutive equations. A different

point of view is taken by Ericksen [1975,1977,1987], Knowles [1979], Gurtin [1983], James

[1986ab,1987], Ball and James [1987], Fonseca [1987,1988a], Kinderlehrer [1987], Parry

[1987], Chipot and Kinderlehrer [19881 and Abeyaratne and Knowles [1988abc], who consider

elastic materials specified by a single constitutive relation with phase transitions defined

by jumps in deformation gradient induced by constitutive instabilities.
4For the solid-solid interaction the interface is assumed coherent; for the solid-liquid

interaction the liquid is assumed inviscid.



introduce two distinct force systems:5

(i) a system of decretive forces which acts within the crystal lattice
to drive the crystallization process; this system consists of
accretive surface stresses within the interface and accretive
tractions and moments exerted by the lattice at the interface;
these forces are presumed to tie purely accretional, they are forces
that would be present were there no deformation;

(ii) a system of deformational forces to be identified with the more
or less standard forces that act in response to the local motion of
material points; this system consists of deformational surface
stresses withiji the interface and tractions exerted by the bulk
material of the two phases at the interface.

Because of the nonclassical nature of accretive forces, it is not
at all clear whether or not there should be an accompanying balance
law, let alone what it should be and how it should relate to the more
classical momentum balance laws. For that reason we base most of
our considerations on invariance. Here we find it necessary to
introduce a new iqfea, that of lattice observers: in addition to the
standard spatial observers who measure the gross velocities of the
continuum, we allow for lattice observers,6 who study the crystal
lattice and measure the velocity of the accreting crystal surface.

We characterize the accretive and deformational forces by the
manner in which t|ey expend power: we assume that the accretive and
deformational surface stresses expend power over velocities associated
with the motion of the interface, that the deformational tractions
expend power over corresponding material velocities, and that the
accretive traction and moment expend no power. Both the accretive
5That more than one force system is needed is clear from a physical discussion of Cahn

[1980], vho writes: "solid, surfaces can have their physical area changed in two ways, either

by creating or destroying surface without changing surface structure and properties per

unit area, or by an elastic strain along the the surface keeping the number of

surface lattice sites constant while changing the form, physical area and poperties" (cf.

Gibbs [1878] pp. 314-331).
6The use of more than one observer might be useful in other continuum theories, such as

theories of liquid crystals, of structured continua, or of mixtures, in which "force'-balance

laws over and above the standard laws arise.



and deformational surface stresses perform work related to the
accretive motion of the interface; in fact, this work is performed by a
certain linear combination of the two stresses, referred to as the
total accretive stress.

An outline of the paper is as follows. We begin with a fairly
thorough discussion of the kinematics of a deforming, accreting
crystal, and the manner in which the kinematical quantities transform
under changes in spatial and lattice observers.

Next we discuss the underlying mechanics. As the paper is
devoted entirely to the physics of the phase interface,7 we use
infinitesimally thin control volumes; that is, control volumes which
contain a portion of the interface plus the immediately adjacent bulk
material. A basic ingredient of our theory is the mechanical
production (the outflow of kinetic energy minus the expended power)
associated with a control volume. The first law of thermodynamics
requires that this production be balanced by the addition of heat and
by changes in the internal energy; since heat and energy are invariant
quantities, it seems reasonable to presume that the mechanical
production itself be invariant. In fact, we use this invariance to
derive several important results: invariance under changes in the
kinetic description of the interface reduces the tangential part of the
total accretive stress to a surface tension; invariance under changes
in spatial and lattice observer yields the mechanical balance laws of
the theory. This latter use of invariance is highly nontrivial: it not
only leads to the expected momentum balance laws for the surface,8

it leads to additional force and moment Balance laws for the accretive
system.

Dasic to our theory is the notion of attachment forces, which
are forces within the lattice associated with the attachment and
release of atoms as they are exchanged between phases. We analyze
7The basic equations satisfied by the bulk material are the standard equations of a

one-phase material and can be found, e.g.. in Gurtin [1981].
8Cf. Gurtin and Podio Guidugli [1989], who use invariance of the mechanical production to

deduce balance lavs for mass and linear momentum for a "massy" interface separating

nondeformable phases.



these forces using bulk control volumes for the individual phases; such
control volumes are infinitesimally thin regions which contain bulk
material arbitrarily close to the interface, but exclude the interface.

We show that the power expended on an arbitrary control volume
(containing the interface) can be decomposed into: power expended by
surface tension in the creation of new surface, power expended in
changing the orientation of the surface, power expended in stretching
the surface, power expended by the attachment forces in the exchange
of atoms between phases, and inertia! power expended in the velocity
change between phases.

The conceptual difficulties of the theory concern forces and the
manner in which they relate to the underlying kinematics. For that
reason we consider next a purely mechanical theory, for which the
second law is a dissipation inequality for control volumes: the energy
increase plus the energy outflow cannot be greater than the power
expended, the relevant energies being the energy of the interface and
the bulk energy of the two phases. Again invariance provides an
important result: surface tension equals interfacial energy.

As constitutive equations we allow the surface energy, the
accretive and deformational surface stresses, and the normal
attachment force to depend on the bulk deformation gradient F, the
normal n to the interface, the normal speed v of the interface, and
a list z of subsidiary variables of lesser importance. We show, as a
consequence of the dissipation inequality, that: the surface energy and
the accretive and deformational surface stresses are independent of v
and z, and depend on F at most through the tangential deformation
gradient F; in fact, the energy

y = ^ (F ,n ) (1.1)

completely determines the surface stresses through relations, the two
most important of which are:

(F.n), (1.2)



in which S is the deformational (Piola-Kirchhoff) surface stress, e
is the normal accretive stress, dF is the partial derivative with

respect to F, and Dn is the derivative with respect to n following
the interface. A further consequence of the dissipation inequality is
an explicit expression for the normal attachment force IT:

iT = *. + 4f + j3v. ]3 = p~(F,n,v,z) > 0, (1.3)

where W is the' difference in bulk energies, while k is related to
changes in momentum and kinetic energy across the interface. Using
these results, we are able to show that the the sole source of
dissipation is the exchange of atoms between phases, with J3v2 the
dissipation per unit interfacial area.

We list the form the resulting equations take when specialized to
coherent crystal-crystal interactions and to crystal-melt interactions;
in the former case we have the relations9

(S e -S c )n = pv (v c -v e ) . ( 1 4 )

V " V = (Scn)-(Fcn) - (Sen)-(Fen) - ft. - 9 - j3v.

with
2{IFcnl2 - IFenl2}.e><> " (1.5)

o = -u»K - d iv .e + ( F T i ) - L .

The subscripts c and e denote the two phases; *MC and *Me are
the bulk energies per unit reference volume; S c and S e are the bulk
9For statical situations: (1.4)1 vas derived by Gurtin and Murdoch [1975] as a consequence of

balance of forces; (1.4)2 and its counterpart for crystal-melt interactions vere derived by Leo

and Sekerka [1989] (cf. Johnson and Alexander [1985,1986]) as Euler-Lagrange equations for

stable equilibria. In the absence of surface stress and surface energy ( § * 0 , 6 * 0 , ^ = 0): (1.4)1

is a standard shock relation; (1.4)2 (vith p * 0) vas established by Abeyaratne and Knovles

[1988c]. Counterparts of (1.4) for a rigid crystal in an inviscid melt vere derived by Gurtin

[1989]; an analog of (1.4)2 for a rigid system vas given by Gurtin [1988b].
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Piola-Kirchhoff stresses; Fc and Fe are the bulk deformation
gradients; vc and ve are the material velocities; p is the
reference density. The remaining quantities concern the interface: I
is the curvature tensor with K, its trace, the total curvature, and
div4 is the surface divergence.

Our final step is to enlarge the theory to include thermal
influences. We introduce temperature, bulk and superficial internal
energies and entropies, and heat flow in conjunction with laws of
energy balance and entropy growth. Fortunately, the mechanical results
not pertaining to constitutive equations remain valid within this more
general context, w^ile the remaining derivations are similar to those
of the mechanical theory. In particular, here surface tension equals
interfacial free-energy^0

We generalize the constitutive equations by allowing for a
dependence on the temperature 8, and we write an additional
constitutive equation for the superficial entropy s. Then, in place of
(1.1)-(1.3), we have the relations

y = ^(F,8,n), s = -de\jAF.8,n),

6 = dF^(F,6.n), e = -Dn^(F,8,n), (1.6)

TT = fc. + W + J3v, p = jr(F,n,8,v,z) > 0,

with xjj the interfacial free energy.
As before, we list the form the resulting equations take when

specialized to coherent crystal-crystal interactions and to crystal-
melt interactions; in the former case the basic equations consist of
(1.4) and (1.5) in conjunction with the entropy balance11

s* - SKV + [S^ - SMe]v « 8"1[hc - he]-n + 8"1pv2, (1.7)

with VMC and WMe the bulk free energies per unit reference volume,

iOf ree energy - Internal energy - (temperatureXentropy).
11Cf. Abeyaratne and Knovles [1988c] for the special case in which surface stress, surface
energy, and surface entropy are neglected.



SMC and SMe the bulk entropies per unit reference volume, and hc

and he the bulk (Piola-Kirchhoff) heat flux vectors per unit reference

area.
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1. Kinematics.
2. Preliminary definitions and results.
2.1. Surfaces.12

2.1a. Definitions.

The term vector will generally signify an element of IR3. Let

n be a unit vector. I(n)€lin(n-L,IR3) is the inclusion of n 1 into

IR3: 8(n) maps aen1 into a considered as a vector in IR3. F(n)

is the (perpendicular) projection from IR3 onto the plane n 1 : for

each aeIR3, Ftnfaen1 is defined by

F(n)a = a - (a-n)n. (2.1)

We consider P(n) as an element of linCR'.n-M. Thus the codomain

of F(n) is n1 and not IR3; with this agreement,

i(n)T = P(n). (2.2)

Let & denote a smooth,13 oriented surface in IR3 with unit

normal field n(X), the orientation of &. Then n(X)1 is the
tangent plane to & at Xe&. We use the shorthand

12We use the notation and many of the results of Gurtin and Murdoch [1975], Murdoch
[1976,1978], and Gurtin [1986,1988ab]. Given finite-dimensional inner product spaces V and
W, lin(V\W) is the space of linear transformations from V into W; lin(V,W) is equipped
with inner product A»B = tr(ABT). Here tr denotes the trace, BT is the transpose of B,
and ve write u-v for the Inner product of u and v, regdrdiess of the space in question.
Also, A€lin(V,V) is symmetric if A = AT, skew if A*-AT. The tensor product of V€V
and V€W is the transformation v®W€lin(W,V) defined by (v$w)z«(w-z)v for all Z€W;
for v,v€V, v A v * v 0 v - v 0 v . The inverse transpose B"T of B€lin(V,W) is defined by
B"T = (B~1)T*(BTr1. v/e write "x" for the cross product on R3; for beIR3,
(bx)€lin(R3,R3) is the skew transformation defined by (bx)z = bxz for all Z€R3.
Qelin(R3,R3) is a rotation if QT«Q"1 and detQ>0. Here det is the determinant.
13We omit assumptions of regularity concerning functions, surfaces, regions, etc.
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= Kn(X)). P(X) = P(n(X)).

so that F(X) is the projection onto the tangent plane at X, while
8(X) is the inclusion of the tangent plane into R3. The fields F and
B on & will be referred to as the tangential projection and
tangential inclusion for £ .

We will consistently use the following terminology:
superficial scalar or vector field: a scalar or vector field on £;
tangential vector field: a superficial vector field whose values are

tangential to £;
superficial tensor field: a field 0 on & with values

E(X)elin(n(X)-L,IR3);

tangential tensor field: a superficial tensor field C whose values

satisfy C(X)a€n(X)1 for each aenCX)1.

Let T be a tangential tensor field. Although T(X) maps

tangent vectors into tangent vectors, we consider the codomain of T(X)

to be IR3. With this in mind, we refer to a tangential tensor field T

as symmetric or skew according as F(X)T(X) (or equivalently

T(X)F(X)) is symmetric or skew at each X€£. Similarly, we define

the trace, t rT . of a tangential field T by t r T - t r ( P T ) - t r ( T P ) .

Each tangential tensor field T admits the unique decomposition

+ Ts k v ,

where Tsyrn and Tskv< respectively, are symmetric and skew
tangential tensor fields called the symmetric and skew parts of T. In
fact,

T8ym - { K P T + T T I ) , T s k v = { K P T - T T I ) . (2.3)

Each superficial tensor C admits the unique decompositions

C = Ctan + n<8>e = Csym + Cskv + n®e, (2.4)



12

where Ctan is a tangential tensor field, Csum a symmetric tensor
field, Cskv a skew tensor field, and e a tangential vector field;
in fact,

C = CTn; Etan = IFC; Csym and Cskv

(2 5)are the symmetric and skew parts of Ctan.

We will refer to Ctan Csym Cskv, and e, respectively, as the
tangential, symmetric, skev, and normal components of C. If
for some scalar field o",

C - Csym = crl,

then C is a surface tension o\
If C is a superficial tensor field and Q a rotation, then

C(X)Q is not defined, since the codomain of Q is IR3, while the

domain of C(X) is J-nCX)1; for our purposes it is convenient to

write C(X)Q for the linear transformation of QT7 into IR3 given

by

[C(X)Q]v = C(X)(Qv) for all veQT7. (2.6)

We write V 4 for the surface gradient.14 For $ a

superficial scalar field, V ^ is a tangential vector field; for v a
superficial vector field, V^v is a superficial tensor field. The trace
of FV^v is the surface divergence of v:

div4v = tr(FV,jV).
1 4 Cf., e.g., Gurtin and Murdoch [1975], Gurtin [1988ab]. For z«z(t) a curve on

z\ v(z) ' - [V^v(z) ]z ' ; for v tangential, P V ^ v is the covenant derivative

of v.
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Further, for * a smooth field on a closed region in R3 containing

V*<D = ( V * ) i , (2.7)

with V the gradient15 in R3.
The superficial tensor field

I = -V^n (2.8)

is the curvature tensor. A classical result is that

L Is tangentidl and symmetric. (2.9)

The superficial scalar field

K = t rL (2.10)

is the total curvature (twice the mean curvature).
When & has a smooth boundary curve d£, the outward unit

normal v to d£ is well defined with v(X) tangent to £ at
each

2.1b. Differential and integral identities.
Let 0 be a superficial tensor field. Then div^C is the unique

vector field on £ with the property

a-div^C = div^(CTa)

for all constant vectors a.
The surface gradient and surface divergence obey the usual laws

, div, and curl (vithout subscripts) will denote the gradient, divergence, and curl in
R3. When discussing deforming bodies, V and Div are the material gradient and
divergence, grad and div the spatial gradient and divergence.
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for the differentiation of scalar products and inner products.16 Less
standard are the identities:17

div^(CTv) = v-div^C + C - V ^ v .

div^C = div^Ctan + (div4e)n - Lie, (2.11)

n-div^C = C tan-L + (div^e).

Here v is a superficial vector field, while C is a superficial tensor
field with Ctan and is the corresponding tangential and normal
components.

Let ft denote a sufficiently regular subsurface of >S, and let
v denote the outward unit normal to the boundary curve dft. Then the
surface divergence theorem (for tensor fields) asserts that, for C
a superficial tensor field,

JCvds = (div^Cda. (2.12)18

dft ft
We write

r(X) = X - Xo (2.13)

for the position vector from a fixed point X0€lR3. We then have the
following identity,19 valid for C a sufficiently smooth superficial
tensor field:

JrAEvds = /(rAdiv^C + 1CT - CF)da,
dft ft

or equivalently, by (2.4),

16Cf. Gurtin and Murdoch [1975], eq. (2.17).
17Cf. Gurtin [1988b], eq. (A14).
1BCf. Gurtin and Murdoch [1975], eq. (2.14). We write da for the area measure on surfaces,

ds for the arc-length increment on curves.
19Cf. Gurtin and Murdoch [1975], p. 305.
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JrACvds = {{rAdiv^C + GAn - 2Cs k vP}da f (2.14)
dR <R

with the tangential field e viewed as having values in IR3.

2.1c. Mappings of surfaces.
Let S 1 and 8 2 be regular regions20 in IR3, and write

1 1 and £2 = dS)2. Then a deformation of » 1 onto 8 2 is a
smooth bijection g.€)^-*£>2 whose gradient

G = Vg (2.15)

has strictly positive determinant. Let X1€^1 and X2€,$2 satisfy
X2 = g(X1). Then a standard identity relates the outward unit normals

and n2 on ^ 1 and &2:

n2(X2) = X(X1)G(X1)"Tn1(X1).
,-Tn rv M-1 (2.16)

Further,

G(X1) maps tangent vectors at X1€>8i (2 17)

to tangent vectors at X2€A2.

Let F i and flt denote the tangential projection and tangential

inclusion for &]t and let

i = V^ g = GIL. (2.18)

IKX.,) is a linear transformation from the tangent plane at X1€^1 into
IR3, and hence cannot be invertible. This lack of invertibility is
2ORoughly speaking, a regular region £> Is a closed, connected, possibly unbounded region

In R3 whose boundary d£> Is a smooth, connected, possibly unbounded surface; the exter ior

of © Is the regular region 6 - c losure(R3 \» ).
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trivial: by (2.17). i(X1)T = F2(X2)i(X1)T for T tangent at X1€^1, and

F2(X2)i(X1)€lin(n1(X1) l,n2(X2)1) is invertible. We define the tensor

field i s u r f on ^ 1 by

^ , ; (2.19)

then, omitting arguments,

( B ) - 1 - ^ - 1 ! ( 2 2 O )

If we apply the transpose of (2.2O)2 to 02 and use (2.2) and the fact

that F282 is the identity on r^1, we arrive at the useful identity:

GTI2 = J/Bsurf)1" • n1€>F2Gn1. (2.21)

We define the superficial Jacobian det i through the relation

li(X1)TxB(X1)vl

detB(X^) = . (2.22)
iTx VI

where T and v are arbitrary vectors in n^X^1 with
(the particular choice being irrelevant). Then

detG = Xdeti . (2.23)

The superficial Jacobian and the adjugate adji of S defined by

adj i = ( d e t e ) ( i s u r f r
T (2.24)

may be used to relate integrals over surfaces and curves in &̂1 to
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corresponding integrals for £2. Let Ri denote a sufficiently regular

subsurface of ^i with ftj-gCft,), and let v i denote the outward

unit normal to the boundary curve diR̂  Then, for * , v, and i 2 ,

respectively, a scalar, vector, and superficial tensor field on &2,

f *da = J(*og)(deti)da,

f i ,v ,ds = f i .v.ds, (2.25)

Jv-i2v2ds = ( ( v o g j - l ^ ^ s ,
dR2 d(R1

where

B^ = (!2<>g)adjS. (2.26)

2.2. Smoothly propagating surfaces.
Let £(t) (teT) denote a one-parameter family of surfaces in

IR3, with T, the underlying time interval, an open interval of R,
and let

), t€T},

T , t€T}. ( 2 2 7 )

Fix t€T and let V(p)€lR3 be defined and smooth for p in some
neighborhood of t. Then:
(i) Y(J3) is an ^-trajectory through X at time t provided

V(t) = X and Y(J3)€,S(J3) for all P;
(ii) Y(J3) is a d^-trajectory through X at time t provided

Y(t) = X and Y(J3)€d,8(p) for all p.
In either case, we write

Y'(P) = dY(p)/dp.



18

We will refer to £(t) (teT) as a smoothly propagating
surface if:21

(i) for each teT, £(t) is an oriented, nonintersecting, smooth,
possibly unbounded22 surface with a smooth (possibly empty)
boundary-curve d£(t);

(ii) the sets £ T and (d£)T are smooth manifolds in IR3x|R, and
the orientation n(X,t) for £(t) is smooth in (X,t) on £ T ;

(iii) given any t€T, there is a smooth ^-trajectory through each
point of £(t) and a smooth d£-trajectory through each point of
diS(t).

We will consistently write

£ for the one-parameter family £(t) (t€T).

Superficial fields and tangential fields for £ are as specified in
Section 2.1; they are defined on £T , but are superficial or tangential
with respect to £(t) at each t€T (rather than with respect to £T ) ,
and a similar interpretation applies to the tangential projection and
tangential inclusion for £. Similarly, VA and div^ denote the
surface gradient and surface divergence on £(t) for fixed t.

Let >S be a smoothly propagating surface, and let n(X,t) denote
the orientation for MX) and v(X,t) the outward unit normal to the
boundary curve

(2A) Lemma,
(i) Choose t€T. Then, for each X€£(t), v^(X,t) defined by

v^(X.t) = V(t)-n(X.t) (2.28)

is independent of the ^- t ra jectory Y(J3) through X at t,
and, for each Xed^(t), v(djS)tan(X,t) defined by

21Cf. Gurtin [1988a].
22As a set in Rs.
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.t) • V(t).v(X.t) (2.29)

is independent of the d£-trajectory V(J3) through X at t.
(ii) The field (n,-v4) is normal to £ T ; the fields (n,-vz) and

(v,-v (d j& ) tan) are normal to

Proof. Choose (X.t)€>ST and write n = n(X,t). There is a unique

scalar oc such that (n.oc) is normal to £ T at (X,t). Choose an

^- t ra jectory Y(J3) through X at t. Since (Y(J3),J3) is a curve on

£ T , i ts derivative at t = J3 must be orthogonal to (n,<x); hence

<x = -Y'(t)»n. Thus v^(X,t) is independent of V(p) and (n,-v4) is
normal to >8T.

Similarly, choose (X,t)€(d^)T and write n = n(X.t). v = v(X,t).

There is a unique scalar X such that (v,X) is tangent to £ T and

normal to (d£)T at (X,t). The remainder of the proof follows as in

the preceding paragraph. •

The following terminology is useful: v^ is the normal speed23

of £; v(dj&)tan is the Intrinsic edge speed of &;

vA = v4 n (2.30)

is the normal velocity of £;

(2-31)

is the Intrinsic tangential edge velocity of £ ;

V&s - V j + V (d j&) tan (2.32)

is the Intrinsic edge velocity of & (Figure 2A).

^3We use the term speed even though v^ and v ^ j t a n may have negative values.
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A*(ten)

Figure 2A. The Intrinsic velocities at the edge of an evolving surface £(t). vA 1s normal

to Mi); v M ( l d n ) 1s tangent to * ( t ) end normal to dMil The plane shovn Is

tangent to MX) at the point of bMX) under consideration.
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More generally,24 a smooth field v on £ T is a velocity
field for & if

v-n = v 4 ; (2.33)

a smooth field v on (d£)T is an edge velocity for £ if

v n = v*. v v = v(dj8)tan. (2.34)

(2B) Lemma. Let v be a smooth vector field on £ T ; then
v is a velocity field for & if and only if, given any teT and any
X€^S(t), there is a locally unique ^-trajectory Y(j3) through X
at t with

V(J3) = V(Y(J3),J3) (2.35)

for all p near t. An analogous statement applies with "&"
replaced by "d£" and "velocity field" by "edge velocity".

Proof. We will prove that portion of the Lemma regarding &.
The "if" assertion is a direct consequence of (2.28) and the definition
of a smoothly-evolving surface. To establish the "only if" assertion
assume that v is a velocity field. Choose t€T and X€£(t). Then
near J3 = t there is is a locally unique solution Y(J3) of (2.35) that
passes through X at t. We have only to show that Y(J3)€>8(j3). But
this follows from the fact that, because of (2.33) and (2Aii), the vector
(d/dJ3)(YO3).J3) is. for each J3, tangential to £ T at (Y(J3),p), so that

p) describes a curve on £ T . •

The trajectories corresponding to the the normal velocity are

evolving surface described in parametric form x«x(p,t) (where p ranges in a region

in R2) has an associated velocity field defined by dtx(p.t). Changes in velocity field then

correspond to changes in parametrization; a basic axiom of our theory is that the underlying

physics be Invariant under reparametrization.
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called normal trajectories, and the time derivative *°(X,t)
following ^ of a scalar, vector, or tensor function *(X,t) is
defined by

• *(X.t) = (d/aj3)4>(y(j3),p)|p=t, (2.36)

with y(J3) the normal ^-trajectory through X at t. We then have
the well known relation

n'^-V^v*. (2.37)

(2C) Transport Theorem.25 Let $ be a smooth superficial
scalar field on a bounded, smoothly propagating surface &. Then

(d/dt){J*da} = ( ( * • - *KVA)da + J*v(d;&)tands. (2.38)

We will refer to (R(t) (t€T0CT) as a smoothly propagating
subsurface of & if ft is a bounded, smoothly propagating surface
with fc(t)osU) at each t€T0.

2.3. Response functions.
The following notation is convenient:

Lin+ = (F€Lin(IR3,IR3): detF>0},

Unit = { neIR3: Inl = 1}. ( 2 3 9 )

In discussing phase interfaces we will consider functions

*(F.n,v,z) (2.40)

with domain Dom(4>) an open set in Lin+xUnitx|Rx|Rp (p<oo) of the
form
256urtin, Struthers, and Williams [1989].
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Dom(4>) = {(F.n.v.z): (F,n,v)€Lin+xUnitx|R, zeZCF.n) }, (2.41)

where Z(F,n) is an open subset of Rp for each (F,n)€Lin+xUnit. In
applications F will be the deformation gradient, n and v the
orientation and normal speed of the interface, and z a list of
variables of lesser importance.26 Let

p = (F,n,v,z).

We write

dF*(p)€Lin(IR3.IR3), dn«(p)€n1
f av*(p)€lR, dz*(p)€lRp (2.42)

for the partial derivatives of 4>(p) with respect to F, n, v, and
z.

For the remainder of this section we suppress the arguments v
and z, which are irrelevant to our discussion, and we return to our
original notation in which F(n) and l(n) are the projection and
inclusion as defined in Section 2.1a. Given neUnit, a tensor F€l_in+

admits the unique decomposition

F = FF(n) + f®n, FeLinCn-L.IR3), ITelR3, (2.43)

with

F-FI(n), f = Fn (2.44)

26When ve study coherent crystal-crystal Interactions F will be the deformation gradient

in one of the phases. F* u®n the deformation gradient in the other; here ve take Z(F,n)

to be the set of all ueRs vith F+u®neLin+. More generally, Dom(4>) might be an open

subset of a manifold in Lin+xUn1txRxR to allow for constraints on z dependent on F, n,

and v.
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(so that F is simply the restriction of F to n1). In applications
F and f represent the tangential and normal deformation gradients
relative to the interface. The decomposition (2.43) allows us to
consider *(F,n) as a function

*~(F,f,n) = *(FP(n) + ff®n,n) (2.45)

of the "components" F and f relative to n. The partial derivatives

d]F*(F.n)€Lin(n1,IR3) and df4»(F.n)€lR3 are then the corresponding

partial derivatives of *~(F,ff,n):

) .& + df4»(F.n)-B = (d/dj3)*(G(p)<n)|j3=0, (2.46)

where

6(p) = l(p)F(n) + |(p)®n (2.47)

is a curve in Lin+ with i(O) = F, 6"(0) = &. |(O) = ff, |'(O) = i .
The partial derivative of <J>~(F,ff,n) with respect to n is not

as easy to define, since both F and f depend on the choice of n.
Given n,n'€Unit, n ̂  n1, let Q(n',n) denote the rotation of n' into
n about the axis orthogonal to n1 and n, and let Q(n,n) be the
identity on IR3. Then the components F'-F'Kn') and iT-F'n1 of
F' = FQ(n',n) relative to n' are, modulo the rotation Q(n',n), the
same as those for F with respect to n. We define the partial

derivative Dn*(F,n)€n1 (or D ^ ^ F X r i ) ) with respect to n
following the surface27 as follows:

Dn*(F.n)-a = (d/dp)*(FQ(k(p).n).k(p))|p.o (2.48)

for k(J3) a smooth curve in Unit satisfying k(O) = n, k'(O) = a.
2 7 ln applications n vil l be the outward unit normal to the crystal surface.
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(2D) Lemma.

dF*(F,n) = dF*(F.n)l(n).
df$(F,n) = dF*(F.n)n, (2.49)

Dn*(F,n) - dn*(F,n) + dF*(F.n)Tf - FTdf*(F,n).

Proof. By (2.46).

dF*(F,n).& + d f*(F,n)-§ = dF$(F,n)-{&IP(n) + !®n},

which implies (2.49^ 2. since P(n)T = l(n). Next, for k(p) as in (2.48),

o = n®a - a®n,

and thus, as a consequence of (2.48),

Dn*(F,n).a = dn*(F,n)-a + dF*(F,n)-{F(n®a-a®n)};

therefore, since a is an arbitrary vector in n 1 ,

Dn*(F.n) = dn*(F.n) + F(n)[3F*(F.n)TFn - FTdF«Jj(F.n)n],

which, with (2.43), (2.44), and (2.49)12, yields (2.49)3. •

We say that 4> is intrinsic to the surface if

*(Fvii) = $(F2,n) whenever FJCn) - F2l(n). (2.50)

Roughly speaking, 4> is intrinsic to the surface if * depends on F
only through F( = FI(n)); in applications, with n the outward normal
to the surface and F the deformation gradient, (2.50) implies that 4>
depends on F only through the tangentidl gradient. Conditions more
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useful than (2.50) are furnished by the following

(2E) Lemma. Let £) = Lin+xllnit. The following are equivalent:
(i) * Is intrinsic to the surface;

(ii) given any (F,n)€8. *(F,n) = *(F + u<8>n,n) for all u with
F + u®n€Lin+;

(ii i) af*(F,n) = O for all (F,n)€£>, so that *"(F,f ,n) Is

independent of f;
(iv) dF<KF,n)F(n) = dF*(F,n) for all (F,n)€».

Proof. Choose (F,n)€8, U€lR3. Since (u®n)ll(n) = O, we may
conclude from (2.43) that (i)*=»(ii). Next, by (2.49)2> for
F(J3) = F + J3u®n,

(d/dj3)*(F(J3).n) = dF*(F(j3)Jn)-(u®n) = df*(F(j3),n)-u (2.51)

whenever F(p)€Lin+. Since F(j3)€Lin+ for sufficiently small j3, if
(ii) holds, then (2.51) vanishes at J3 = 0, and this yields (iii).
Conversely, assume that (iii) holds. Let F + u®n€Lin+. Then
F(J3)€Lin+ for 0<j3<1 and, by (iii), (2.51) vanishes for all such j3;
this yields (ii). Hence ( i i ) ^ ( i i i ) . Finally, by (2.49)2, (iii) «=*(iv). •

(2F) Lemma. Let * be intrinsic to the surface. Then d F *
and Dn* are intrinsic to the surface, but dn4> is intrinsic if and
only if d|p<f> = 0, in which case * is independent of F and

Proof. Choose Fv F2 with F^Cn) - F2l(n), and let

). with AeLirKnJ-.R3) arbitrary. Then

), and thus differentiating *(Fi(p),n) with respect
to J3 at j3 = 0 gives dF4i(F1,n)-dF4>(F2,n). Similarly, using the
notation of (2.48), F^flcW.rOKkCP)) = F2Q(k(p),n)](k(p)), so that
*(F1Q(k(p),n),k(j3)) = *(F2Q(k(j3),n),k(p)) and (2.48) yields
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Dn4»(F1.n)-Dn*(F2.n).
To prove the last assertion of the lemma, suppose that * is

intrinsic to the surface. Then, by (2.49)3 and Lemma (2Eiii),

Dn<KF,n) = dn*(F,n) + dF*(F,n)Tf, (2.52)

and dn* is intrinsic if dF<t> = 0. On the other hand, assume that dn4>

is intrinsic. Choose FeLin+ and neUnit, and let a be an arbitrary
vector. Then G = F + ea®n belongs to Lin+ for e>0 sufficiently
small, and FB(n) = 6l(n); thus (2.52) yields

dF*(F,n)T(Fn-Gn) = dF<KF,n)Ta - 0

and dF4
J(F,n) = 0. •
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3. The kinematics of evolving crystals.
3.1. Crystal lattices. Crystals.

By a uniform label change we mean an affine transformation
g of IR3 onto R3 whose gradient Vg has strictly positive
determinant.

A crystal lattice is a set X together with a family of
bijections of JL onto IR3, called configurations (of JL), such
that:28

(i) if u. and X are configurations, then }i°X~1 is a uniform label
change;

(ii) if \L is a configuration and g a uniform label change, then g°u.
is a configuration.

We assume that a crystal lattice L is prescribed. We use
the following notation and terminology: points X€<X are material
points; X = U-(X) is the material point X labelled by its position X
in the configuration \i, if }i1 and u.2 are configurations, then
g- j i^ j i^ 1 and G-Vg are the label change and label gradient
from | i 1 to JJL2.

We assign to each configuration }i of X a strictly positive
(constant) mass density p», with densities p1 and p2 for
arbitrary configurations }i1 and }i2 related by

p2 = p.detG. (3.1)

By a crystal (of the lattice X) we mean a subset C of the
lattice such that CM = >i(C) is a regular region in some (and hence
every) configuration j i . The set dc defined by ji(dC) = d(CM) is then
independent of }i and represents the crystal surface; Ĉ  and dCM

are the crystal and crystal surface labelled in \L.

3.2. Motion of an evolving crystal.
260ur definition is patterned after Noll's [1958] definition of a body. Thus the terms

"crystal lattice" and "configuration" might more appropriately be called "uniform crystal

lattice" and "uniform configuration".



26

In contrast to standard continuum mechanics, we allow evolving
crystals to gain and lose material points by accretion at the crystal
surface. The next definition makes this precise.

Let C(t) (teT) be a one-parameter family of crystals with
time t as parameter. Then C(t) (t€T) is an evolving crystal if
dCM(t) (t€T) is a smoothly propagating surface for some (and hence
every) configuration j i .

Our interest is in describing crystals which deform as they
evolve. Each such time-dependent deformation, or motion, is
described by a time-dependent mapping x(t) that carries C(t) onto
a region c(t) in IR3. It is convenient to write

x(t)(X) = x(X,t).

so that x = x(X,t) is the point of space occupied by the material
point X at time t in the motion. The differential properties of
motions are best described by labelling material points X by their
positions X in a configuration p.. Thus we write

xM(X.t) = x(}T1(X),t)

for X€CM(t), so that

c(t) = *(C(t),t) = xM(CM(t).t) (3.2)

(Figure 3A).
Precisely, a crystal motion is a one-parameter family of

mappings x(t) :C(t)-»c(t) (t€T) with the following properties:
(i) C(t) (teT) is an evolving crystal;
(ii) for some (and hence every) configuration j i . the mapping

Xh*«M(X,t) is a deformation of CM(t) onto c(t) at each t€T,
and the mapping (X,t)i->xM(X,t) is smooth.

Let )i, the reference configuration, be a fixed configuration
of the lattice. Assume that a crystal motion x(t) :C(t)-»c(t) (t€T)
is given. Then CM(t) consists of the points of the lattice (labelled in
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the deformed crystal c(t)

the crystal Cp(t)
1n a fixed reference
configuration of the
lattice

Figure 3A. A crystal motion



29

p.) which comprise the crystal at time t, while c(t) is the region in
space occupied by the deformed crystal at time t. The following
notation and terminology are useful: x = ae(X,t) is the place occupied
by the material point X at time t; (X,t) *-» «M(X,t) describes the
motion relative to ji with material points X labelled by their
positions X=}i(X) in }i;

F(X,t) = VxM(X.t) (3.3)

is the deformation gradient relative to u.;

pc(x.t) m pMdetF(X,t)"\ (3.4)29

is the crystal density at X€c(t) in the motion;

= dCM(t), 4,(t) = dc(t) (3.5)

are the reference and deformed surfaces. In addition:

^z> ^<4, surface gradients on £ and <&,;
div^, div^, surface divergences on & and 4,;

n^, n^ outward30 normals for A and 4,;

P&, F^ tangential projections for £ and 4,;

1^, 1^ tangential inclusions for £ and $,;

L curvature tensor for £;

K total curvature of £.

Then, by (2.16),

n^(x,t) - *(X,t)F(X,t)"Tn^(X,t), (3.6)

29Here and In what follows. In equations relating functions f(x,t) and functions g(X,t). It

will always be understood that x«xu (X,t); in fact, we will often omit arguments entirely.
30W1th respect to dc^(t) and dc(t), respectively.
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with

I = IF'Xl"1 (3.7)

the change in length scale in the direction perpendicular to the crystal
surface.

The tangential deformation gradient31 F(X,t) is defined at
each X€£(t) by

F(X,t) = V^xM(X,t) = F(X,t)l i(X,t). (3.8)

F(X,t) is a linear transformation from the tangent plane at X€,S(t)

into IR3, but F(X,t) actually maps tangent vectors at Xe^(t) to

tangent vectors at X€4,(t). The deformation gradient F is

completely determined by F and the normal deformation gradient

f(X,t) = F(X,t)n^(X,t) (3.9)

through

F = FFA + f®n A . (3.10)

As in our discussion of (2.19), F(X,t) is not invertible, but the
superficial deformation gradient

Fsurf(X,t) = P^(x.t)F(X.t) (3.11)

is, and

F(X.t) = U(x.t)F8urf(X.t). (3.12)

We define the superficial Jacobian

31Cf. Gurtin and Murdoch [1975].
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J = detF (3.13)

through the obvious analog of (2.22), so that, by (2.23),

detF = J-t. (3.14)

Further, guided by (2.24), ve define the adjugate of F through

adjF = J(Fsu r f)"T . (3.15)

In view of (3.7) and (3.14), the superficial Jacobian (3.13) may be
considered a function J 'J^F.n) , n = n4, with

J"(F,n) = IF"TnldetF. (3.16)

Then (cf. Section 2.3)

d f J"(F,n) = 0. (3.17)

Less trivially, the formula

dF(detF) = (detF)F"T (3.18)

and a lengthy calculation yields the identity

dFJ"(F,n) = l ^ad jF , (3.19)

Further. (3.16) implies that J~(FQ,QTn) = J~(F,n) for any rotation Q;
hence (2.48) has the interesting consequence:

DnvT(F,n) = 0. (3.20)

We denote by vc(x,t) the velocity of material points:
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vc(x.t) = (d/dt)acM(X,t) = (d/dt)«(X.t) (3.21)

for x M

Let V(p) denote an ^-trajectory through X at time t. Then

V(j3) = H"1(V(P)) (3.22)

defines a "trajectory" in the lattice X through X=}T1(X) at t; we
will refer to Y(j3) as the Intrinsic material trajectory
corresponding to Y(J3).

Let v be an arbitrary velocity field for £. Fix t and X€£(t),
let Y(j3) denote an ^-trajectory through X at time t, and suppose
that Y(j3) corresponds to v in the sense of Lemma (2B). Further, let
V(J3) denote the intrinsic material trajectory corresponding to Y(p).
Then

y(]3) = xM(V(j3),p) = x(Y(j3)J3) (3.23)

is an ^-trajectory through x = xM(X.t) at t, so that, by Lemma (2B),

t>(x,t) = (d/dp)y(j3)|p=t (3.24)

defines a velocity field for 4,. We will refer to v as the velocity
field for 4, induced by v. By (3.3) and (3.21),

t>(x,t) = vc(x,t) + F(X,t)v(X,t). (3.25)

We write v^ for the normal velocity of £. It is important
to note that the corresponding induced velocity field for 4,,

o j x . t ) = vc(x,t) + F(X,t)v4(X,t), (3.26)

is generally not normal. In fact, the normal speed of 4, is easily
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obtained from the relation

(t>^ - v c ) - n ^ = lv&. (3.27)

which follows from (2.30), (3.6), and (3.26).
It is important to note the difference between the velocities v r ,

v&, and t>^. Fix t and choose Xe^(t) and X€<i,(t). Then vc(x,t)
is the velocity of the material point which at time t occupies the
place x on the deformed surface <&,(t). v4(X,t), the normal
velocity of the undeformed surface Mi), gives the rate at which the
crystal surface is moving through the lattice L, as measured in the
configuration \L. This velocity is governed solely by accretion at the
crystal surface; it is independent of the manner in which the crystal is
deforming. On the other hand, t)^(x,t) is a velocity field for the
deforming crystal surface «,(t); as is clear from (3.26), t)^(x.t) is
effected by both accretion and deformation. The fields v^tX.t),
v^(X.t), and u^x.t) depend on the choice of reference configuration
j i ; we will refer to these respective fields as the accretive
velocity, the accretive speed, and the total velocity of the
crystal surface, relative to j i .

It is useful to consider the gradient (V^o^XX.t) of t>^
considered as a function t>^(*M(X,t),t) of X on £(t); by the chain-
rule

X,t). (3.28)

We then have the following important identities:

( 3 2 g )

- v^FL .

The f i rs t of (3.29) follows from (2.8) and (2.36). To verify the
second, let a be an arbitrary tangential vector field for £. Then
(2.7), (2.8), (3.9), and the symmetry of VF = V V * M yields
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- Fla = [(VF)nj8 - FL]a,

so that

- FL.

Thus, using a superscript dot to denote the material time-derivative
(with respect to t holding X fixed), we find, with the aid of (2.7),
(3.26), and (2.37). that

v^CV^f)

which yields (3.29)2, since F° = F" + (VF)v4 (cf. (2.36)).
Let (R be a smoothly propagating subsurface of £. Then

n,(t) = KM(ft(t).t) (3.30)

defines a smoothly propagating subsurface of <*,. As before, if v is
an edge velocity for ft, then (3.25) defines an edge velocity v for
n., the edge velocity for 4, induced by v. We write vdft for the
intrinsic edge velocity of ft,

) = vc(x,t) + F(X,t)vdft(X.t) (3.31)

for the corresponding induced, but not necessarily intrinsic, edge
velocity for n,. In view of (2.32), v ^ - v ^ + v(dft)tan; thus (3.26) has
the following counterpart:

©^(x.t) = o^(x,t) + F(X,t)v(dft)tan(X,t). (3.32)
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3.3. Notation to be used In subsequent sections.
For the remainder of the paper - unless stated to the contrary -

we will use the notation and terminology of this chapter. In particular,
u. is a reference configuration, fixed once and for all; x(t):C(t)-»c(t)
(t€T) is a crystal motion;

£(t) = acM(t), 4,(0 = dc(t) (3.33)

are the reference and deformed surfaces; ft is a smoothly evolving
subsurface of >S with

*( t ) = xM0R(t).t) (3.34)

the corresponding deformed subsurface; v(X,t) and T(x,t) are the
outward unit normals to dft(t) and dt(t). We will often omit the
argument t when considering integrals over ft(t), t ( t ) . d<R(t), and

3.4. The environment.
We assume that the crystal is surrounded by an ancillary phase

that supplies atoms during accretion. For now we will not model this
phase in detail; our only assumptions concern its behavior at the
crystal surface. We therefore associate with the crystal motion two
fields defined for X€^(t) and t€T:

ve(x,t) environmental velocity,
pe(x,t) environmental density.

The vector ve(x,t) is the velocity of the material exterior to the
crystal, while pe(x,t)>0 is its mass density per unit deformed
volume.

Much of the theory we will develop for the crystal surface will
be independent of the environment. We will, however, demonstrate the
particular form of our results for two specific environments. The
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first consists of an inviscid melt. The second occurs when the crystal
exterior is a crystal consisting of another phase of the original
material, and the interaction between phases is coherent. We will
discuss this second environment in more detail in the next section.

3.5. Coherent crystal-crystal interactions.32

Suppose that the environment consists of a second solid phase of
the crystal material, with the same crystal lattice JL appropriate to
both phases. Here it is convenient to refer to this second phase as the
e-phase, and to the original phase as the c-phase. By a coherent
tvo-phase crystal motion we mean a pair

*c(t):C(t)-»c(t). *e(t):&(t)->c(t), t€T, (3.35)

of crystal motions, such that, for some (and hence every) configuration

(i) at each t€T, the sets CM(t) and &M(t) are exterior to each
other, as are the sets c(t) and e(t);

(ii) acCM and xeil, the motions relative to j i , are continuous across
the interface A = dCM in the sense that, for any t€T,
3eCM(X,t) = aceM(X,t) at each Xe^(t).

For such a motion, we will identify the crystal with C, the
environment with Z, so that nA(X,t) is the outward unit normal to
£(t) = dCM(t). n^(x,t) is the outward unit normal to <t,(t) = dc(t), and
so forth. Then, by (3.26), the corresponding deformation gradients
(F = FC for phase c, Fe for phase e) and velocities satisfy the
standard compatibility relations33

« * = Vc + F c v * • ve + Fev4« (3.36)

Fc - Fe =

32Cf. Robin [19743, Larche and Cahn [1978].
33Cf., e.g., Truesdeil and Toupin [1960], Sect. 185.
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so that

u = ( F C - F e ) n 4 - f c - f e
 ( 3 3 7 )

and

F c U - F e U - F . (3.38)

In addition,

pM = pcdetFc =pedetFe , (3.39)

and the formulas (3.6) and (3.7) hold for both Fc and Fe, but with
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4. Changes in observer.
A crucial difference between our theory and the more classical

theories of continuum mechanics is that we have two essentially
independent velocities to be measured by observers: the velocity vc

of material points and the accretive velocity vA of the crystal
surface. Because of this we allow for two distinct classes of
observers: a class of spatial observers that observes the motion of
the deforming crystal, and a class of lattice observers that observes
the evolution of the crystal surface as measured in some configuration
of the lattice. As is usual, it is not the observers themselves that
are needed, it is the notion of a change in observer.

Precisely, changes in spatial and lattice observers are
defined by smooth transformations

x H-> x * = Q(t)x + q(t),

X H-» X* = L(t)X + ( 4 1 )

with Q(t) and L(t) rotations and q(t) and l(t) vectors at each
teT. The corresponding time-derivatives

v(x,t) = Q'(t)x +

vL(X.t) = L-(t)X + V(t) ( 4 2 )

represent the velocities of the new observers relative to the old, while
curlv and curlvL are the corresponding spins. Since Q(t)TQ(t) and

L(t)TL(t) are equal to the identity on R3, Q(t)TQ'(t) and L(t)TL"(t)
are skew; thus there are vectors w(t) and «L(t), smooth in t, such
that

Q(t)TQ-(t) = w(t)x, L(t)TL'(t) = wL(t)x. (4.3)

It is convenient to let
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X-X0 , r(x) = x - x 0

denote the position vectors from fixed points Xo and x0, and to
write

u(t) = Q(t)Tq'(t) + «(t)xx0 . uL(t) - L(t)TV(t) + uL(t)xX0;

then

v ( x , 0 - Q(t){u(t)xr(x) +

vL(X,t) = L(t){uL(t)xR(X) + uL(t)}. (4.4)

cur lv= Qw, curlvL= LwL.

Under the change in lattice observer (4.1) a "fixed configuration"
}i transforms to a "time-dependent configuration" }i*(t) (t€T) with
values )i*(t)(X) = \L*(KX) given by

Let C(t) (t€T) be an evolving crystal. Under this change in
lattice observer the crystal surface ^8(t) = dCM(t), as observed in \i.
transforms to the surface ^*( t ) = 9CM*(t)(t) = L(t)^(t) + l(t), and the
outward normal n^tX.t) to £(t) transforms to the outward normal

<rU)#(X».t) = L(t)n;S(X,t) (4.5)

to A*(t).
Let v be an drbitrary velocity field for &, and let V(/3)

denote an ^-trajectory through X at time t which corresponds to v
in the sense of Lemma (2B). To the new observer this trajectory
appears as the £*-trajectory

V*(J3) = J1*(Y(J3)J3) - L(J3)Y(J3) + l(p). V*(t) = X*. (4.6)
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with Y(J3) the intrinsic material trajectory (3.22) corresponding to
V(J3). The velocity v(X,t) for A therefore appears to the new
observer as the velocity field v*(X*,t) for £ * given by

v*(X*.t) =

= L(t)v(X,t) + L'(t)X + r(t) .

= L(t)v(X,t) + vL(X,t). (4.7)

Next, smoothly propagating subsurfaces ft(t) of £(t) transform
to smoothly propagating subsurfaces ft*(t) = L(t)ft(t) + l(t) of ^S*(t).
and edge velocities v for ft transform to edge velocities v* for
ft* with v*(X*.t) also given by (4.7).

Thus far we have considered quantities which are invariant under
changes in spatial observer. Consider next a crystal motion
ac(t):C(t)-»c(t) (t€T). Under the observer changes (4.1), x(X,t)
transforms to the crystal motion x*(t ) :C(t)-»c*(t) (t€T), with

**(X.t) = Q(t)*(X,t) • q(t) (4.8)

and c*(t) = Q(t)c(t) + q(t), and the surface <i,(t) transforms to the
surface 4,*(t) = dc*(t) with outward normal

(nj*(x*,t) = Q(t)n^(x,t). (4.9)

By (4.8), the deformation gradient (3.3) and the material velocity (3.21)
transform according to

F*(X*,t) = QU)F(X.t).

vc*(x*,t ) = Q(t)vc(x,t) + v(x,t). ( 4 1 0 )

Let v be a velocity field for A, let © be the corresponding
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induced velocity field for 4,, and let v * and t>* be v and o as
seen by the new observers, so that v* is given by (4.7). The <&,-
trajectory y(p), which is defined in (3.23) and used in (3.24) to
compute t>(x,t), transforms to the ^-trajectory y*G3) = x*(y(J3),j3);
hence

x>*(x*,t) = <d/djJ)y*(p)|0.t.

= Q(t)t>(x,t) + v(x.t). (4.11)

Edge velocities for smoothly propagating subsurfaces of 4. are also
consistent with this transformation law.

We assume that the transformation rule for the environmental
velocity is the same as that for the material velocity:

v e * = Qve + v. (4.12)
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n. Mechanics.
5. Control volumes. Mass. Kinetic energy.
5.1. Evolving control volumes.

ft(t) and its image n.(t) are subsurfaces of the undeformed and
deformed surfaces Mt) and $,(t). When writing balance laws it is
useful to visualize n.(t) as an infinitesimally thin region consisting
of the crystal and environmental bulk material immediately adjacent to
n.(t). and to visualize ft(t) as an infinitesimally thin region
consisting of those atoms of the crystal lattice immediately adjacent
to ft(t) together with those atoms of the environment about to be
added to - or just removed from - this portion of the lattice (Figure
5A). With this interpretation, we will refer to the pair

R(t) = (ft(t).iXt)) (t€T) (5.1)

as an evolving control volume. The physical boundary of R(t)
then consists of: the edges dft(t) and diXt) of ft(t) and t ( t ) ; the
two sides of n.(t); the two sides of (R(t). These definitions are
formal and we will use them only as aids when writing balance laws;
in mathematical expressions, such as integrals, ft(t) and t ( t )
should always be interpreted with their precise mathematical meaning
as evolving subsurfaces.

Under the observer change (4.1) the control volume R(t)
transforms to the control volume

R*(t) = ( f t*( t )A*U)) (teT). (5.2)

where ft* and n.* are the images of ft and n. under (4.1).

5.2 Outflows.
Consider an evolving control volume R(t) (t€T).
Let *c(x,t) and *e(x,t), respectively, denote bulk densities of

a physical quantity for the crystal and for the environment, with both
densities measured per unit deformed volume. To ease the discussion.
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physical boundary 1n
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Figure 5A. The control volume R(t) consists of &(t) and Kit), considered
as 1nf1n1tes1mally thin regions. The physical boundary of R(t)
consists of: the tvo sides of <t(t) and the edge dfe(t); the tvo
sides of * ( t ) and the edge dt(t).
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we will refer to this quantity as energy, but it can represent a
variety of physical quantities such as mass, kinetic energy, or entropy.
The bulk energy of the control volume R(t) is zero, since the volume
of R(t) is zero, but, since R(t) is moving relative to the bulk
material of the crystal and the environment, R(t) captures and looses
bulk energy across its physical boundary. In fact,

represent outflows of crystal and environmental bulk energy across
this boundary. Similarly, if *M(X,t) is the bulk energy of the crystal
measured per unit referential volume, then

MvA da (5.4)
ft

represents an outflow across the portion of the physical boundary of
R(t) that lies in the crystal. This integral actually represents the
same physical outflow as (5.3)^ indeed, the energy densities 4>c and
<t»M are not independent, but related through

*M(X,t) = detF(X,t)*c(x,t), (5.5)

and, by (2.25)v (3.14). and (3.27),

J ^ V j d a = J*c ( t )^-vc ) -n^da. (5.6)

ft t
It is clear from this discussion that

(5.7)

ft i
represents the total outflow of "bulk energy" from the control volume
R(t) (Figure 5B).
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Figure 5B. The dork arrows Indicate outflows across the physical boundary of a control
volume R(t). The terms Involving Qc and ^ represent the same outflow
measured, respectively, per unit deformed area and per unit referential area.
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(5A) Remark. It will be necessary to compute the manner in
which outflows of the form (5.3) transform under a change in observer.
The term Vc = ( t>^-v c)-n^ represents the normal velocity of <i,
relative to the deforming crystal. In view of (2.33) with £ replaced
by <b, we may replace t>^ in the above expression by any velocity
field t> for <&,. Under the change in observer (4.1) the term Vc

should be replaced by Vc* = (t>*-vc*)»(n^)* with t>* any velocity
field for <&,*. In particular, using (4.11) for t>* in conjunction with
(4.9) and (4.10), we see that Vc is invariant under a change in
observer: Vc*(x*,t) = Vc(x,t). An identical argument yields the
invariance of the term Ve = (t>^-ve)-n^.

5.3. Balance of mass. Scaled differences.
We neglect interfacial mass. Balance of mass then requires that

there be no net outflow of mass from the evolving control volume
R(t). Thus, in view of (5.7) with •c^Pc. * e

 = Pe' b a l a n ce of mass
is the assertion that

for every evolving subsurface (R; hence

with Trv(x.t) the mass flow across <a, in the direction n^, per
unit area. By (3.4), (3.14), and (3.27),

TTV = -Pc-tv,* = - P ^ J " 1 ^ , (5.10)

with pM the crystal density in the reference configuration u., so
that -pMvA represents the mass flow per unit area of &. The
relations (3.4), (3.27), (5.9), and (5.10) yield the identities
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which also express balance of mass.
For the coherent crystal-crystal interaction, the relations (5.11)

are consequences of the relations expressed in Section 3.5 and the fact
that pM, the lattice density in the reference configuration j i . is the
same for both phases. Therefore,

mass balance is automatically satisfied

in a coherent crystal-crystal interaction. (5.12)

The densities are invariant under a change in observer:
pc*(x*,t) = pc(x,t), pe*(x*,t) = pe(x,t). Thus, in view of Remark (5A),
the mass flow -m, is invariant:

fa*(x* . t ) = Trv(x.t). (5.13)

The mass balance relations (5.9) and (5.10) allow us to rewrite
the outflow relations (5.7) as

-JfTv(pc'
1<J>c - pe"1*e)da = f * V j da, (5.14)

*i ft

where

1 . (5.15)

The quantity $ is called a scaled difference; we will use this
concept often: it will always represent a physical quantity for the
crystal minus the same quantity for the environment, with both
quantities normalized to the referential volume of the crystal.

For the coherent crystal-crystal interaction (Section 3.5) it is
most convenient to use bulk densities measured per unit reference
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volume for both phases:

•MC(X.t) = detFc(X,t)*c(x,t), 4»Me(X,t) = detFe(X,t)*e(x,t); (5.16)

then, by (3.39), (5.15) becomes

• - V " V (517)

5.4. Kinetic energy.
The bulk kinetic energy, per unit deformed volume, of the

crystal and environment are given by fpcvc
2 and £peve

2;

*<* ) - T K P C V C
2 K - V C ) T V -P e v e

2 ( t >^ - v e ) . n j da (5.18)
n,

therefore represents the outflow of kinetic energy from the
evolving control volume R(t). Since we neglect interfdcidi mass,
(5.18) represents the only term involving kinetic energy for this
control volume. Note that, by (5.9),

IC(ft) = ij-m.(ve -V^)da. (5.19)
t

Under the observer change (4.1) the control volume R(t)
transforms to the control volume R*(t) given by (5.2), and the kinetic
energy iC(R) transforms to a value

* • ( * • ) = H™-*«ve*)2-(vc*)2>da. (5.20)

which we now compute. By (4.4), (4.10), and (4.12),

(vc*)2 = (vc)2 + 2vc-(wxr + u) + (wxr + u)2.
(ve*)2 = (ve)2 + 2ve-(wxr + u) + (wxr + u)2,

where we have omitted the arguments (x*,t) and (x,t) for the
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starred and unstarred quantities. Changing variable of integration in
(5.20) from x* to x, and using (5.13), we see that

= Jp-(uxr + u)da, (5.21)
n.

where

p » TTV(V 6 -V C ) (5.22)

is the outflov of momentum from the control volume, per unit
deformed area.
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6. Accretive, deformational, and environmental forces.
6.1. Force systems.

Basic to our theory are tvo systems of forces that accompany an
accreting, deforming crystal. The first, the accretive system,
consists of forces that arise as a response to the crystallization
process as atoms are added to and removed from the crystal. These
forces are presumed to be purely accretional: they are forces that
would be present, were there no deformation. The second, the
deformational system, consists of forces related to the gross
deformation of the crystal. Since the accretive system accompanies
the addition and deletion of material points, it is advantageous to
consider this system in the reference configuration u. using X as
spatial variable. On the other hand, the deformational system is most
easily discussed using the variable x in the deformed crystal.

Precisely, the accretive force system relative to u.
consists of three superficial fields for £:

O(X,t) accretive surface stress,
c(X,t) accretive traction,
m(X,t) accretive moment;

the deformational force system34 consists of three superficial
fields for $,:

T(x,t) deformational surface stress,
tc(x,t) deformational traction,
te(x,t) environmental traction.

C(X,t) is, at each Xe^(t), a linear transformation that maps
tangent vectors v to £(t) at X into (not necessarily tangent)
vectors C(X,t)v; T(x.t) is, at each X€^(t). a linear transformation
3 4To parallel the accretive sustem ve could allow for a deformational moment exerted on the

crystal surface by the crystal bulk. For surfaces whose constitutive equations allow for a

dependence on the deformation only through its first gradient such a moment is ruled out by

thermodynamics. To ease the presentation, we have chosen to omit this moment from the

outset. Interestingly, accretive moments are not so precluded, and are, in fact, necessarily

present whenever there is anisotropy.
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that maps tangent vectors T to 4,(0 at x into (not necessarily
tangent) vectors T(x,t)T. C(X,t) represents forces within the
undeformed crystal surface that perform work during accretion;
T(x,t) represents forces within the deformed crystal surface that
perform work during deformation. We write Ctan, Csym, CSkv. a n d

is, respectively, for the tangential, symmetric, skew, and normal
components of C with respect to £; Tsym, Tskv, and % for the
symmetric, skew, and normal components of T with respect to
o, (cf. (2.5)).

Let <FtCt) be a smoothly evolving subsurface of £(t) with t ( t )
the corresponding deformed subsurface, and let v(X,t) and T(x,t)
denote the outward unit normals to the boundary curves dft(t) and
dn,(t). The forces exerted on the control volume R(t)«(ft(t),t(t))
then consist of (Figure 6A):

Cv force per unit length of diR,
T T force per unit length of dn.,
t c , te forces exerted by the crystal and environment per unit

area of n,,
c, m total force and total moment exerted by the crystal

and environment, per unit area of ft,

where, for convenience, we have omitted arguments. Cv is the sum of
a tangential force (Ctan)v and a normal force (e-v)n^, and
similarly for T T . If Tc(x,t) and Te(x,t) denote bulk Cauchy
stresses for the crystal and the environment, then

*c - -T c n^ . te = T en^. (6.1)

At this point it is not necessary to decompose c(X,t) and m(X,t)
into crystal and environmental components, but we do stipulate that

c and m are indeterminate.
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Figure 6A. Forces on a control volume R(t)«(fc(t)A(t)). c represents the force exerted by
the crystal and the melt, and similarly for the moment m.
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since lattice points - as measured in the reference lattice - do not
move relative to each other.

Omitting arguments,

jTTds + } ( t c + te)da

dn, n,
represents the total deformational force on R(t), while

Jvds + Jcda
dft ft

represents the total accretive force on R(t), and analogous
expressions apply to moments.

It is convenient to define the Piola-Kirchhoff surface
stress35 S(X,t) through

S(X,t) « T(x,t)adjF(X,t) , (6.2)

with adjF defined by (3.15), for then, by (2.25)2,

JTTds = fSvds (6.3)

dn. dft

6.2. Expended power.
We characterize forces by the manner in which they expend power

(perform work). Let R(t) = (f t( t) , t( t)) be an evolving control volume,
and let v and T denote the outward unit normals to dft and dn,.
C and T represent stresses within the undeformed and deformed
crystal surfaces; we therefore assume that Cv and T T expend
power on R over edge velocities for ft and n,. t c and te are
tractions exerted on portions of the control volume that lie in the
crystal and in the environment and hence expend power over
corresponding material velocities, c and m do not expend power
35Cf. 6urt1n and Murdoch [1975], eq. (5.24).
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since they act within the lattice, and the lattice points are motionless
in the configuration j i . Thus the power expended on the evolving
control volume R(t) is given by

v - v d s + J(c-O + m-O)da +
dft ft (6.4)

J l T - o d s + J(t c-v c + t e -v e )da ,
dn, n,

where v is an edge velocity for ft with t> the corresponding
induced edge velocity for n.. (Here we have written c»0 + m-0 as a
reminder that the power expended by the accretive traction and
acretive moment vanish only because the velocity and spin of the
lattice are zero; these terms will contribute under changes in
observer.)

Using the Piola-Kirchhoff stress i in conjunction with (2.25)3

and (3.25).

jTT-t>ds = |TT«vcds + (FTSv-vds, (6.5)
dn, dn. dft

so that the deformational stress expends power in two ways: over the
velocity vc of those material points currently on the crystal surface,
and over the "purely accretive" velocity v of the crystal surface. By
(6.5),

v - v d s + }TT- t )ds = J(C + F T S)v -vds + j T T - v c d s , (6.6)

dft dn. dft dn.
showing that the power expended on the edges dft and dn. of the
control volume can be considered as an accretive part

J(C + F T S)v -vds
dft

and a purely deformational part
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vcds.

We call

C + F T i (6.7)

the total surface stress; it represents the stress 0 due to
accretion alone plus the accretive contribution F T i of the
deformational stress T. We write &tan a n d

e = &Tru. (6.8)

for the tangential and normal components of & with respect to A.
Then, by (2.5), (3.8), and (3.9),

Han C t a n + i*FTS, a - C + i T f . (6.9)

(6A) Remark. It is important to note that &tan depends on
Ctan, i , and the tangential deformation gradient F, all superficial
quantities. On the other hand, the normal component a of the total
stress depends on the normal deformation gradient IT, which is not
intrinsic to the surface. In particular, for a coherent crystal-crystal
interaction as described in Section 3.5, the definition of § depends
on the crystal phase in which F is computed.

We assume that the forces transform "naturally" under changes in
observer. Precisely, we assume that under any observer change of the
form (4.1),

C* = LCLT, T * = QTQT, c* = Lc,

m* = Lm, t c * = Qtc, Xe* * Qte. ( 6 1 0 )



53

where we have used the convention introduced in the paragraph
containing (2.6), and where we have omitted the arguments (X*,t) and
(X,t) for the starred and unstarred accretive fields, and similarly for
the deformational fields.

Consider the observer change (4.1). The power expended, as
recorded by the new observers, will have terms analogous to those of
(6.4). In addition, the new lattice observer does not see the lattice at
rest, but sees the lattice moving with the velocity vL(X.t) defined in
(4.4); hence the power expended, per unit area, by the accretive
traction and the accretive moment is c * -v L + m*-curlvL. Therefore
relative to the new observers the power expended is

P*(ft*) = | C * v * - v * d s + J(c*-vL + m*-curlvL)da +

dft* ft* (6.11)

|T*T* . t>*ds + f ( t c * . v c * + t e * -v e * )da ,

dn,* n,*
where ft* and n,* are the images of ft and n. under (4.1), while
v* = Lv and T * = QT are the outward normals to dft* and dn.*. By
(4.4), (4.7). (4.10), (4.11), (4.12). and (6.10).

C*v*»v* • Cv«(v + wLxR + uL),

c * -v L = c-((i)LxR + uL), m*-cur lvL • m-uL,

T *T* - t> * = TT-(t> + uxr + u),

t c * - v c * = t c - (v c + uxr + u). t e * - v e * = t e " ( v
e

 + U x r

Therefore, changing variables of integration in (6.11) from X* to X
and from x * to x, and subtracting (6.4) from the resulting relation,
we see that

- P(ft) = } T T - ( u x r + u)ds + J(tc + t e ) - ( « x r + u)da +
dn. n. (6.12)

( C v - ( w L x r +uL)ds + | { c - ( u L x r +uL) + m-wL}da.

dft ft
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7. Invariance of the mechanical production. Momentum
balances. Force and moment balances for accretion.

7.1. Mechanical production.
Let R(t) = (ft(t)A(t)) be an evolving control volume. The

difference

£(ft) = fc(ft) - P(ft) (7.1)

between the outflow of kinetic energy (5.18) and the expended power
(6.4) represents the mechanical production of energy, and will be
referred to as the mechanical production for R(t). The first law of
thermodynamics requires that this quantity be balanced by the addition
of heat and by changes in the internal energy; since heat and energy
are invariant quantities, it seems reasonable to presume that the
mechanical production itself be invariant. In fact, we will use
invariance of the mechanical production to derive several important
results: invariance under changes in the kinetic description of the
interface yields the notion of surface tension; invariance under changes
in observer yields the mechanical balance laws of the theory. This
latter use of invariance is highly nontrivial: it not only leads to the
expected momentum balance laws for the surface, it leads to
additional force and moment balance laws for the accretive system.

Our discussion of invariance is facilitated by the following
definitions. Let -{Xft.v.v) be defined for every evolving subsurface ft
of £, and for all velocity fields v and edge velocities w for ft,
and suppose that a rule is prescribed giving the value -|>,*(ft*,v*,v*)
of -{.(ft.v.v) under any change in observer (4.1). We then say that:

(i) £ is invariant under changes in observer if, for all ft, v, and
v, £*(ft*,v*,v*) = -|J.(ft,v,v) for every change in observer (4.1);

(ii) {. is invariant under reparametrization36 if, for every ft,
£(ft,v,v) is independent of the choice of velocities v and v
used to describe the evolution of dft.

36Cf. Footnote 24
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A basic axiom of our theory is that the

mechanical production be invariant under changes
in observer and under reparametrization.

Here it is tacit that, under the change in observer (4.1), the mechanical
production &(R) transform to

&*(R*) = *C*((R*) - />*(&*). (7.2)

with * * (&* ) and P*(R*) given by (5.20) and (6.11).
The requirement of invariance under changes in observer is

nonstandard: in classical continuum mechanics the mechanical
production is the rate of change of kinetic energy minus the expended
power and is invariant under Galilean chang.es of observer, but not
more generally due to the presence of accelerations in the observer
change. Here the use of arbitrarily thin control volumes and our
neglect of interfacial mass renders the control volumes massless, and
because of this accelerations in the observer change do not destroy the
invariance.37

7.2. Invariance under reparametrization. Surface tension.
By (6.6) and (6.7), the hypothesis that Z be invariant under

reparametrization is equivalent to the requirement that

J&v-vds (7.3)
d(R

be independent of the edge velocity v. Thus (iii) of the Invariance
Lemma (Appendix C) yields the

(7A) Surface-Tension Theorem. The tangential part of the
total surface stress & is a surface tension:

3?The requirement of Invariance under observer changes could be replace Invariance under

Galilean changes In observer. This vould yield balance of linear momentum (7.11), and balance

of accretional forces (7.10)v Using this as motivation, the moment lavs (7.10)2 and (7.11)2

could then be adopted as separate axioms.
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( 7 '4 )

with ff a scalar field called the surface tension.

Note that, by (6.9) and (7.4), the total surface stress has the
representation

. (7.5)

7.3. Invariance under observer changes. Momentum balances.
Force and moment balances for accretion.
Let

* = *c + *e " P. P = /nv(ve-Vc) (7.6)

denote the total deformationai traction (including the outflow p
of momentum). In view of (5.21) and (6.12), invariance of Z under
changes in observer is equivalent to the requirement that

jTT»(wxr + u)ds + Jt»(wxr + u)da +
i (7.7)

;v-(wLxr + uL)ds + |{c«(uLxr +uL)+ m-wL}da = 0,
dft ft

or alternatively, that

u.{jTxds + Jtda}= 0,
dn, K

w-{JrxTTds + Jrxtda}= 0,
dn. n,

uL-{|Cvds + Jcda} = 0,
dft ft

wL-{(RxCvds + jRxcda + Jmda} = 0
dft ft ft
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for all vectors u, u. uL. and wL. This yields the momentum
balances

JTTds + J(tc + t e )da =
dn, n, n, (7.8)
J r x T T d s + Jrx( t c + te)da = J r x { m v ( v e - v c ) } d a ,
dn, K n.

as v e i l as the force and moment balances for accretion

Ivds + Jcda = 0,
dft ft (7.9)
jRxCvds + jRxcda + Jmda = 0,
dft ft ft

which must hold for all smoothly propagating subsurfaces ft and n,
of & and 4,.

(7B) Remark. Here we see a major difference between the theory
presented here and the more standard theories of continuum mechanics.
In classical continuum mechanics, where there are only deformational
forces, the stress can be expressed per unit deformed area (Cauchy
stress) or per unit undeformed area (Piola-Kirchhoff stress), but both
of these quantities represent the same force. Here T and tc

represent a force system within the deformed crystal, while 0 and
c represent a completely different force system within the crystal
lattice; and these two force systems are generally unequal even when
the former is "pulled back" to the undeformed crystal. This difference
is characterized by the manner in which the two systems perform work,
and is exemplified by the fact that there are two sets of mechanical
balance laws, one for each system. This underlines the importance of
using an invariant basis to derive these balance laws.

(7C) Local Balance Lavs.
(i) The force and moment balances for accretion are equivalent to
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div^G + c = 0,

mx 2 E F eAn ( 7 1 0 )

(ii) The momentum balances are equivalent to

div^T + tc + te = ™.(ve-vc).

T - 0 ft - 0 ( 7 1 1 )

* skv • u - * - u -

so that the deformational surface stress is tangential and
symmetric.

Proof. We will prove only (i). It is clear from the divergence
theorem (2.12) that (7.9)1 and (7.10)1 are equivalent. To complete the
proof of (i) it suffices to show that, granted (7.10),, (7.10)2 is
equivalent to (7.9)2. Since (aAb)c = (axb)xc, (7.9)2 is equivalent to

JRACvds + JRAcda + J(mx)da = 0,
dft ft &

or alternatively, by (2.14) and (7.10), to

^ + (mx)}da = 0;
(R

this relation can hold for all sufficiently regular surfaces (R if and
only if (7.10)2 is satisfied. •

Note that (7.10)2 is equivalent to the two relations

c = n^xm, 2Cskv = I^P4(mx)Sj&. (7.12)

7.4. Referential balance lavs.
The balance laws expressed in (7C) are difficult to use, chiefly

because the independent variable is X in (7.10) and x in (7.11). The
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next result remedies these difficulties. There ve discuss only the
normal component of the accretive force balance, since that is what
arises in applications.

(7D) Referential Balance Lavs.
(i) The momentum balances are equivdlent to16

div^S + J(tc + te) = PM(vc-ve)v^. ( 7 1 3 )

SFT = FST.

(ii) The normal component of the accretive force balance (7.10)1 Is
equivalent to

trie + div^e - ( F T i ) - L + c-n^ = 0. (7.14)

Proof. Using (2.25), (6.2), and (7.6), ve can write the balance law
(7.8)1 in the form

JSvds + JJtda = 0. (7.15)
dft (ft

Since the smoothly propagating subsurface R of ^ is arbitrary,
this, (7.6), and (5.10) yield (7.13)v Further, (7.11)2, (2.3), (2.5), (3.15),
and (6.2) yield

T l«,f i T n ^ = 0, (7.16)

which, by virtue of (3.11), imply (7.13)2. The converse assertions are
established similarly.

Next, by (2.9). C-L = C t a n-L; thus (2.11)3, (6.7), (7.4), and the
identity K = lz »L yield

CTK - FTS-L + div^e. (7.17)

36Cf. Ourtin and Murdoch [1975], p. 307. for the statical version of (7.13).
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Substituting (7.17) into (7.10), yields (7.14). That (7.14) implies the
normal component of (7.10), follows upon reversing this argument. •

(7E) Remark. By (2.9), the term F T i - L in (7.14) can be
written as (FTS)-(F^L) and hence involves only superficial
quantities.

Suppose that the environment is a melt, modelled as an inviscid
fluid. Then

with pe(x,t) the melt pressure at the crystal surface. By (3.6) and

(3.14), Jn^«(detF)F"Tn jS. and therefore

Jte = -pe(detF)F'Tn^. (7.19)

The crystal traction is given by (6.1), with Tc(x,t) the bulk Cauchy
stress; introducing the bulk Piola-Kirchhoff stress Sc(X,t)
defined by

Sc = (detF)TcF-T, (7.20)

we can express this traction as

Jtc = - S ^ . (7.21)

Balance of linear momentum (7.13), for a crystal in an inviscid melt
therefore has the form

On the other hand, for the coherent crystal-crystal interaction
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described in Section 3.5, Sc(X,t) defined by (7.20) with F = FC and
Se(X,t) defined by

Se « (detFe)TeFe"T (7.23)e « (detFe)TeFe

are the bulk Piola-Kirchhoff stresses for phases c and e. By
(3.6), (3.14), and the remark following (3.39), J n ^ t d e t F ^ F g n ^ , so

that (6.1)2 becomes

Jt e = SenA. (7.24)

Balance of linear momentum, (7.13)v for a coherent crystal-crystal
interaction therefore has the form

div^ i + (Se-Sc)nj& = pM(vc-ve)v^. ( 7 2 5 )

7.5. Invariant form for the expended power.
We now take v and t> in (6.4) equal to the intrinsic edge

velocity v ^ of ft and the corresponding induced edge velocity ©^
of dt; in view of (7.5), this leads to an invariant form for the power
expended:

/>(*) = JCvv^ds + jTT-o^ds + f(tc-vc +te-ve)da.
d(R d>t >L (7.26)
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8. Bulk interaction betveen phases. Attachment forces.
8.1. Forces describing bulk interactions.

One of the chief differences between theories involving phase
transitions and the more classical theories of continuum mechanics is
the creation and deletion of material points as the phase interface
moves relative to the underlying material. This phenomenon involves
only bulk material and the relevant forces may be isolated using
(evolving) bulk control volumes R(t) = (ft(t),t(t)) that exclude the
interface. Each such R(t) is generated by an evolving subsurface
ft(t) and its image n,(t); what makes these control volumes different
from those that include the interface is the interpretation of their
physical boundary. Formally, the physical boundary of a bulk
control volume R(t) for the crystal consists of: the two sides of
n,(t) representing the portions of R(t) in the deformed crystdl that
interact with the interface and with the remainder of the deformed
crystal; the two sides of ft(t) representing the portions of R(t) in
the crystal lattice that interact with the interface and with the
remainder of the lattice (Figure 8A). The physical boundary of a
bulk control volume for the environment is defined analogously.
Note that, for any such control volume,

the net outflow of kinetic energy vanishes, (8.1)

since the energy entering one side of *(t) leaves the other side.
Force balance for bulk control volumes requires further structure

(Figure 8B). We decompose the accretive traction c(X,t) into crystal
and environmental components

c(X,t) = cc(X,t) + ce(X,t) (8.2)

and introduce attachment forces

ITc(X.t). TTe(X,t)

and bulk-interface interactions
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the portion of the
physical boundary 1n
the crystal lattice

K{\)

the portion of the
physical boundary 1n
the deformed crystal

e(t)

the portion of the physical
boundary consisting of atoms
about to be added to - or just
removed from - the crystal

the portion of the
physical boundary in

>ithe environment

Figure 6A. R(t)«(ft(t),*(t)) considered as a bulk control volume for the crystal (shaded)
and as a bulk control volume for the environment (dotted). #> designates the
portion of the corresponding physical boundaries that Interact v1th the interface.



62b

Figure BB. Forces on a bulk control volume R(t)-(fc(t),t(t)) for the crystal.
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Cci(X,t). Cei(X,t), tci(x,t), tei(x,t)

defined for Xe^(t) and X€^(t). irc(X,t) and ne(X,t) are forces
within the lattice associated with the attachment and release of
atoms as they are exchanged between phases, while cci(X,t) and
cei(X,t) are forces exerted by the interface. irc(X,t) and cc1(X,t)
act on the atoms of the crystal lattice; ne(X,t) and ce1(X,t) act on
the atoms of the environment which are about to become - or just were
- part of the crystal lattice. tc1(x,t) and te1(x,t) are forces exerted
by the interface on the deformed crystal and on the environment. The
forces associated with the symbols c and IT depend on the choice
of reference configuration ji.

8.2. Power expended in bulk. Consequences of invariance.
As before we use invariance to derive associated balance laws.

By (8.1) we may restrict our attention to power; in particular, to

= J(cc-0 + I T C - 0 + c c i -v)da + J ( t c -v c + t c i - t>)da, (8.3)

ft *
the power expended on bulk control volumes for the crystal, and to

Pe(ft) = J(ce-0 + ire-0 + ce1-v)da + f ( te -ve +te1-t>)da, (8.4)
ft n,

the power expended on bulk control volumes for the environment. Here
v is a velocity field for ,& and t> the corresponding induced
velocity for <4,. In these relations cc1< cei, tci, and te i are forces
exerted by the interface and hence expend power over appropriate
surface velocities; irc and ire are forces within the lattice and
hence expend power over the velocity of the lattice (which is zero in
the configuration JJL).

We assume that the forces and power transform as follows under
an observer change (4.1): for q = c,e,
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cq* = Lcqj cqi* = Lcqi. irq* = Lirq, t q i * = Qtq1,

Pq*(ft*) = l ( c q * - v L + i r q * . v L + cq1*.v*)da + J( tq*-vq* + tq1*-t>*)da.
ft* * *

A basic axiom of our theory is that the

power expended in bulk on the crystal and on
the environment be invariant under changes
in observer and under reparametrization.

As before, the presumption of invariance has important
consequences.

(8A) Interactive Force Balance. For q = c,e,

nq + cq1 = -cq, tqi = -tq . F4(cqi + JFTtqi) = 0. (8.5)

Proof. An argument strictly analogous to that used to derive
(7.10) and (7.11) shows that the invariance of Pq under changes in
observer is equivalent to the first two relations in (8.5). Next,
isolating the terms in (8.3) and (8.4) that depend on v (and x>), we
find, using (2.25)., and (3.25), that invariance of 7>q under
reparametrization is equivalent to the requirement that

J(cqi + JFT t q i ) -vda
(R

be independent of the choice of velocity field v, and the third of
(8.5) follows from (i) of the Invariance Lemma (Appendix C). •

The balance relations (8.5) allow us to express the power
expended in bulk invariantly as

Pq(ft) - Jtq-(vq-t>Jda - JtCq + ir^.v^da (8.6)
n, ft

for q = c,e.
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m. Mechanical theory.
9. Energies. Global lavs for energy. Reduced dissipation

Inequality.
9.1. Global lavs for energy.

We endow the crystal, the environment, and the crystal surface
vi th energies:39

\j>(X,t) superficial energy,
Wc(x,t) crystal bulk energy,
4re(x,t) environmental bulk energy.

\j*(X,t), X€£(t), represents the energy of the crystal surface, per unit
referential area; Wc(x,t) and *e(x,t), xec(t), are the the bulk
energies of the crystal and the environment, per unit deformed
volume. Although the bulk energies are measured per unit volume, they
enter this portion of the theory only through their values (limits) at
the crystal surface.

Consider an evolving control volume R(t) = (R(t)A(t)) which
includes both the interface and the adjacent bulk material (cf. Section
5.1 and Figure 5A). Then

J\j>da
ft

represents the superficial energy of R(t), while

n. >L ft
represents the outflow of bulk energy from R(t) (cf. (5.7) and (5.15)).
Here

39We use the term energy in a generic sense. The thermodynamic potential (free energy.

Internal energy, etc.) actually represented depends on which thermodynamic theory this purely

mechanical theory Is meant to "approximate". The current theory 1s Independent of such

considerations.
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is the scaled difference In bulk energies, while ^ p is the bulk
energy per unit referential volume.

For a purely mechanical theory the second lav is the assertion
that the rate of energy increase plus the energy outflow (including
kinetic energy) cannot be greater than the power expended. A precise
statement of this global dissipation inequality for the evolving
control volume R(t) is

(d/dt){Jyda} + J^v^da + fc(ft) < P(R) (9.2)
ft ft

for every evolving subsurface ft of A, where iC(ft) is the outflow
of kinetic energy (5.18), while P(ft) is the expended power (7.26).

We will also postulate energy balances for the bulk material
(near the interface). Since bulk control volumes exhibit neither
outflows of bulk energy nor outflows of kinetic energy, the bulk
energy balances take the simple form

PC(R) = Pe(&) - 0 (9.3)

for every evolving subsurface ft of £, where Pc(ft) and Pe(ft),

given by (8.6), are the power expenditures in bulk.

9.2. The accretive balance lav.

By (8.6) and (9.3), we have the local balances

Jt q - (v q -©J - (cq + irq)-vA (q-c.e), (9.4)

which, by (8.2), combine to give

( C I I J + TOV* - Jtc-(vc-oJ + Jte-(ve-t>J, (9.5)

with
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IT - (1TC + Tle)'nz (9.6)

the (normal) net attachment force. Using (3.26) and (7.14), we may
rewrite (9.5) in the form

{TT + 9 + JFT(tc + t e ) ] -n^}v^ + J t e . ( v c - v e ) = 0, (9.7)

where 9 represents the superficial terms

9 = -eric - div^e + ( F T i ) - L . (9.8)

We will refer to (9.7) as the accretive balance lav; it represents a
combination of the bulk energy balances and the normal accretive force
balance.

Suppose that the environment is a melt, modelled as an inviscid
fluid. Then, using (7.18), (7.21). (3.6). (3.14), and (5.11)v

.n^ }v 4 + J t e - ( v c - v e ) = -(detF)^pev^, £ = pc/pe,

n^ --(Scn jS)-(Fn jS). ( 9 9 )

with pe the melt pressure and Sc the bulk Piola-Kirchhoff stress in
the crystal. Thus the accretive balance law for a crystal in an
inviscid melt has the form

(Scn^)-(Fn^) + (detF)$pe - 9 - TT = 0, (9.10)

provided v^ * 0.
On the other hand, for the coherent crystal-crystal interaction

described in Section 3.5 and the paragraph containing (7.23), the
relations (3.36) and (7.24) yield

V n * } ^ + J t e - ( v c - v e ) = (S
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Thus, by (9.9)3 with F = FC, the accretive balance law for a coherent
crystal-crystal interaction becomes

(Scn j8).(Fcn jS) - (Seru).(Feru) - 9 - IT = 0 (9.11)

provided v^ ** 0.

9.3. The power identity.
The next theorem, one of our main results, is central to the

thermodynamics of crystal motions.

(9A) Power Identity.

+ Jp.t><Jda + Jcrv(dft)tands.
ft dft (9.12)

The left side of (9.12) is the total power expended on an evolving
control volume, while the right side catalogs the manner in which this
power is used: -CTKV^ represents power expended in the creation of

new surface, -©-n^* power expended in changing the orientation of
the surface, ( S F ^ - F * power expended in stretching the surface,

power expended in the exchange of atoms between phases,

(inertial) power expended in the velocity change between
phases (cf. (7.6)). The final term crv(dft)tan compensates for the
tangential motion of the edge dft.

Proof of the power identity. By (3.32) in conjunction with (2.25)3,
(6.2), (6.7). and (7.4),
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dft dn,
jCv -v^ds + JTT.o^ds + Jtrv (d f t ) tands;

dft dn. dft
therefore, using (7.6), (7.26), and (9.5), we find that

P(ft) - j C v - v ^ d s + Jc-v^da + j T x - o ^ d s + J(t + p)-t>^da
dft ft dn, n, (9.13)

+ J-nv^da + Jo-v(dft)tands.
(R diR

Next, as a direct consequence of the balance laws (7C),

+ Jc-v^da =
& ft (9.14)

dn, n, n, ft
where the final identity follows from (2.25)v (3.28), and (6.2). The
integrands of the right sides of (9.14) represent the stress power, per
unit area, of the accretional and deformational stresses. By (3.29),

and this relation, (3.29). (6.7), and (7.5) yield the stress-power
identity:

C- V ^ + 8 - V j t ^ = = -o-KVj - l - n 4
# + (SF^J-F*. (9.15)

The results (9.13)-(9.15) imply (9.12). •

9.4. The reduced dissipation inequality.
By (5.10), (5.19), and (7.6),
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*C(R) - Jp-o^da = JkVjda, (9.16)

n. ft
with

*>*iP^Vc-vJ2 - (Ve-t>j2]; (9.17)

therefore, using (2.38) and (9.12), we can write (9.2) in the form

* , - IT)Vj}da +

ft (9.18)
J(Vi-cr)v(8ft)tands < 0.

d(R
This inequality must hold for every smoothly evolving subsurface ft
of £ ; thus, by (ii) of the Invariance Lemma (Appendix C), ve have the

(9B) Tension-Energy Theorem. The surface tension and
superficial energy coincide:

ff = y. (9.19)

If we substitute (9.19) into (9.18) and use the fact that ft is
arbitrary, we are led to the reduced dissipation inequality

\p*+ ii-n^* - (SFj).F'+ (ilf+k-TOvj < 0, (9.20)

an inequality central to our theory.
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10. Constitutive equations. Thermodynamic compatibility.
As constitutive equations for the crystal surface we allow the

surface energy and the accretive and deformational surface stress at
any point of the surface to depend on the deformation gradient F, the
orientation n = n^, the normal speed v = v4 , and a list z of
variables of lesser importance, all evaluated at the same point:

^ = ^(F.n.v.z). T = TT(F,n,v,z), C = C~(F,n,v.z). (10.1)

We describe the interaction between phases by a constitutive equation,
also of this form, for the normal attachment force:

n = iTXF.n.v.z). (10.2)

We refer to z as the subsidiary variable; we require that z
contain, as entries, the velocities vc and ve as well as variables
(other than F) which determine the bulk energies tyc and We

through bulk constitutive equations. With this stipulation, & and W
may be regarded as functions of (F,n,v,z):

k = ^(F.n.v.z), W « *~(F.n,v,z) (10.3)

(cf. (9.17) and (9.1)). We assume that the common domain of the
response functions i j / \ T^, C \ and u~ is an open set of the
form (2.41).

The constitutive equations (10.1) imply corresponding constitutive
equations for the Piola-Kirchhoff stress and the normal component of
the total surface stress,

S - S~(F,n,v,z), © = ir(F.n.v.z) (10.4)

(cf. (6.2), (6.7)). By (7.4) and (9.19), the tdngentidi component of the
total surface stress is the surface tension ff = \ji.

Let ac(t):C(t)-»c(t) (t€T) be a crystal motion and z:£T-»Z
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(cf. (2.27)) a smooth function with z(X,t) interpreted as the
subsidiary variable at X€^(t) in this motion. Then the corresponding
list p = (F,n,v,z), with n = nA and v = v^, will be referred to as an
admissible process, and p together with corresponding fields \j>,
T, C, and IT generated through the constitutive equations (10.1) and
(10.2) wil l be termed a constitutive process.

The presence, in the constitutive equations, of the deformation
gradient F rather than the tangential deformation gradient F
implies a possible dependence on the behavior of the crystal away from
- although arbitrarily close to - the crystal surface. We will show, as
a consequence of the reduced dissipation inequality, that certain of the
constitutive quantities are intrinsic to the surface in the sense
that they depend depend on F only through F( = FB(n)) (cf. the
sentence containing (2.50) for a precise definition).

The basic thermodynamic axiom of the mechanical theory is that
the reduced dissipation inequality (9.20) be satisfied in all
constitutive processes.40 This hypothesis places severe restrictions
on the constitutive equations.

(10A) Compatibility Theorem.
(i) The response functions for the superficial energy (surface

tension), the Piola-Kirchhoff surface stress, and the accretive
surface stress are intrinsic to the surface, independent of the
normal speed and the subsidiary variable, and related through

4 0 l t is tacit that there are forces available to ensure satisfaction of the underlying balance

lavs in arbitrarily chosen constitutive processes (cf. Gurtin [1968b], Footnote 13). We chose

not to introduce such forces since their introduction tends to complicate the discussion and

since it is only here that they ore needed. Precisely, ve need accretive and deformational

body forces c e x t and b. Then (7.10^ and (7.11), become d i v ^ C + c + c e x t » 0 (1) and

^ V ^ T + t c + t e + b*-rn.(ve -vc ) (2). Invariance under reparametrization requires that

ce x t + JFTb be normal to A. Write n^n^ and recall that c and m are indeterminate.

Given any process ve choose: (i) b to balance (2); (11)ce x t -n and c t a n to balance (1);

(111) m to balance (7.10)2 (accretive moments); (1v)c>n, i r c - i r e , ( n c + nehan- cei- cci-

te i , and tc 1 to balance (8.5) (interactive forces) and (9.4) (bulk energy balances).
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S'(F.n) =
Ctan^(F.n) = ^(F.n)J(n) - l(n)FTdF^(F,n), (10.5)

(ii) There is a response function p~ such that the normal
attachment force has the form

iT(F,n,v.z) = k + W + pv, p = rXF.n.v.z) > 0. (10.6)

with k and W given by (10.3).

Proof. The requirement that the reduced dissipation inequality
hold in every constitutive process is equivalent to the requirement
that

o ( 1 0 7 )

in every admissible process p = (F,n.v,z). In view of the Variation
Lemma proved in Appendix C, given any po«(Fo.no,vo,zo) in the
domain of the response functions, there is an admissible process p
such that, at some point and time, p = p0 but (F',n°,v*,z°) is
arbitrary. Thus

0, dzy~(p) = 0, iT(p) = -an

> 0,

with p = (F,n,v,z) an arbitrary element of the domain of the response
functions, and \j>~ is independent of v and z. Further, (2.48)2 and
(10.8)l| imply df\j>~ = 0, so that, by Lemma (2Eiii), y* is intrinsic to

the surface; Lemma (2Eiv) and (10.8),, then yield (10.5)r Next, (2.50),
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(6.9), (7.4). (10.5),<and the relation o;-tp imply (1O.5)23, while the
remaining assertions of (i) follow from (10.5) and lemma (2F). Finally,
(10.8)5 implies the| existence of ,a function p"(F^.v^z) ^ 0 such that
(iii) is satisfied. £ • J X ^

(10B) Remarks >
(1) By (6.2) sjid (10.5),, the response function I"" for the

deformational surface stress is intrinsic to the .surface and given by

(2) By (10.8)| the normal, cfmponent of thaaotal surface: stress
satisfies |

iT(F,n)'.- -an^"(F,n), (10.10) *

and, by Lemma (2$, is intrinsic to the surface if and only if 4>~ is
independent of th$ deformdtion gradient (cf. Remark (6A)).

(3) The Com|,atibWfty Theorem allows us to write the constitutive
equations (10.1) arp (10.4)1 in the form (ef. Lemma (2Eiii)) > ̂ A'*••?

(4) We interpret the symmetry relation expressed in (7.11)^ or
(7.13)2 as a restriction on the response function S~ or TT\ and
hence, by (10.5)v o*n y*.

(5) The relations (10.5) yield the Gibbs relation

^ ' + H|n° - (SFjJ-F ' = 0, (10.12)

which shows that the surface itself does not dissipate energy. A
further confirmation of this is found upon computing the right side of
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(9.2) minus the left; the result, the total dissipation, is given by

Jj3v4
2da > 0, (10.13)

ft
so that the only source of dissipation is in the exchange of atoms
between phases.

(6) Consider the coherent crystal-crystal interaction (Section 3.5)
described by constitutive equations of the form

y = ^(Fc ,Fe ,n,v) , T - T~(Fc,Fe,n.v),

C = !T(Fc.Fe.n.v). IT = ir(Fc ,Fe ,n,v), ( 1 0 1 4 )

with domain subject to the constraint Fcl(n) = FeJ(n) = F (cf. (3.38)).

Then for every Fc< Fe, and n in this domain there is a ueIR3

such that

Fc - Fe = u®n. (10.15)

Because of (10.15), the constitutive equations (10.14) fall within our

framework: we sira.ply take F = FC and allow u to enter the list41

z. Thus 4», T, C, and i can depend on Fc and Fe only through

the common tangential gradient F. Here it should be emphasized that

the normal comporrent i of the total surface stress is defined (cf.

(6.9)) relative to the normal deformation gradient f = Fcn for phase

c (cf. (2) above).

41Cf. Footnote 26
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11. Basic equations for the crystal surface.
The basic equations of the mechanical theory, expressed using the

referential description and the abbreviations ;

n = n^, v = v j . p = pp.

consist of: balance of mass

F'1(vc-,ve)-n = ($-1)v,

t » pc/jpe = p/(PedetF).

balance of momentum
I?

S + J(tc + te) = pv(vc-ve) , (11.2)

and the accretive balance

W + JFT(tc + tfe).n + k + 9 + pv}v + J t e - ( v c - v e ) = 0, (11.3)

with %

9 = -Viic - div^e + ( F T i ) . L .

supplemented by the thermodynamic relations

p = r(F.n.v.z) > 0

(cf. (5.11)23, (7.13), (9.17), (9.7). (9.8), (10.5). (10.6), (10.11)). Within the

full theory, which.includes constitutive equations and balance lavs for

the crystal interior and for the environment, (11.0-01.5) constitute
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free-boundary conditions.
For the environment an inviscid melt, as discussed in the

paragraph containing (7.18), the basic laws reduce to42

F'1(vc-ve)-n

pe(detF)F-T}n = pv(v c -v e ) , (11.6)

= (Scn)-(Fn) + (detF)£pe - k - 9 - J3v.

supplemented by (11.5) (cf. (7.22), (9.1), (9.10)).
For the coherent crystal-crystal interaction described in

Section 3.5 and the paragraph containing (7.23), we may use (3.36) to
write (9.17) in the form

k = ipv2{ IF cnl2 - IFenl2},

and, using the bulk energies Û MC and UfMe measured per unit
reference volume (cf. (5.16),(5.17)), the basic laws reduce to

d iv^ i + (Se-Sc)n = pv(v c -v e ) .
(11.7)

V " V = (Scn)-(Fcn) - (Sen)-(Fen) - k - 9 - pv,

supplemented by (11.5) (cf. (7.25), (9.11)). Because of (5.12), mass
balance is not needed. If we let

sav • i «S c n) + (Sen)}.
fav " I ^c + fe>' fc " Fcn- fe = Fen-av " I ^c + fe>' fc " Fc

then we can use (3.36) to write (11.7)1 in the form
42For statical situations (v«0, v c «v e »0) : (11.6)2 and (11.7), are trivial consequences of eqt.

(5.25) of Gurtin and Murdoch [1975]; (11.6), and (11.7)2 were derived by Leo and Sekerka [1989]

(cf. Johnson and Alexander [1985,1986]) as Euler-Lagrange equations for stable equilibria.
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V - V = 8«V^c - V + ^v-div^i - 9 - Pv. (11.8)

(11 A) Remark. Coherent phase transitions involve jumps in
deformation gradfent and material velocity, and therefore are
kinematically equivalent to shock waves. When surface stress and
surface energy are neglected, (11.7) reduce to

(Se-Sc)| i = pv(v c -v e ) ,
(11.9)

V " 4 e = (Scn)-(Fcn) - (Sen).(Fen) - 1 - pv.

The equation (11.S)1 is a standard jump condition for shock waves,
but43 (11.9)2 is nol Indeed, for shock waves (11.9)2 is replaced by the
"entropy condition"

t V - V " (Scn)-(Fcn) + (Sen)-(Fen) + fe,]v > 0,

which shows the tnajor difference between shocks in single phase
materials and evQlving phase boundaries; for shocks the dissipation is
specified only to^sign, but the dissipation underlying the motion of
phase boundaries is specified completely as J3v2, with |3 a given
constitutive modulus.44 If, in addition, interfacial energy is included,
then one would expect severe restrictions on the spontaneous
development of phase boundaries,45 another indication of the major
difference between the two phenomena.

43(11.9)2 vas first established by Abeyaratne and Knovles [1988cl We arrived at (11.7)2 and

(11.9)2 independently, motivated by results of Gurtin for nondeformable media ([1988b], eqt.

(5.7^) and for a rigid crystal In an Inviscid melt ([19891 eqt. (5.3)). We proposed a one-

dimensional version of (11.9)2 during discussions vith Slemrod in April 1989.
44Cf. the discussion of Abeyaratne and Knovles [1988c].
45This possibility vas brought to our attention by Slemrod and Rascle (private

communication, April, 1989).
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I V . Thermodynamic theory.
12. The first two lavs.
12.1. Balance of energy. Growth of entropy.

A thermodynamic system, relative to ji, consists of
accretive and deformational force systems together with seven
functions of XeA(t) and t€T:

e(X,t) superficial internal energy,
s(X,t) superficial entropy,
8(X,t) absolute temperature,
E(X,t) scaled difference in bulk internal energies,
S(X,t) scaled difference in bulk entropies,
q(X,t) heat supply,

) apparent heat.

A basic physical assumption of the theory is that the
temperature be continuous across the crystal surface; 8(X,t)>0 then
represents the common limit as the surface is approached from the
crystal interior and from the environment.

The fields e and s represent the internal energy and entropy
of the crystal surface, per unit referential area, while E and S are
scaled differences as defined in (5.15). It is convenient to define the
superficial free energy y(X,t) and the scaled difference ty(X,t
in bulk free energies through

iji - e - 8s. * = E - 8S. (12.1)

Consider an evolving control volume R(t) = (ft(t)A(t)) that
includes the interface. Then

jeda, fsda
& ft

represent the superficial energy and entropy of R(t), while
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jda (12.2)

ft ft
represent outflows of bulk energy and bulk entropy from R(t).

The field q gives the heat supplied to R(t). per unit
referential area, from the bulk material of the crystal and from the
environment. If qc(x,t) and qe(x,t) denote the heat flux vectors for
the crystal and the environment, measured per unit deformed area, then

q = J(q t - q e ) - r v (12.3)

The quantity <fcv(dft)tan gives the heat flow into R(t) across its

edge aft(t), per unit referential length, due to the motion of dft(t);

thus

Jqda + hv ( d f t ) t a nds, J8"1qda + Je"V ( d f t ) t a nds
ft d<R ft aft

represent the total heat and entropy flows into R(t). (We neglect heat
flow within the interface.)

The accretive and deformational force systems and the kinetic
energy enter the thermodynamical laws through the mechanical
production &(ft) for R(t), which remains as defined and structured in
Section 7, so that the results of that section remain valid.

The first two laws of thermodynamics for R(t) are balance of
energy

(d/dt){Jeda} + jEv^da + £(ft) = Jqda + f<^v(d<otands (12.4)

ft ft ft dft
and growth of entropy

(d/dt){Jsda} + JSv^da > jB"1qda + f8"1cfcv(dft)tands. (12.5)

ft ft ft dft
Attachment forces and bulk-interface interactions are as defined

in Section 8, and the results of that section remain valid. Further,
since bulk control volumes (as defined in Section 8) have no thickness,
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they have neither bulk internal energy nor bulk entropy, they do not
exhibit outflows of bulk internal energy, bulk entropy, or kinetic
energy, and they exhibit neither net heat flows nor net entropy flows.
Thus energy balance for such control volumes is the requirement that
(9.3) hold, while growth of entropy is satisfied automatically. We
therefore postulate (9.3), and this renders the results of Sections 9.2
and 9.3 valid.

12.2. Local forms of the thermodynamical lavs.
By (2.38), (9.12). (9.17), and (12.1), we may write (12.4) and (12.5)

as

J{e° + (or-e)KV^ + B-n# - (SF4)-F° + (E + fc-iOVj - q}da
ft

+ J(e-o'-ck)v(dft)tands = 0, (12.6)
3ft

J {s ° - SKVj* SVj - 8"1q}da + J(s-8'1<t)v(dft)tands < 0,
ft dft

with k given by (9.17). This relation and inequality must hold for
each smoothly evolving subsurface ft of £; thus (ii) of the
Invariance Lemma (Appendix C) yields the

(12A) Tension-Energy Theorem. The surface tension and
superficial free energy coincide, while 8s represents the apparent
heat:

CT = \p, cfc = 8s. (12.7)

If we substitute (12.7) into (12.6), and use (12.1) and the fact that
ft is arbitrary, we are led to the

(12B) Local Thermodynamical Lavs. The laws of balance of
energy and growth of entropy have the local forms



82

e° - 8SKV^ + i»n° - ( B F ^ - F 0 * (E + &- TOV^ = q,

s° - SKV^ + Sv^ > q/8,

which combine to yield the reduced free-energy inequality

y* + sB° + D-IT - (SF4)-F° + ( *+ l -TT )v 4 < 0. (12.9)

The accretive balance remains as in the mechanical theory:

{TI + 9 + JFT(tc + te).n jS}vJ& + J t e - ( v c - v e ) = 0,

9 = -crk - div^e + ( F T i ) - L . ( 1 2 1 0 )

For the environment an inviscid melt, it is convenient to express
the scaled differences * = E,S,^ in terms of bulk densities in the
crystal fy-E^.Sji.tyji per unit referential volume and bulk densities
in the melt *e = Ee'Se'*e Per unit deformed volume (cf. (9.1):

* = *M - (detF)$*e. (12.11)

On the other hand, for the coherent crystal-crystal interaction we will
use densities *Jib«EJlc,SJlCiiI 'MC and *Me = EMe ,SMe ,* i l e per unit
reference volume for both phases (cf. (5.16) and (5.17)):

* = * M c ~ * j ie (12.12)

It is generally easier to use the bulk Piola-Kirchhoff heat flux
vector

hc = (detF)F"1qc (12.13)

for the crystal; then, by (3.6) and (3.13), we can write (12.3) in the form
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q = [hc - (detF)F"1qe]-nj8. (12.14)

For the coherent crystal-crystal interaction ve will use bulk Piola-
Kirchhoff heat f lu* vectors for both phases:

hc = (detFc)Fc"1qc, he = (detFe)Fe-1qe; (12.15)

in this case

q = (hc - he)-n^. (12.16)
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13. Constitutive equations. Compatibility with thermodynamics.
We consider constitutive equations of the form

e = e^F.e.n.v.z), s = s~(F,8,n,v,z).

T = TTCF.e.n.v.z). C = C"(F.B.n.vfz). (13.1)

IT = iT(F,8,n,v.z),

with n = n^, v * ^ , and z a subsidiary variable as specified in
Section 10, so that

*, = fc/XF.n.v.z), * = W(F.8,n,v,z) (13.2)

These constitutive equations imply relations

y = ^(F.S.n-.v.z). i = i^F.e.n^v.z), @ = ©"(F.B^.v.z). (13.3)

A constitutive process now consists of: (i) a crystal motion
ac(t) :C(t)-»c(t) (teT); (ii) smooth temperature and auxiliary fields
8(X,t) and z(X,t); defined for X€£(t) and t€T; (iii) corresponding
fields e, s, T, C/and TT generated through the constitutive equations
(13.1). The basic thermodynamic axiom is now the requirement that
the reduced free-energy inequality (12.9) be satisfied in all
constitutive processes. The next theorem is a direct consequence of
this axiom; its proof is strictly analogous to that of (10A).

(13A) Thermodynamic Compatibility.
(i) The response functions for the free and internal superficial

energies, the superficial entropy, the Pioia-Kirchhoff surface
stress, and the accretive surface stress are intrinsic to the
surface, independent of the normal speed and the subsidiary
variable, and related through
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s"(F,8,n) . -

S~(F,8,n) = dF^(F,8,n), ( 13 4 )

Ctan~(F.8,n) = ^(F,8,n)II(n) - l(n)FTdF^(F,e,n),

e~(F.8,n) = -Dnijr(F.e.n).

(ii) There is a response function p^ such that the normal
attachment force has the form

ir(F.8,n,v,z) = k + W + pv, p = p^F.e.n.v.z) > 0, (13.5)

with k and W given by (13.2).

Analogs of the Remarks (10B) hold in the present theory. In
particular, we have the Gibbs relations

y° + s8° + i -n° - ( i F ^ ) - F ' = 0. (136)

e* - 8s° + @-n« - (SF^) .F ' = 0.

The relation (13.6)2 allows us to simplify the local energy balance
(12.8)^ indeed, by (12.1) and (13.5), we have the following result:

(13B) Local Entropy Balance. Granted the thermodynamic
restrictions (13.4) and (13.5), balance of energy (12.8)1 Is equivalent
to the entropy balance

s° - SKVj + SVj = 8"1(q + pv 4
2 ) . (13.7)

The left side of (12.5) minus the right represents the total
entropy production, which, by (13.7) (cf. (12.6)2, (12.7)2), is

J8"1pv4
2da > 0, (13.6)

<R
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so that the only source of entropy production is in the exchange of
atoms between phases.
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14. Basic equations for the crystal surface.
The basic equations of the thermodynamical theory, expressed

using the referential description and the abbreviations n = n&. v = v
p = PM, consist of: balance of mass

F"1(vc-ve)-n = ($-Ov.

balance of momentum

div^S + J(tc +te) = pv(vc -ve ) . (14.2)

the accretive balance

+ JFT(tc + te)-n + k + 9 + J3v}v + J t e - ( v c - v e ) = 0,

9 = - \ | IK - div^e + (FTS)-L. (14.3)

the entropy balance (energy balance)

s* - SKV + Sv = 8'1(q + pv2). (14.4)

and the thermodynamic relations

s = - e ^ , t , F ^ ( . . .

c = -Dn^(F,n) . p = p"(F,8,n,v,z) > 0.

Within the full theory, which includes constitutive equations and
balance laws for the crystal interior and for the environment, (14.1)-
(14.5) constitute free-boundary conditions.

For the environment an inviscid melt, the basic laws reduce to
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F"1(vc-ve)-n = (£-1)v,
c v e

- {Sc + pe(detF)F~T}n = pv(v c -ve ) ,
(14.6)

" (Scn).(Fn) + (detF)$pe - k - 9 - pv.

s° - SKV + [SM - (detF)£Se]v =
B"1[hc - (detF)F"1qe]-n + 8"1j3v2.

supplemented by (14.5).
For the coherent crystal-crystal interaction the basic laws

reduce to46

i + (Se-Sc)n = pv(v c -v e ) ,

V " VMe = (Scn)-(Fcn) - (Sen)-(Fen) - *. - 9 - Pv, (14.7)

s» - SKV + [SMC - SMe]v = 8"1[hc - he]-n + 8"1pv2,

supplemented by (14.5). We could also use (14.7)2 in the form (11.8).

Acknowledgment. We greatly acknowledge valuable discussions
with Perry Leo and Marshall Slemrod. This work was supported by the
Army Research Office and by the National Science Foundation.

46Abeyaratne and Knovles [1988c] derive (14.7)2 , for the special case in which surface

stress, surface energy, and surface entropy are negligible (cf. Remark 11 A).
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Appendices.
Appendix A. Change in reference configuration.
A1. Kinematics.

Let >i1 and \i2 be configurations of the lattice, with g and
G = Vg the label change and label gradient from >i1 to j i2 . Further,
let ^(O-dC^Ct). n , - ^ . P , -?^ . 1 , -1^ . K , - * ^ . F , - ^ . and so
forth; and similarly for the quantities corresponding to \L2. Let
X ^ C t ) and X2€£2(t) satisfy X2 = g(X,). Then

*2(X2,t) = ac/g'^xp.t),

F2(X2,t) = F/X^OG"1,

so that, by (2.16) (applied to G"1). (2.20)^ and (3.8),

F2 = F2i2 = F^"1!, - fJWX = F/Bsurf)'1. CA2)

and (3.11) yields

where, for convenience, we have omitted arguments. Similarly,

J1 = J 2 d e t i , (A4)

so that, by (2.24),

adjF1 = (adjF2)(adji), (A5)

Each A^trajectory V^p) through X1 at t induces an £ 2 -

trajectory V2(p) = g(V1(p)) through X2 at t, and V2'(p) = GV1"(p). We
may therefore use Lemma (2B) to conclude that each velocity field47

47Here ve write v, and v2 for arbitrary velocity fields, v^ and v^ for normal

velocities.
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v1 for ^ 1 induces a velocity field v2 for &2 through

v2 = 6 v r (A6)

What is important about this pairing is that, by (3.25), (A1), and the
invariance of vc under reference changes, the corresponding induced
velocities t>A and t>2 are invariant:

t>1 = t)2. (A7)

This result holds also for edge velocities and corresponding induced
edge velocities for smoothly propagating subsurfaces (R1 and ft2 of
^ 1 and £2 provided R2(t) = g(ft1(t)).

The transformation (A6) does not generally preserve the
normality of velocity fields. If in (A6) we take v1 to be the normal
velocity v^ and use (2.16) and the fact that (v2 • n2)n2 • v^ , we
arrive at the transformation rules

V*2 - X ^ . V,2 = X2G-TV^. X = \B-\r\ (A8)

A2. Invariance under change in reference configuration.
The accretive force system is defined relative to a given

reference configuration j i , and this renders the expended power
possibly dependent on the choice of u.. We now deduce transformation
laws for accretive forces under changes in reference which ensure the
invariance of the expended power (and hence of the mechanical
production, since the outflow of kinetic energy is independent of the
choice of reference).

Let }i1 and j i 2 be configurations of the lattice, let C1 and c1

denote the accretive stress and accretive traction for j i v and let C2

and c2 denote the analogous quantities for j i2 . Further, (using the
notation of Section 3.3) let g and G=Vg designate the label change
and label gradient from u.1 to u.2; let (R1 and ft2 denote smoothly
propagating subsurfaces of ^ 1 and £2, with R2(t) = g(R1(t)) so that
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.t); let v1 and v2 denote the outward unit
normals to d(R1 and dft2. Then relative to the configuration j i ,
(i = 1,2) the expended power (6.4) is given by

-Ofds + J ( t c - v c + t e - v e ) d a , (A9)

dftt dn. t

with v i an edge velocity for dft, and t)i the corresponding induced
edge velocity for n.. (Here it is tacit that the deformational and
environmental systems are independent of the choice of reference.)
Since Pi is independent of the choice of v1# we may choose v1

arbitrarily and v2 = 6v1 (cf. (A6)), so that v^v2 (cf. (A7)), to
verify that PA

mP2 if and only if

or equivalently, using (2.25)3 and the fact that v , and ft, are
arbitrary,

C1 = G T C 2 a d j i , (A1O)

which is the transformation Jaw for the accretive stress.
Next, (2.25)2, the fact that G is constant, and the requirement

that the accretive force systems relative to the two configurations be
consistent with the balance laws (7.9), yield

0 = jGTC2v2ds + (GTc2da
dft2 ft2

= | G T C 2 ( a d j i ) v 1 d s + f ( d e t i ) G T c 2 d a

i/^s + } (de t i )G T c 2 da ,

*i

so that
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J(det©)6Tc2da.

Since ft1 is arbitrary, this implies the transformation law for the
accretive traction:

c, = (deti)GTc2. (A11)

Next, (A5) and (6.2) yield the transformation law for the Piola-
Kirchhoff stress:

(A12)

and this, (A1) and (6.7) yield the transformation law for the total
surface stress:

A, = G T & 2 adj i . (A13)

The lav (A13) implies corresponding transformation rules for the
surface tensions o'1 and cr2 and the normal parts i 1 and i 2 of
the total surface stress, where, by (7.5),

&5 = tri.l1 + n ^ ^ . (A14)

Indeed, if substitute &2 in the form (A14) into (A13), and use (2.16)
and (2.21), we find that

1 1 . (A15)

and therefore, taking A1 as given by (A14) and using (2.17), we find
that

cr1 = (deti)cr2, i 1 = (adj i )T [Xi 2 + cr^^nj. (A16)
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Finally, If \|i i and ^ i denote the superficial and (crystal) bulk

energies relative to ji t (1-1,2). Then, by (2.23). (2.25)v and (A8) r

under the transformations

(A17)

the corresponding terms in (9.2) are independent of the choice of
reference configuration; these transformations coupled with those given
in (A10)-(A12) (which ensure the invariance of the expended power)
render the global dissipation inequality independent of the choice of
reference.

Similar considerations apply in the thermodynamical theory.
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Appendix B. Material symmetry.
We now deduce the manner in which the response functions \JJ~

E~, and TP in (10.1) transform under a change in reference.48

Thus let | i 1 and }i2 be configurations, and let \j»t~, t^, and T ^
denote these response functions relative to j i , (i-1,2). Then, since
the deformational surface stress is invariant under a change in
reference, we may use (2.16), (A1), (A10), and (A17) to conclude that

^ ( F . n ) = (detir1\j>r(FG.IGTnr1GTn).

C2"(F,n) = G"TC1"(F6,l6Tnr1GTn)(adji)

T2~(F,n) = T1"(FG,IGTnl"1GTn),

with G the label gradient from }i1 to }i2.
We use the term unimodular tensor for a tensor G€lin(IR3,IR3)

with detG-1. The symmetry group for the material relative to a
configuration j i consists of those changes in reference which leave
the material response and density unaltered. Modulo an inconsequential
translation, each such change in reference can be identified with a
unimodular label-gradient G. Thus, guided by (BO, we define the
symmetry group49 JBM, relative to a configuration j i , to be the
group of all unimodular tensors G such that the response functions
relative to p. satisfy

>^(F.n) = (detSrV(FG,IGTnr1GTn),

GTC~(F,n)(adjS) = C"(FG,IGTnl"1GTn). (B2)

TT(F.n) = TT(FG,IGTnr1GTn)

for all FeLin+ and
A solid is, by definition, a material whose symmetry group jD^,

4 8The response function i T could also be included provided ve specify the manner in which

the subsidiary variable z transforms under a change in reference.
49For a single-phase bulk material this definition as well as those of "solid" and "fluid" are

due to Noll [1958]. Cf. also Truesdell and Noll [1965], Sect. 31, Gurtin [1981], Sect. 25.



95

relative to some configuration ji, is a subgroup of the group of all
rotations. The particular configurations )i with this property are
then referred to as undistorted. In contrast, fluids are defined by
the requirement that, relative to some (and hence every) configuration
ji, JDM contains all unimodular tensors. As is clear from our choice
of terminology (lattice, crystal, etc.), our interest lies chiefly in
solids; even so, our ideas seem appropriate also to fluids.

We require that the constitutive equations be invariant under
changes in spatial observer. By virtue of (4.10)1 and (6.10), this is
equivalent to the requirement that, for all rotations Q,

E"(F.n) = C W . n ) . (B3)

QTT(F,n)QT = Tr(QF.n)).

The restrictions (B3) may be used, in the usual manner,50 to deduce
reduced constitutive equations in terms of superficial strain tensors.

For a solid the conditions (B2) and (B3) may be combined to give
the more standard symmetry relations:

QE"(F,n)QT = C~(QFQT.Qn), (B4)

QTr(F.n)QT = T

for all (rotations) QejO .̂ In deriving (B4), ve have used the fact that,

by virtue of our convention (2.6), C~(F,n)(adji) = C~(F,n)G for 6 a

rotation.
For fluids it is convenient to introduce the energy

i|io(F,n) = J~(F,nrV(F,n) (B5)

per unit deformed area (cf. (2.25)v (3.16)). Then (B2)1 and
50Cf. Gurtin and Murdoch [1975].
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combine to give

yo(F,n) = ^0(QFG,l6Tnr16Tn) (B6)

for all rotations Q and all unimodular tensors G. In classical
treatments of fluid surfaces the surface tension is assumed constant
and equal to \JJ0. The next result establishes the consistency of our
theory with this classical formulation.

Theorem on Fluid Surfaces. Let the material be a fluid.
Then:
(i) the surface energy \j>0 (per unit deformed area) is identically

constant;
(ii) the deformational surface stress is a surface tension equal to

y0 and the accretive surface stress vanishes identically:

Proof. Fix (F,n). The choice G = (detF)F~1QT in (B6) yields

\|>0(F.n) = ^0((detF)l, IF"Tnr1QF'Tn),

which can hold for all rotations Q only if \j»0(F,n) is independent of
n. Thus yo(F,n) = \po(detF) and, by (B5),

\p~(F,n) = J ^ ^

Consequently, (2.49)2, (3.17), and (3.18) yield

(F,n) = J"(F,n)(detF)^0 '(detF)F'Tn. (B8)

But y>~ is intrinsic to the surface, so that, by (9Eiii), (B8) must
vanish identically; hence i^os constant. Further, this result, (3.19), and
(10.5)1 yield
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. (B9)

and we conclude from (6.2) that (B7)1 is satisfied. Also, by (3.11),
FT l^ = (Fs u r f)

T; therefore (3.19) and (10.5)2 vith a F ^ given by (B9)

yield Etan = O, while (3.20) and (10.5)2 imply C = 0; hence (B7)2 is

satisfied. •

Note that (B7)2 and (7.10) imply that the accretive traction also
vanishes: c = 0.
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Appendix C. Tvo lemmas.

Invariance Lemma. Let & be a smoothly propagating
surface. Let f, g, f, and A be fields on &, with f and g
superficial scalar fields, f a superficial vector field, and & a
superficial tensor field.

(i) If, for all smoothly propagating subsurfaces ft of £,

Jf-vda (CD
ft

is independent of the choice of velocity field v for £, then
the tangential component of f vanishes.

(ii) If, for all smoothly propagating subsurfaces ft of £,

Jfda + Jgv (df t ) tands < 0, (C2)

ft diR
then g = 0.

(iii) If, for all smoothly propagating subsurfaces (R of &,

-vda (C3)
dft

is independent of the choice of edge velocity v for ft, then
^ i t a n is a surface tension. (Here v is the outward unit
normal to dft.)

Proof. For any (unit) vector u let P(u)€lin(IR3,IR3) be defined

P(u) = 1 - u®u, (C4)

with 1 the identity on IR3. Let n^n^. Throughout the proof q(X,t)
is an arbitrary smooth vector field on R3xR.

The following results will be useful:
(1) If E is a tangential tensor field, and if, for each
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oc.-E(X)p = O whenever oc. and JJ are orthogonal vectors orthogonal to
n(X), then E is a surface tension.

(2) The field

v - v* + P(n)q (C5)

is a velocity field for £.
(3) Let ft be a smoothly propagating subsurface of A, with v

the outward unit normal to dft. Then

v = Vjfc + P(n)P(v)q (C6)

is an edge velocity for ft.
The results (2) and (3) follow from (2.33) and (2.34) (with A

replaced by ft). Consider (1). Since i is tangential, it suffices to
show that if E€l_in(IR2,IR2) satisfies ot«Ep = 0 whenever o 2

are orthogonal, then E = o*12 with 12 the identity on IR2. This
latter assertion follows using the choices <x = ev p = e2 and
a ^ - e . , , p = e^ + e2, with 6, = (1,0), e2-(0,D.

Consider now (i)-(i i i).
(i) Choose v in (CD equal to (C5). (CD is then independent of

q only if

JP(n)f-qda = 0
ft

for all q; thus and since ft is arbitrary, P(n)f «0, which is the
desired conclusion.

(ii) Again let v be defined by (C5). Fix t0, let ft0 be a
sufficiently regular subsurface of £(t0), and, for t sufficiently
close to t0, let ft(t) with ft(to) = fto be the image of ft0 under the
trajectories generated by the velocity field v. Then, at t = t0,
v(dft)tan = q • v, with v the outward unit normal to dft0, and, since q
is arbitrary, (C2) yields the conclusion that, at t = t0, gv = O on dft0;
since t0 and ft0 are arbitrary, this yields g = 0.
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(iii) Choose a smoothly propagating subsurface <R of &, and
take v in (C3) equal to the edge velocity for & defined by (C6).
Then, since the resulting expression must be independent of the choice
of q, we may use (2.5), to conclude that

>tanv).P(v)qda = 0.
da

Thus, since q and ft are arbitrary, P(v)& tanv = 0 for any
tangential vector field v, and the desired conclusion is a consequence
of (1). •

Let S)CLin+xUnitxlRx|Rp denote the common domain of the
constitutive equations (10.1), so that 8 is an open set in
Lin+xUnitxRx|Rp (cf. 2.41). In the next lemma it is convenient to
identify the crystal C(t) with the region Cp(t) it occupies in the
reference configuration ji.

Variation Lemma. Given

Po B (Fo'no'vo'zo

F^LindR'.IR3). n ^ n / , v^lR. Z^IRP.

there is a crystal motion x(t):C(t)-*c(t) (t€T), with OeT.
O€dC(O), such that the corresponding admissible process p = (F,n,v,z)
satisfies:

p(0,0) = p0, p'(O.O) = (F1,nl.v1,z1). (C7)

Proof. Let
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F(t)
n(t)

r(t)

z(t)

Further, let

" Fo + tF r

= (r^ + tn,)

- tv0 • {t2

• zo + t 2 v

C(t)« {X: X-n(t)<r(t) }.

so that

dC(t) = {X: X-n(t) = r(t) }

Is a plane with normal n(t) and distance r(t) from the origin, and
C(t) Is an evolving crystal (on any time interval) with n(t) as
outward normal. The normal velocity v is found by choosing a
dC(t)-trajectory U(t) and differentiating the relation y(t)-n(t) = r(t);
the result is

v(y(t),t) = U'(t).n(t) « v0 + tv1 - y(t)-n'(t),

so that

v(X,t) = v0 + tv, -X-n'(t)

for all XedC(t).
We choose the time interval T (0€T) sufficiently small that

(F(t),n(t),v(X.t),z(t))€© for all t€T (cf. (2.41)). Then F(t) is the
deformation gradient of a crystal motion x(t):C(t)-»c(t) (t€T).
Moreover, using (2.36) to compute the normal time derivatives of F(t),
n(t), v(X,t), and z(t), ve see that the corresponding admissible
process is consistent with (C7). •
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