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1. INTRODUCTION.
The energy functionals involved in variational problems associated to phase transitions

correspond to nonconvex integrands. This feature induces failure of weak lower semicontinuity

and typically these variational problems are characterized either by nonexistence or by

nonuniqueness of solutions. Nonexistence is generally associated to highly oscillating

minimizing sequences and nonuniqueness might be due also to the fact that, by neglecting small

interfacial effects, interfaces can form without an increase of the energy.

When trying to either eliminate the oscillating behaviour or to find a selection criterion

yielding the most likely observed solutions, we are lead naturally to the study of models

involving bulk and surface energy terms.

Interfacial energies may be introduced either by direct penalization of sharp interfaces or by

singular perturbations taking into account higher concentration gradients on a thin transition

layer, as in the Van-der-Walls-Cahn-Hilliard theory of phase transitions for fluids (see

FONSECA [18], [19], GURTIN [22], KINDERLEHRER & VERGARA - CAFFARELLI

[27]). For solid crystals which have been subjected to thermal or mechanical treatments,

HERRING [23] assumes that interfaces are sharp and he shows that the anisotropic surface

energy may determine the surface structure and geometry of phase boundaries. Indeed, according

to HERRING [23] if the dimensions of the crystal grains are sufficiently small, then the tendency

of the crystal to lower its surface free energy is often the principal motivation for changes in the

surface structure when approaching an equilibrium configuration of minimum free energy.

Therefore, the analysis involved in the study of such variational problems requires results

concerning continuity and lower semicontinuity of surface energies of the type

J(E) := J r(vE(x)) dH^x), (1.1)

where E is a smooth subset of IRN, vE is the outward unit normal to its boundary and T denotes

the anisotropic surface energy density per unit area of the deformed configuration. In order to

extend J(.) to sets of finite perimeter, (1.1) suggests the study of sequentially weak * lower

semicontinuity properties of functionals of the type

IfCji) := f f(x, oc(x)) dMx), (1.2)

where |i is a ERP-valued measure with polar decomposition d|i = a 6X.

As we mentioned before, the nonexistence of minimizers is related to the fact that

oscillations of minimizing sequences cannot be prevented due to the failure of lower

semicontinuity of the energy functional . This situation is particularly interesting when the

material has a crystalline structure, in which case the stored energy function has several potential

wells (see ERICKSEN [12], [13], FONSECA [17], KINDERLEHRER [25]). Indeed, it may
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happen that the macroscopic weak limit of a minimizing sequence is not a minimizer of the total

energy functional, although being stable enough to be observed. Therefore, the study of

minimizing sequences becomes crucial for understanding the role in equilibria of the underlying

oscillations at the microscopic level.

The tool generally used to control the oscillations of minimizing sequences of deformations

relies on Youngfs probability measures (see TARTAR [31]). As an example, this is the treatment

required by fine phase twinning of crystals (cf. BALL & JAMES [5], CHIPOT &

KINDERLEHRER [8], JAMES & KINDERLEHRER [24], KINDERLEHRER & PEDREGAL

[26]).

Similarly, indicator measures (see RESHETNYAK [30]) may be particularly useful to

handle oscillating weakly convergent sequences of surfaces, and they may be relevant to treat

those cases where the interfaces are not sharp but thin transition layers. Here, the limiting

"surface" may be a generalized surface which macroscopic properties are described by the

indicator measure of the sequence. These Radon measures turn out to be helpful for studying the

weak lower semicontinuity properties of functionals of the type (1.2), and in particular, surface

energy functionals as in (1.1).

In Section 2 we introduce the notation and we review briefly some concepts of the theory

of functions of bounded variation.

In Section 3, using an approach similar to that of EVANS [14] and RESHETNYAK [30],

we introduce the notion of slicing measures and indicator measure associated to a weakly *

converging sequence of vector-valued measures (see Theorem 3.7). In Proposition 3.13 we

establish the relations between the weak * limiting measure and the indicator measure. For the

related notions of varifolds and generalized surfaces, see ALLARD [2] and ALMGREN [3] and

L. C. YOUNG [32].

In Section 4, we prove that convexity of the integrand is a necessary and sufficient

condition for sequential weak * lower semicontinuity of (1.2) (see Theorems 4.5 and 4.7).

In Corollary 5.3, we show that if the total variation of the weak * limit is equal to the limit

of the total variations then continuity of functionals holds. Some of the results of Sections 4 and

5 can be found also in FEDERER [16], who relies heavily on concepts of geometric measure

theory, in GOFFMAN & SERRIN [21] and in RESHETNYAK [30]. Here, we use the

terminology of RESHETNYAK [30], and we provide a more detailed analysis of this problem in

the context of functions of bounded variation and sets of finite perimeter.

As mentioned before, we are interested in the lower semicontinuity properties of surface

energy densities of the type (1.1) associated to elastic solid materials that undergo a change of

phase. These functionals are integrals of the type (1.2) where JLL is the gradient of a function of

bounded variation, namely \i = V%E- As shown by DACOROGNA [9] (see also ACERBI &



FUSCO [1], MORREY [28]), in this case the W1-1 - weak lower semicontinuous envelope of

the functional is the integral of the quasiconvexification of the energy density, and so

quasiconvexity becomes the natural constitutive assumption rather than convexity. We address

this question on Section 6. In Theorem 6.6 we prove that lower semicontinuity holds when the

density is quasiconvex and homogeneous of degree one, and when the sequence | ie and its weak

* limit are absolutely continuous with respect to the Lebesgue measure. We conjecture that the

result is still true even in the presence of a singular part with respect to the Lebesgue measure.

In Section 7 we use the notions of indicator measure and Young's measure associated to a

weakly * converging sequence in order to obtain strong convergence. In particular, in Theorem

7.4 we show that if a sequence of twinned configurations of an elastic crystal converges in W1*00

weakly * to a configuration and if the L1 norms of the corresponding deformation gradients do

not oscillate then the sequence itself has no oscillations and the limiting configuration is also

twinned.

2. PRELIMINARIES.
Let Q, C [RN be an open set and consider the canonical euclidean norm in [RN. In what

follows, || . || : RP -» [0, +oo) is a norm, SP"1 := {x e RP | ||x|| = 1} and LN is the Lebesgue

measure in [RN.

Let |i be a [RP -valued measure in £X The polar decomposition of pi is represented by

d|i = a dX,

where a : Q —> SP"1 is the density of/I and the positive and finite Radon measure X is the total

variation of n (also denoted by ||(i||).

Definition 2.1.
We say that ^ ±± \IQ (weakly *) in the sense of measures if

I cp(x) oc£(x) dA^ -> I cp(x) CXQ(X) dX0
•to JQ.

for all (p e C0(Q; R) := {9 e C(Q; R) : support 9 C C Q}.

We recall briefly some results of the theory of functions of bounded variation (for details

see De GIORGI [11], EVANS & GARIEPY [15], GIUSTI [20]).

Definition 2.2.
A function u e Ll(Q) is said to be a function of bounded variation (u e BV(£2)) if



J |Vu(x)| dx := sup j j u(x). div <p(x) dx | <p e Co (Q; IRN), ||<p|| „ < l l <

Definition 2.3.
If A is a subset of KN then the perimeter of A in Q is defined by

Pern(A):=J^ |V%A(x)|dx = sup |J A div <p(x) dx | q> e CJ(Q; 1RN), ||<p|L<; l l ,

where %A denotes the characteristic function of A.

Now we state the structure theorem for functions of bounded variation.

Theorem 2.4.

If u e BV(Q) then there exists a Radon measure ||Du|| on Q. and a ||Du||-measurable function

a : Q. -» IRN such that

(i) ||Du||(Q)=J |Vu(x)|dx<+oo;

(ii) ||a|| = 1 for ||Du|| a.e. x e Q ;

(iii)f u | ^ - dx = - f <pcq d||Du||

for i = 1,..., N and for every <p e C1Q(S1).

We write u ~ (a, ||Du||).

Remark 2.5.
(i) Note that by Theorem 2.4 (iii), a ||Du|| = Vu in the sense of distributions;

(ii) If u e Wfcl then a(x) = • ^ ^ and ||Du|| = LN11|Vu||, i. e. d||Du|| = ||Vu||dx;

(iii) Suppose that u : Q. —> \Rn is a function of bounded variation. Let u = (ul9 ...,un), where
u i ~ (m* ̂ i)- Then u ~ (F, X), where F € S* := {nxN matrices with euclidean norm 1} and X is

a positive finite Radon measure, i, e.

f uj(x) div<p(x) dx = - f T F H O O I P J G O dX(x),

for all i = 1,..., n and for every q> e C0(Q ; IRN). It is easy to see that

Fy = ̂ | p anddX=||f||dC



where d£ := dXx+ ... + dXn; as A,j is absolutely continuous with respect to £ (X+ « £), by the

Radon-Nikodym Theorem there exists a nonnegative function f{ e L1 (Q such that dXf= f{ d£.

As in (ii), if u is locally in W1*1 then it turns out that
d

F « = ijv^ji > w h e r e
y

(iv) Suppose that E C IRN is bounded and has finite perimeter in [RN. Then

||aE||:=||DXE|| = HN.1La*E
where HN-1 is the N-l Hausdorff measure and d*E is the reduced boundary ofE, i. e.

Moreover, X E ^ (" VE» H^EH) where vE is the outward unit normal to the reduced boundary of E,

and, as in (i),

- v E | | 3 E | | = V X E in

Theorem 2.6. (Generalized Green-Gauss theorem)

f div <p(x) dx = f cp(x). vE(x) d ||dE||
JE J\R

(p(x). vE(x) dHN_!

for all 9G C (̂[RN;

Let { h j be a sequence bounded in BV(Q; IRn), i. e.

llhsllBv := I |he(x)| dx + I |Dhe(x)| dx < Const. < +~,

and assume that he -^ h0 strongly in L !(ii; IRn). From Definition 2.2 it follows immediatly that

f |Dho(x)| dx < lim inff |Dh£(x)| dx.

According to Theorem 2.4, let he - (oc€, Xe) and h0 - (a0 , X,o), where A,e:= ||Dhe|| and Xo:=

l, and define

d|ie := a £ dke, d^0 := a 0 dX0. (2.7)

Lemma 2.8.
^e ** ^o weakly * .

Proof, (a) Let <p € CQ(Q). By Theorem 2.4 and since h£ -> ho in



J f * f f f f

9 dp e = 1 9 <xe dA£ = — I h£ V9 dx —» — I h0 V9 dx = I 9 ao d^o = I 9
Q JQ JQ JQ JQ JQ

(b) If 9 e C0(Q), let 9 n € CQ(£2) be such that || 9 - 9n lU -» 0. Given 8 > 0, and assuming

||Dhe||(Q)=J|Vh£(x)|dx<M,

choose n<) such that

Then
f I I f I if f9 oce dXe — I 9 an 6XQ\ < II (9 — 9 n ) (Xe dXJ + 11 9 n ccc dA.E —I 9« cxnJo Jn 0 Jo 0 Jo luo

j

T + ' Jo 9 n ° t t e dXe ~ Jo 9n

Finally, by (a) there exists an EQ such that for all 0 < e < BQ

if tPnoae^-f 9n0Oo<^ol<T

which, together with (2.9) and the arbitrariness of 8, yields

I 9 oce dX£ -* I 9 a 0

For the remaining of this section, we refer the reader to GOFFMAN & SERRIN [21]. Let

p be a IRP -valued measure in Cl with polar decomposition dp = a dX, and let f e Co(£ixlRp).

Definition 2.10.

f f(x, dp) := f f(x, cc(x)) dX(x).
JQ JQ

It is possible to show that for every Borel set E C 12 and for every x0 e Qwe have

f f(xo, dp) = sup T f(x0, p(Ei)),
j g ~mm

IE I

where the supremum is taken over all finite Borelian partitions {E{ | i € 1} of E. Using the

Lebesgue Decomposition Theorem (see EVANS & GARIEPY [15]), it follows immediatly from

the definition that if dA,(x) = a(x) dx + b(x) d£, where LN and £ are mutually singular, then
f f(x, dp) := f f(x, a(x)) a(x) dx + f f(x, a(x)) b(x)

Jn JQ JQ



3. SLICING MEASURES AND INDICATOR MEASURES.

We start by introducing the concept of slicing measures (see EVANS [14]). Let A be a

finite, nonnegative Radon measure on QXDRP and consider its projection n onto Q, i. e.

ic(E):=A(ExlRP)

for every borel set E C £2. Clearly, < rc, cp > = < A, 9 ® 1> for all 9 e Co(&), i- e,

f cp(x) drc(x) = f <p(x) dA(x, yX

Given a borel set B C IRP, define PB(A) := A(A x B) for every borel set A C £2. As pB is

absolutely continuous with respect to n ( pB « n ), by the Radon-Nikodym Theorem there

exists XB G Ll( K ) such that dpB = \% dn, i. e.

f U) drc(x).B

pB(A)= f

Definition 3.1.
For % a. e. x e Q, we define the slicing measure X,x on IRP by Xx (B) := X,B(x).

Proposition 3.2. ([14])

(i)A(AxB) = J ^x(B)dic(x)

for all A and B borel sets of il and IRP respectively ;

(ii) Xx is a nonnegative Radon probability measure, i. e. A,x (IRP) = 1 for n a. e. x e £1;

(iii) (Fubini's decomposition) | f(x, y) dA(x, y) = f [ [ f(x, y) dXx(y) ) d7t(x)

for every f e C0(QXIRP).

Note that by (i), for all Borel subset A of Q we have

7i(A) = A(AxlRp) = f XX(IRP) d7t(x),
•'A

and so, by the Lebesgue - Besicovitch Differentiation Theorem (see EVANS & GARIEPY [15])

we deduce (ii), i. e.Xx (IRP) = 1 for K a. e. x e Cl. Due to Proposition 32 (iii), we write

A = Xx<8> n .

Definition 3.3.
For n a. e. x e i i , we define the center of mass v of A by

J y ciXx(y).



Proposition 3.4.
<rc, <p v > = < A, <p ®y > for all <p e Co(&).

Proof, By Proposition 3.2 (iii) and by the definition of the center of mass,

f cpOOv(x) d7c(x)= f <p(x)(f y dkx(y)) drc(x)
•to JQ \J\R? J

= I n<pWy dA(x,y).

Using the terminology of RESHETNYAK [30], we define indicator measure of a vector-

valued measure.

Definition 3.5.
Let \i be a [RP -valued measure on Q with polar decomposition 6\i = a dX. The indicator

measure of ji is the finite, nonnegative Radon measure A on Qx [RP defined by

<A, f> := Jf(x, <x(x)) ca(x)
a

for all f e C0(iix[RP).

Remark 3.6.

From the previous definition we deduce that

(i) A(E) = X({x € Q | (x, <x(x)) e E » and A(Q x S^) = ||^||(i2);

(ii) support A C (support X) x SP"1;

(iii) Using the slicing measures (see Proposition 3.2 (iii)), A = A,x® n where

^ x = 8y = a(Xj, n = X and v = a.

Now we introduce the notion of indicator measure of a weakly * converging sequence of

measures.

Theorem 3.7.

Let {|̂ e} be a sequence of IRP -valued measures on Q with polar decompositions djxe =

oc£dA,e and suppose that |Lie ^ \i$ weakly * in the sense of measures, with 6\IQ = aodA^. Then

there exists a subsequence {(i^} and a nonnegative Radon measure A ^ = A,~<8> K^ on Q x S P - 1

such that
dM€ = v0Od7C0O (3.8)

and for every f G Co(iixlRP) we have



limim f f(x, OnCx)) dXnix) = f . f(x, y) dAjx, y)

= J (J , f(x, y) dXT(y)) dajx). (3.9)

Proof. Let Ag be the indicator measure of \x£ (see Definition 3.5). As \i£ ±> \IQ weakly*,

the sequence of total variations {A.e(Q)} is bounded, and so, by Remark 3.6 (i), there is a

subsequence {ji^} such that A^ -*- A,,, weakly *. Thus, by Definition 3.5 and Proposition 3.2

(iii), for every f e CO(£2XIRP) we have

lim <AT1, f> = lim [ f(x, cu(x)) d M x ) = | f(x, y) dAjx , y)
^ ^ o ^ n^oJa ^ n | .foxiRP

m f(x, y) &Z(y)) dnjx).
[Rp /

Setting f(x, y) = (p(x)y, where cp G CO(£2), by Definition 3.3 and Proposition 3.4 we have

lim I <p(x) cu(x) dX^Cx) = | (p(x) y dA^Cx, y) = [ 9(x) v^Cx) dn^ix).

On the other hand, as [i^ ^ [IQ weakly *,

I <p(x) aJ](x)dXn(x) = I cp(x) diiyix) -> I (p(x) d|io(x)

and so,

J (p(x) dMo(x) = (p(x) v j x ) dK^Cx)

for all 9 e Co(fl>), i. e. d|io = Voo d Tioo.

Finally, as by Remark 3.6 (iii) support A^ C HxSP"1, we conclude that support A,~C SP"1.

Corollary 3.10.
Let {he} be a sequence of W1*1 functions bounded in BV(£2 ; IRn) and assume that he ~> h0

strongly in L^QjIR11), with h0 - (a0 , Xo). Then there exists a subsequence {h^} and a

nonnegative Radon measure A.. = X~<8> %„ on Q x S*, with S* := {F e MnxN | ||F|| = 1}, such

that

Vh0 = aodXo = VoodTloo in the sense of distributions, (3.11)

and for every f e Co(£2 x M M N ) we have

^ n f f I X' l l \ 7 w \ l ) HVhTl(x)ll d ( x ) = f f(x> F )

T I - ^ O J Q V llVh^Cx)!); ' JnxS*

[ f(x, F) dX7(F) j d7Too(x). (3.12)



Note : On (3.12) it is understood that

fix,

f f x , ^ -
• )

l | V h n ( x ) " if

0 if = 0.

Proof. (3.12) follows immediatly from (3.9) and Remark 2.5 (ii), (iii). By Remark 2.5

(i), (ii), (iii), and by Remark 3.6 (iii)

V h£ = otg d Xg = ve d 7Ce —» Vood Jioo in the sense of distributions.

Indeed,

lim <p(x)vc(x) d7t£(x)= lim [ <p(x) y dAe(x, y)

I= I <p(x) ditoo(x)

for all <p e D (Q). On the other hand, as he -^ ho in

D ) , and so v^d Jtoo = V h 0 in D

Next, we search for relations between

Remark 3.6 (iii)),
= 8y=a0oo

it follows that Vhe -> Vh0 in

oo

^z Xx® n^ and the indicator measure of |XQ (see

Proposition 3.13.
Under the hypotheses of Theorem 3.7, we have

(i) d^HIVoolldTtoo;

(ii) v^ = ||Voo|| OCQ for XQ a. e. x e il and ||Voo|| < 1 for

(iii) support v^ = support Xo.

Proof. By (3.8) we have

5 d7Ceo

a. e. x e Q;

which yields d^o = HvJI dn^ and v^ = ||Vooll ceo for XQ a. e.x € £2. On the other hand, since A,x
is a probability measure (see Proposition 3.2 (ii)), we have that v(x) e closed convex hull (ft

Sv~l I e. || v(x) || < 1. This proves (i) and (ii).

10



(iii) Let U C [RN be an open set such that Xo (U) = 0. Let XQ e U and consider B(x0, e) with

O<e<£o where B(XQ, e0) C U. Then, by (i),

0= f dX0 = f ||vjx)||drcjx)f
JB(xo,e)

and so voo(x) = 0 %„ a. e. x e U, i. e. support v^ C [RN\ U. Thus

support v^ C support A<>.

Conversely, if veo(x) = 0 ^ a . e . x e U , then by (i) we have

f=f Hvjx)|| d7cJx) = 0

and so,
support XQ C support v^.

Corollary 3.14.
Under the hypotheses of Corollary 3.10, the density ofKooWith respect to

7ijB(x, r))

exists, is finite and £(x) > 1 for ||Dho|| a. e. x e €1.

Proof. By (3.11) and since || Voo|| < 1 (see Proposition 3.4 (i)),

||Dho | |(E)<7ijE) (3.15)

for every Borel set EC £1 Finally, by Besicovitch Differentiation Theorem (see BESICOVITCH
[7], EVANS & GARIEPY [15] Theorem 1.6.1) £(x) exists and is finite for ||Dho|| a. e. x e £2,

which, together with (3.15) concludes the proof.

Remark 3.16.
If h0 turns out to be a WU function, then by Remark 2.5 (ii), (iii), (3.11) and (3.15)

||Vhol|dx =

and so,

Proposition 3.17.
Let {Eg} be a sequence of bounded sets of finite perimeter in [R N such that meas (Ee) -* k

and {Per (E£)} is bounded. Suppose that Ae *± A^ weakly *, where Ae is the indicator measure

of (cce, A,e) - %E, and let Ee c c B(0, R) for some R > 0. Then

(i) f x.
•to

vjx)

n



6 0 1 ,
Proof. Let <p e C0(IR

N) be such that <p = 1 in B(0,2R).

(i) By Theorem 2.6 and as support it*, C B(0, R), we have

k = Jim meas(E£) = ̂  J^ ^ dx = - VmQ j ^ £ . ae(x)
y) = " L ^ <**> £

(ii) Once again by Theorem 2.6 and for all e > 0,

J R H a£(x) dXe = 0

and so

0 =

= L v - > 9 ( x ) y dA°o(x> y ) = i N vJx)

4. LOWER SEMICONTINUITY OF SURFACE ENERGIES : THE

CONVEX CASE.

In this section we search for necessary and sufficient conditions ensuring the lower

semicontinuity of a surface energy functional of the type

J(E) := f r(vE(x)) dH^Cx),
JdEnQ

where E is a smooth subset of IRN, vE is the outward unit normal to its boundary and T denotes

the anisotropic surface energy density per unit area of the deformed configuration. In order to

extend J(.) to sets of finite perimeter, and according to Remark 2.5 (iv), we rewrite the energy

functional as

J(E) = f r(-ocE(x)) <ftE(x), (4.1)
•to

where % E ~ (ocE, A,E) = (- vE, HN.1L9*E), d*E is the reduced boundary of E and vE is the

normal to d*E. Using the notation introduced in Section 2, the formulation (4.1) suggests the

study of sequentially weak * lower semicontinuity properties of functionals of the type
:=\ f(x,cc(x))dA,(x),

12



where \i is a IRP-valued measure with polar decomposition d(i = a dX. Note that if E is a set of

finite perimeter, then J(E) = Ifdn) where \i = - V%E and f(x, y) = T(y).

In what follows, let SI be an open subset of [RN, and let ^ and \i0 be IRP- valued measures

with polar decomposition d|ie = oce dX£ and duo = (XQ

Lemma 4.2.
If A = Xx ® 7C is the indicator measure of the IR P- valued measure (I with polar

decomposition d|i = ocdA, then

f f(x,a(x)) c&(x)= f f(x,v(x)) d7c(x)

for all f G CO(£2X[RP) such that f(x,.) is homogeneous of degree one, for every x e Q.

Proof. Define

' i £ r if||v(x)ll#0

7(x):=-
0 if||v(x)|| = 0.

As f(x,.) is homogeneous of degree one, by Proposition 3.13 (i) we have

f f(x, v(x)) d7t(x) = f f(x,7(x))||v(x)||d7c(x)
Jo. Ja

= f f(x,7(x)) dX(x). (4.3)

By Proposition 3.13 (ii), (iii), (iv), v = || v̂ H a and v * 0 for A. a. e. x € Q, thus y = a for

X a. e. x e Q which, together with (4.3), concludes the proof.

Definition 4.4.
Given f e C^ilxSP"1), we define the homogeneous of degree one extension of f, Hf, by

{ )
Hf(x,y):=

' llyll

0 ify = O.

The following lower semicontinuity result was proved independently by GOFFMAN &

SERRIN [21] and by RESHETNYAK [30].

Theorem 4.5 (sufficient condition) ([30]).
If ne -** Ho and if Hf(x,.) is convex for all x e Q, then

13



f f(x,Oo(x)) d^o(x) < lim inf f f(x, ae(x)) c&£(x).

Proof, Given a subsequence {|H£'} of ( m ) , by Theorem 3.7 there exists a subsequence

and a Radon measure Aoo = A,~®n^ on Q X S P 1 such that

lim f f(x,an(x)) dXn(x)= lim f Hf(x,
n-> o Jo, ' ' «n-> o Ja•n->

Due to the convexity of Hf(x,.) and since X™ is a probability measure (see Proposition 3.2 (ii)),

by Jensen's inequality we deduce that

lim f(x, oc^x)) dX^U) > Hf(x, v^x)) drc^x).
T|—> 0 Jci JQ

Finally, by Lemma 4.2 we conclude that

lim inf I f(x, ae(x)) dA,e(x) > Hf(x, Oo(x)) dXo(x) = I f(x, (Xo(x)) dXo(x).
c —> 0 J Q JQ JQ

Corollary 4.6.
(i) Let he € WU(Q) be such that he -> ho strongly in LX(Q) and {|| he | | u } is bounded. If

h o - ( a o , ^ o ) , then
r r / Vh£(x) ^

f(x, Oo(x)) dXo(x) < lim inf fl x, 7 ^ 7 7 7 | l|Vhe(x)|| dx
V

for all f e Co(QxlRP) such that Hf(x,.) is convex for all x e Q.
(ii) Let Ee CIRN be bounded with finite perimeter in IRN. If the sequence {meas(Eg) + PerflEg)} is

bounded and if X ^ -> XE,, strongly in L!(IRN)f then

f f(x, vE (x)) dHN_!(x) ^ lim inf f f(x, vE (x)) dH^U)

for all f e Co(QxlRP) such that Hf(x,.) is convex for all x e Q. Moreover, if g e C(IRP) is a

nonnegative, convex, homogeneous of degree one function then

f g(Vc(x))dHN_1(x)<liminf f g(vE (x)) d H ^ x ) .
Jd*E0 ^ c ^ O Jd*Ee

 e

Proof, (i) Let d^e = a£ 6Xe, where h£ ~ (a£, X£) (see Theorem 2.4). Since by Remark

2.5 (ii)
Vhe

md ^ UVh!l dx

the result follows immediatly from Theorem 4.5 and Lemma 2.8.
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(ii) As in part (i), let d \iE = ocedke, where %E e ~ (ae, Xe) = (- vE, HN.1L3*E). As in Lemma

2.8, it is easy to check that | ie -** JJ,0 which, together with Theorem 4.5 concludes the proof.

Suppose now that g e C([RP) is a nonnegative, convex, homogeneous of degree one function,

and consider an increasing sequence of cut-off functions (pn ̂  Co(Q) such that 0 < cpn < 1 and

for all x e Q, lim (|>n(x)= 1. Then, for all n e IN we have

f <Pn(*) g(vE>» d H ^ x ) < lim inf f <pn(x) g(vE (x)) d H ^ x )
J Q o e -> 0 Jd*Ee

 e

< lim inf f g(vE (x))

Finally, by Lebesgue's Monotone Convergence Theorem,

f fy y g
f g(vE(x))dHN^(x)= lim f 9nW g(vE>)) dHN^(x)

we conclude that

f gCv^Cx)) dHN_!(x) < lim inf f g(vE (x)) dH^xCx).
J3*E0 ^ e -> 0 Ja*Ee

 e

Now we prove the converse of Theorem 4.5.

Theorem 4.7 (necessary condition).
If f € C0(Qx IR P) is such that

f f(x,ao(x)) dXo(x) < lim inf f f(x, ae(x)) dXe(x)

whenever (i8 ^ (XQ, then Hf(x,.) is convex for all x e Q.

Proof. Let x0 e Q, let 6 e (0, 1), let a, b e [RP, a * b, and let £ = (1, 0,..., 0) be a unit

vector in IRN. Let X be the characteristic function of the interval (0, 0) extended periodically to

IR with period 1. Clearly, the function

is periodic with period Y := [0,1]N. Define the sequence of functions

uP(x) :=<

0 otherwise.

Setting
d^e := u£ dx,

we have
m -> (6a + (1 - 6)b) 5X = Xo weakly * in the sense of measures. (4.8)
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Indeed, if 9 e X)(Q)then

<p(x) ue(x) dx = — <p(x) b + % —r— . % (a - b) dx
Q JXQ+EY e L v e ) J

dy

and so, as

xf^-.£J-»0 inL°° weak*,

we deduce that

I 9(x) u£(x) dx -> cp(x0) (9a + (1 - 6)b) = < (0a + (1 - 0)b) 8X = . , cp >
JQ ^

which proves (4.8). Since

by (4.8) we have

f f(x,Oo(x)) dXo(x) <liminf f f(x,ae(x))

1. e.

Hf(xo,ea+(l~e)b)<liminf f Hf(x, ue) dx

7

?) ( ( f ^ ^ ' S dy

= eHf(xo, a) + (1 - 0) HjCxo, b).

5. CONTINUITY OF SURFACE ENERGY DENSITIES.

Here we provide necessary and sufficient conditions for the sequential weakly * continuity

of the surface energy functional. As in Section 4, in what follows Q is an open subset of [RN,

p,e and \LQ are vector valued measures with values in IR P and with polar decomposition,

respectively, d^i£ = ote dA,e and d|i0 = oc0 d^Q. Let Ae = Xe® %e be the indicator measure of p,e
(see Definition 3.5).

Theorem 5.1.
Let M-e •** Mo ̂ n the sense of measures and assume that A€ -^ A^^ A,~® 7ioo- Then X~ is a

Diracmass if and only if
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f f(x, Oo(x)) d^o(x) = lim f f(x, ae(x))

for all f e C0(QX(RP).

Proof. Suppose that A,~ is a Dirac mass, A,~ = 8 y _ £(x). By Proposition 3.2(ii), support

X~C SP"1 and A^SP"1) = 1, therefore ||£(x)|| = 1 for n^ a. e. x e Q and

Voo(x) = £(x), with ||Voo(x) || = 1 7Coo a. e. x e Q.

By Proposition 3.13 (i), (ii), we conclude that

Voo = oto and ttoo = Xo. (5.2)

Therefore, and according to Definition 3.3,

and by (5.2) and Proposition 3.2 (iii),

lim f(x, cce(x)) dA,e(x) = lim f(x, y) dAe(x, y)

= f f(x, Oo(x))
•to

Conversely, if for all f e C0(£2XIRP)

f f(x, Oo(x)) dXo(x) = lim f f(x, ae(x)) d>.e

then Ao = A^, and by Remark 3.6 (iii) we conclude that

Corollary 5.3.

Assume that m> -^ \LQ in the sense of measures, Xg(Q) —> Xo(ii) and A€ ^ A^. In addition,

suppose that the norm ||.|| in [RP is an euclidean norm. Then

f f(x, OQ(X)) dX0(x) = lim f f(x, ae(x)) dX£(x)

for all f€

The proof of this result is based on Theorem 5.1 and on the following lemma.
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Lemma 5.4.
If^ie •** (j^ in the sense of measures, if Xt(Q) —» Xo(i2)andif Ae -** A^^X^® n^ in

the sense of measures, then v^ = OQ and n^ = AQ.

Proof. Let cp € C0(Q). Then

I <p(x) dXe(x) = J (p(x) H^x)!! dXe(x)

njxs^1 9 ( X ) "y" ^ ^ ^

and so,

cp(x) d^OO = (p(x) llyll dAjx, y)

(x) dnJbO. (5.5)

On the other hand, as | i e ^ |X0 and as Xe = || fle ||, A,o = II |io ll> w e have that XQ < lim inf Xe.

Thus, since by hypothesis A^Q) -» Xo(Q), we deduce that

Xg -^ X<) weakly * in the sense of measures. (5.6)

Therefore

lim I <p(x) dXg(x)= I cp(x) dXn(x)
£-> 0 J J

which, together with (5.5) implies that

Koo = Xo. (5.7)

By Proposition 3.13 (i), (ii), we have 6XQ = ||Voo|| dTCco and Voo = IIVOOIICXQ, and so, by (5.7) we

conclude that ||Vooll = 1 and Vco =

Proof of Corollary 5.3. Let (p € C0(ft ;RP). By (5.6) we have

lim f HOgW-900112 cae(x)= lim f [1 - 2ae(x).cp(x) + ||cp(x)||2 ] dXe(x)

= A 0 (Q)-2 f Oo(x).<p(x)dXo+ f ||cp(x)||2 d^(x). (5.8)
•to JQ.

On the other hand,

lim f ||ae(x)-9(x)||2dAe(x)= Kmn f -Wy-vbdlfdA&y)

||y-cp(x)||2dAeo(x,y)
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and so, by (5.8) we deduce that

f [ f , lly-<P<x)||2 dX~(y) W . ( x ) = Xo(Q)-2 f ao(x).cp(x) d ô + f |
By Lemma 5.4, Voo = OQ and n^ = Xo, and so taking (pn € C0(Q; IRP) such that || cpn || < 1 and

(pn—> a 0 in Tul(X0), we obtain

Therefore, as ||oco(x)|| = 1, we conclude that y = Oo(x) for X°° a. e. y € SP"1 and for ttoo a. e. x

e Q, i. e.

^ = 8 y = ao(x)-

The conclusion follows from Theorem 5.1.

Corollary 5,9.
(i) Let he, ho € W^^Q ; Rn) be such that h£ -^ h0 strongly in L 1 ^ ; IRn) and

J ||Vh£(x)|| dx -> £ ||Vho(x)|| dx.

Then

for all f e C 0 ( Q X M M N ) .

(ii) Let Ee c (RN be bounded with finite perimeter in 1RN. If X ^ -» % ^ strongly in L^IR1^) and if

Per(Ee)-> Per(Eo) then

f f(x,vn(x)) d H ^ ^ lim f f(x,vE(x)) dHN_!

for all f

Proof, (i) As in the proof of Corollary 4.6, let d | i e = cc£d^e, where h e~ (ae , ^e) (see

Theorem 2.4) and, by Remark 2.5 (ii),
Vhe(x)

^ ^ = HVhe(x)|| dx.

By Lemma 2.8 and since ||Vh£ l^-* ||Vho ||lt we have that ne ^ m, and ^ (Q) -> Xo(^). Now the

result follows from Corollary 5.3.

(ii) Here XE^ ~ (a£> ^ = (~VEEW> HN_jL 3*Ee). Since n gConverges weakly * in measure to \IQ and

as A^Q) = Per(E£) -^ Per(E0) = Ao(Q), we can apply Corollary 5.3.
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Example 5.10.
In IR2 consider the canonical euclidean norm. Consider the sets EQ and Ek as in Figures 1

and 2, respectively.

(1,1) ("1, 1)
, n2 =

l/2k

Fig. 1

Clearly

XE* -> X E 0 strongly in L1

and
2 + 2VT = Per(E0)<f lim Per(Ek) =

Setting

and

Lx := segment joining the points (1,0) and (0,1),

L2 := segment joining the points (0,1) and (-1,0),

L3 := segment joining the points (-1,0) and (1,0),

it is easy to verify that
1. support Voo = support Koo = support OQ = support XQ = 3E0, with

til o n ^1

n2 on L2

n3 on L3

and

Fig. 2

2. Wo. L L| = XQ L Li f o r i = l , 2 and TCOOLL3= V2
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3.

4.

on Lx u L2

- y - OQ on L3.

8y = n. if x G Lj, for i = 1, 2

6, LOWER SEMICONTINUITY OF SURFACE ENERGIES : THE

QUASICONVEX CASE.

We are interested in the lower semicontinuity properties of surface energy densities of the

type (1.1) associated to elastic solid materials that undergo a change of phase. According to

Remark 2.5 (iv) and Definition 2.10, these functionals are integrals of the type

f f(V%E)f
where E is a set of finite perimeter, or equivalently, X E is a function of bounded variation.

Consider the class of functionals

If(Vu) := f f(Vu)•to
defined for u e BV(Q;[Rn), where Q C 1RN and N, n > 1. It was shown on Theorem 4.5 that if

{ue} is a sequence bounded in BV, if u£ -» u strongly in L1 and if f(x, .) is convex and

homogeneous of degree one then

If(Vu)<liminfIKVue).

However, as shown by DACOROGNA [9] (see also ACERBI & FUSCO [1], MORREY [28]),

the W1*1 weak lower semicontinuous envelope of the functional If is the integral of the

quasiconvexification of the energy density, and so quasiconvexity becomes the natural

constitutive assumption rather than convexity. Precisely

Definition 6.1([6]).
Let 1 < p < +00. A function f: MnxN —> IR is said to be W^-quasiconvex if

f(F) < J—• f f(F + Vcp(x)) dx,
meas(D) JD

for all F G MnxN and for all 9 e WQ
1>P(D; [Rn).
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Proposition 6.2.
Let f: M1"^ -» [R be a nonnegative continuous function such that

f(F)<C(l + ||F||) (6.3)
for some positive constant C and for all F e MnxN. Then f is WU-quasiconvex if and only if f is
W^-quasiconvex.

ACERBI & FUSCO [1] and DACOROGNA [9] showed that if f satisfies (6.3), then the

sequential W1*1 weak lower semicontinuous envelope of

J(u):=f f(Vu(x))dx

is its quasiconvexification QJ(.), namely

QKu) := f Qf(Vu) dx,•to
where Qf is the biggest WU-quasiconvex function smaller than or equal to f.

It turns out that if f is homogeneous of degree one then f verifies (6.3) and there exists a
positive constant C such that

|f(F)-f(G)|<C||F-G|| (6.4)

for all F, G € MnxN (see DACOROGNA [10], EVANS [14]). Therefore, if in addition f is
quasiconvex then

f f(Vu(x)) dx < lim inf f f(Vuc(x)) dx (6.5)

whenever ue -* u weakly in W1*1.

Conjecture : If f is quasiconvex and homogeneous of degree one and if {ue} is a sequence
bounded in BV and ue -» u strongly in L1, then

If(Vu)<liminfIf(Vue).

In Theorem 6.6 we prove the conjecture in the case where Vue and Vu are absolutely
continuous with respect to the Lebesgue measure. Let MnxN := {nxm real matrices} and set S* :=
{F

( l/2

Theorem 6.6.
Let f: QxMnxN->[R be a nonnegative continuous function such that f(x,.) is homogeneous

of degree one and W^-quasiconvex. Suppose further that there exists a continuous function g
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with g(0) = 0 such that |f(x, A) - f(y, A)| < g(||x - y||) (1 + ||A||) for all x, y e Q and for all A e

MnxN. Let {ue} be a bounded sequence in W 1 - 1 ^ ; IRn) and assume that ue -> u strongly in

LKQ; Kn). If u e WU(Q; (Rn) then

f f(x, Vu(x)) dx < lim inf f f(x, Vue(x)) dx. (6.7)

Proof, (a) Suppose that f does not depend on the variable x. By Corollary 3.10, given a

subsequence {ue'} of {ue} there exists a subsequence {u^} and a nonnegative Radon indicator

measure A^ = Xx ® TĈ  on Q x S*, such that

,*?. L G(x w K11 * = L &G f e F) ***>)inM m)

for all G e CoCOxM1"^). By the Lebesgue-Besicovitch Differentiation Theorem (see EVANS &

GARIEPY [15], Theorem 1.7.1), by Corollary 3.14 and by (3.15), there exists a set E C Q

such that !|Du||(E) = 0 and for all XQ £ E the following hold:

° A' r -» o meas(B(xo,r))

: +<*», where <;(x0) = lim . . rr (6.10)

811(1 l i m —^T7 ^ \ (\ f(F) dX~(F)l dwjx) = f f(F)dX7(F). (6.11]
r-^o ^ ^ ( x o . r ) ) JB(xo>r)Us* ) h* H

Fix XQ <£. E and let Bk := B(x0, 1/k) with k e IN. Consider a family of cut-off functions <pke

D(Q) such that 0 < < p k < l , ( p k = l o n Bk and (^ = 0 outside B ^ (set BO := Q). By Proposition

6.2 we have

f(Vu(xo)) meas(Q) < J f(Vu(x0) + V[(pk(x)(u11(x) - u(x))l) dx

= f(Vu(x0)) meastQXBt.j) + f f(Vu(xo) + V[(pk(x)(un(x) - u(x))]) dx

+J f(Vu(xo) + VUll(x)-Vu(x))dx.

Therefore, by (6.4) we deduce that
meas(Bk_1) - meas(Bk) c f

f(Vu(xo))<;c J ' , — 5 - + „ _ „ , „ N ||V<ML IKCx)-u(x)||dx
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x- ( 6 1 2 )

By Remark 2.5 (ii) and by (6.8), we have

lim sup I llVu-OOH dx < lim sup f (^(x) - qfc+iGO) HX̂ u—Cx)!! dx
T1-* 0 «'B|c_i\Blc T|-» 0 J Q '

= J (<Pk-i(x) " 9k+l(x)) drtoo(x)

^ it«(Bk_2) - JC(Bk+1). (6.13)

Thus, as by (6.8)

Urn sup F f(Vu,,(x)) dx < lim sup f ydx) ftVuJx)) dx

f
Js*

and as u -̂Mi strongly in LX(Q; IRn), (6.12) yields
meas(Bk_1) - meas(Bk)

f(Vu(xo))<C 7- r + C
measCB)

measBi,
— f HVuCOH dx + ^L f ||Vu(x) - Vu(xo)|| dx
k-i •'Bk_i\Bk measB^j j B k

^ — r f <pk(x) f f «F) <^rOF)l «bt-OO. (6.14)

As
meas(Bk)

-T-—r -> 1 as k -» +oo,
meas(Bk_1)

by (6.9) and (6.10) we have
() j ||Dul|(Bk_2) meas(Bk_2)

meas(Bk_1) ||Du||(Bk_2) meas(Bk_2) meas(Bk_1)

which, together with (6.11) implies that

Urn sup L _ _ f <pk(x)ff fOEOdXra
k -* +~ meas(Bk_1) JQ K U S *

< lim sup 7^-T f (f
k->+~ meas(Bk_1) J ^ U s

= lim sup '"^"^v —7S—T f ( f f(F) dA,~(F)
k-*+«£ meas(Bk_1) ^ ( B ^ i ) J B ^ U S *

u(xo)|| J^ f(F) dX~ (F).

Therefore, (6.14) reduces to

f(Vu(x0)) < %{XQ) | |VU(XO) | | J ^ f(F) dX7QJ ̂
for all XQ € E and so, as ||Du||(E) = 0 and f(x0,.) is homogeneous of degree one,
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f f(Vu(x)) dx = f f(Vu(x)) dx < f [ f f(F) dX~(F)l $00 ||Vu(x)|| dx.

Finally, by the Lebesgue Decomposition Theorem (see EVANS & GARIEPY [15]),

dn» = £(x) d ||Du|| + |5(x) dji = £(x) ||Vu(x)|| dx + p(x) d^

with P > 0 and where ||Du|| and \i are nonnegative mutually singular Radon measures, thus by

(6.8) we conclude that

J f ft ~ "\

f(Vu(x))dx < f(F)dXx(F) Idnjx)
a Jn\Js* J

= lim I f(Vuri(x)) dx.

(b) Fix 5 > 0 and let {Qi | i = 1, ..., q} be a disjoint collection of subcubes of Cl such that

meas(a\uQi)<8, g(||x- y||)<8 if x, y e Qi, 7Coo(n\uQi)< 8 and J ||Vu(x)||dx<8. (6.15)

In each cube Qi select a point Xi. Then, by (6.3) and as f is nonnegative we have

liminf I I f(x, Vue(x)) dx - | f(x, Vu(x)) dx 1 =

f f(x,Vue(x)) dx - f f(x,Vu(x)) dx +
Jn\uO. JQ\LJO.

= liminf
e ^ o

> liminf
E-» 0

l
J

- f C(l + ||Vu(x)||) dx + Y f [ f(x, Vue(x)) - f(Xi, Vue(x)] dx

[f(x,Vue(x))-f(x,Vu(x))]dxl
i JQi J

dx + Y f [f(xi,Vu(x))-f(x,Vu(x))]dxl.
i JQi J

By (a)

lim inf f [ f(Xi, Vue(x)) - f(Xi, Vu(x))] dx > 0

and by (6.15)

Y f I

<8 (meas(Q) + HVu^i),

f(x' Vu^(x))" f (xi' Vue(x»l <k ̂  ̂ ^ X J 8 ("X " ̂  (1 + IIVue(x)||) dx

We conclude that
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lim inf I" f f(x, Vue(x)) dx - f f(x, Vu(x)) dxl > -C8
e->o L*ta «to J

and so, as 8 is arbitrarily small, we obtain (6.7).

Remark 6.15.

Under the hypotheses of Theorem 6.6, (6.5) holds when f satisfies the growth condition

(6.3) but is not necessarily homogeneous of degree one in F. The proof is a replica of that for the

case where ue-* u weakly in W1-1 (see DACOROGNA [10]), using (6.13) instead of De La

Vallee-Poussin Theorem to estimate

||Vue(x)|| dx.

However, the proof of Theorem 6.6 presented above seems to be more adapted to deal with the
case where Vu has a singular part with respect to the Lebesgue measure.

7. OSCILLATIONS OF TWINNED CONFIGURATIONS OF ELASTIC

CRYSTALS.

In this section we are going to use indicator measures and Young probability measures to

show that deformations supoported on two potential wells with non-oscillating L1 norms cannot

oscillate.

We start by describing briefly the notion of twinned configuration of an elastic crystal. The

foundations of this theory are due to ERICKSEN (see ERICKSEN [12], [13]). Assuming

isothermal conditions, in what follows Q C IRN represents the reference configuration,

W:MNxN-» [0, +<*>] is the stored energy density and u : Q -> 1RN is the deformation, where

N>1. In order to prevent changes in orientation and interpenetration of matter, we prescribe that

W(F) < +oo if and only if det(F) > 0 and W(Fn) -> +<~ if det(Fn) -» 0+.

Moreover, due to frame indifference,

W(F) = W(RF) (7.1)

for all F e MN x N
+ := {F e MNxN+| det (F) > 0} and for all rotation R e O+(N) := {F e MNxN |

FTF = 11 and det(F) = 1}. Moreover, and according to ERICKSEN [12], if the solid has

crystalline structure then W should be independent of the choice of lattice basis. This implies that

W is invariant by the action of an infinite discrete group 9 * conjugate to 9 •= {F e MNxN | Fy e

Z for all i, j = 1,..., N and det(F) =1} , precisely

W(F) = W(FH) (7.2)
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for all F e MN x N
+ and for all H e 9*, where 9 * = LgL"1 for some L e MNxN (for details, see

FONSECA [17], JAMES & KINDERLEHRER [24], KINDERLEHRER [25]). Due to (7.1)

and (7.2) W is periodic in many directions and the total energy

E(u) := f W(Vu(x)) dx
Ja

is not sequentially weakly * lower semicontinuous. Thus, oscillations may develop and the study

of oscillating twinned configurations is particularly relevant to the understanding of stable and

metastable configurations of ordered materials (see BALL & JAMES [5], CHIPOT &

KINDERLEHRER [8], FONSECA [17], [18], JAMES & KINDERLEHRER [24],

KINDERLEHRER & PEDREGAL [26], KINDERLEHRER & VERGARA-CAFFARELLI

[27]). Precisely, a configuration is said to be twinned if it corresponds to a deformation u such

that

Vu e {A, B} for a. e. x e Q,

where A and B are symmetry related, i. e.

B=RAH (7.3)

for some R e ©+(N) and some H e 9*- Then

det(A) = det(B)

and by (7.1) and (7.2), if W has a minimum at A then ©+(N)A and 0+(N)B are two orbits of

mimima for W.

Here, we will study the oscillations of a sequence of twinned configurations : if Vue e

0+(N)A u O+(N)B for a. e. x e Q. and if ue ± u weakly * in W1.00, what can we say about

the structure of u ?

In what follows, we assume that A and B lie on two distinct wells, precisely

(H) det(A) > 0, det(B) > 0 and 0+(N)A n e+(N)B = 0 .

Theorem 7.4.

Let ue e Wl>°°(Q ; IRN) be such that Vue(x) e {RA, RB | R € 0+(N)} for a. e. x e Q

and let ue ^ u weakly * in WL-. If det(A) = det(B) and if

lim f ||VuE(x)||dx= f ||Vu(x)||dx,

then ue -^ u strongly in W1^ for all 1 < p < +~, and Vu(x) e {RA, RB |R e Q+(N)} for a.e.

xeQ.

We will prove this result using indicator measures (see Section 3) and some properties of
Young measures summarized in the following theorem (for details, see EVANS [14], TARTAR
[31]).
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Theorem 7.5.
Let {he} be a sequence bounded in L°°(Q; C), where C is a closed subset of [Rm, and let

h e ^ h weakly * in L°°. Then there exists a subsequence {h^} and for a. e. x e Q a Borel

probability measure \LX on IRm such that spt |XX C C,
h ^ = J m y d^x(y) (a. e. x e Q.)

and for every G € C(IRm) we have
GCh^) ± G* weakly * in L°°

where

G*(x) := J n G(y) d^x(y) (a. e. x € Q).
' • ' I K

Moreover, JIX is a Dirac mass for a. e. x € Q if and only if

(ix = 8^) and h^ ~> h strongly in LP(Q ; IRm) for all 1 < p < -H>o.

We will use also the weak continuity property of the minors of {Vue} (see BALL [4],

MULLER [29]). In what follows, adj(F) is the matrix of cofactors of F, i. e. F 1 = (det F)"1

adj(F)T

Theorem 7.6.
Assume that Ug e W^-CQ ; IRN) is such that ue -*- u weakly * in W1*00. Then

det (VuJ -- det(Vu) and adj(Vue) -- adj(Vu) weakly in D>, for all 1 < p < +oo.

We divide the proof of Theorem 7.4 into a series of lemmas and propositions, the first of

which is well known.

Lemma 7.7.

Let {he} be a sequence of characteristic functions, i. e. he e {0, 1} for a. e. x e Q, such

that h € ^ h weakly * in L°°, with h e {0, 1} for a. e. x G Q. Then he-> h strongly in LP, for all

Proof. Consider a subsequence {he.} and let {|ix}be the Young probability measures

corresponding to a subsequence {h^} of {h€.}. By Theorem 7.5 we have that spt |XX C {0, 1},

and so
m = e(x) 5 y = 0 +(i - e(x» 8y =!

for some 0(x) e [0, 1]. Thus, setting a(x) := 1 - G(x), we obtain
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which, by Theorem 7.5, implies that a(x) = h(x) a. e. x € fit and h^-* h strongly in LP, for all

Lemma 7*8.
Let ue e L°°(ii ; IRn) be such that uc -*- u weakly * in L°°, ||ue|| -» g strongly in L1 and

J ||u(x)|| dx = f g(x) dx. Then u£ -> u strongly in LP, for all 1 < p < +°°.

Proof. Consider a subsequence {u£.} and let {|ix} be the Young probability measures

corresponding to a subsequence {u^} of {ue}. As ||uc || -** k* weakly * in L°°, with

k*(x)= J ||y||d^x(y) (a.e.xei2),
[Rn

and since HûH —» g strongly in L1, we conclude that

g(x) = k*(x)= J ||y||djix(y) ( a . e . x e Q ) .

On the other hand, for a. e. x € Q,

u(x)= J ydMy), (7.9)

and so, since |HX is a probability measure,

||u(x)|| <g(x) ( a . e . x € Q ) .

Therefore, as by hypothesis

J ||u(x)|| dx = J g(x) dx,
Q ft

we deduce that ||u(x)|| = g(x), and so, by the Dominated Convergence Theorem and by Theorem

7.5, given G € C(IR) we have

G(||igi)->G(||u||) strongly in L*

and

Gfllu^H) A. G* weakly * in L°°

where

G*(x) := J G(||y||) djix(y) (a. e. x € Q).

Thus, K n

G(||u(x)||) = G*(x):= J G(Hyll)dMy) (a. e. x e Q)

and so, given the arbitrariness of G, we deduce that

which, together with (7.9) and since |ix is a probability measure, implies that

M* = 8y = u(x).
The conclusion of the proposition follows from Theorem 7.5.
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Proposition 7.10.
Let ue e WL~(Q ; RN) be such that Vue(x) = Re(x) XE(x)A + R^xXl - Xe(x))B, where

Re(x) e 0+(N) for a.e. x e Q, and XEC) is a characteristic function. Let ue-** u weakly * in
1 oo

W ' and assume that

Km f ||Vue(x)||dx= f ||Vu(x)||dx.
e -> 0 Ja Ja

(i) If %e —> X strongly in L1, then ue —> u strongly in W1* for all 1 <, p < +«>, and

Vu(x) = R(x) %(x)A + R(x)(l - X(x))B, where R(x) e ©+(N) for a.e. x e Q.

(ii) If ue -> u strongly in W*>P for some 1 < p < +«>, then X e ~* X strongly in L1 and

Vu(x) = R(x) X(x)A + R(x)(l - X(x))B, where R(x) e 0+(N) for a.e. x e Q.

Proof, (i) Without loss of generality, we can assume that Re -** R ^ weakly * in L°°.

Clearly,

det(Vu£(x)) = Xe(x)det(A) + (1 - XE(x))det(B),

and so, by Theorem 7.6

det(Vu(x)) = X (x)det(A) + (1 - X (x))det(B) for a. e. x e Q. (7.11)

On the other hand, since X e ~* X strongly in L1, for a. e. x e Q

X (x) € {0, 1}, Vu(x) = RooCx) X (x)A + Roo(x)(l - X (x))B (7.12)

and

det(Vu(x)) = detCRooCx)) [X(x)det(A) + (1 - X(x))det(B)]

which, together with (7.13) implies that

det(Roo(x)) = 1 a. e. in Q. (7.13)

Also, adj(Vue) = Rg(x) Xe(x) adj(A) + Re(x)(l - Xe(x)) adj(B) converges weakly * to

Roo(x) X(x) adj(A) + R^ (x)(l - X(x)),

thus, by Theorem 7.6, (7.12) and (7.13)

R J x ) [X(x) adj(A) + (1 - X(x))adj(B)] = R^-^x) det(Reo(x))[X(x) adj(A) +

(l-X(x))adj(B)]. (7.14)

As det(A), det(B) > 0, we have det [X(x) adj(A) + (1 - X(x))adj(B)] > 0 and so (7.12), (7.13)

and (7.14) imply that Roo(x)e 0+(N)and

Vu(x) = R(x) X(x)A + R(x)(l - X(x))B, where R(x) = R»(x) € Q+(N) for a.e. x e Q.

Therefore

l|Vue|| = X£ !|A|| + (1 - X£) I|B|| -* X I|A|| + (1 - X) IIBII = ||Vu|| strongly in Li

and by Lemma 7.8 we conclude that u£ -» u strongly in W1* for all 1 < p < +<».

(ii) Assume that ue —» u strongly in W1* for some 1 < p < -H*>. AS { VU£} is bounded in L°° we

have (Vug)1" (Vu^ = X e A
TA + (1 - XE) BTB -> (Vu)T (Vu) strongly in L1 and, i. e.

X e (A
TA - B1^) converges strongly in L1.
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Due to the hypothesis (H), ATA - BJB * 0 and so

X e -> X strongly in IA

By (i) we conclude that

Vu(x) = R(x) %(x)A + R(x)(l - %(x))B, whereR(x) € ©+(N) for a.e. x e Q .

Corollary 7.15.
Let ue e Wi^(ft ; [RN) be such that Vu€(x) € {RA, RB | R e 0+(N)} for a. e. x e Q

and let ue -** u weakly * in W1'00. If

then uE -» u strongly in W1* for all 1 < p < +°° and Vu(x) e {RA, RB |R e 0+(N)} for a.e.

xeQ.

Proof. As ||A|| = ||B||, it is clear that ||Vu£(x)|| = ||A|| =: g(x) for a. e. x € Q, and, by

hypothesis

J ||Vu(x)||dx = J g(x)dx.

Thus, by Lemma 7.8 we have that uE —» u strongly in W*>P for all 1 ^ p < +«», and so, by

Proposition 7.10 (i) we deduce that Vu(x) e {RA, RB |R € 0+(N)} for a.e. x€ Q.

Proof of Theorem 7.4. As in Proposition 7.10, let

Vue(x) = RgCx) Xe(x)A + Re(x)(l - XE(x))B,

where Re(x) e ©+(N) for a.e. xe Q and %e(.) is a characteristic function. By Proposition 7.10

(i), it suffices to show that

Xt->X strongly in IA (7.16)

As

Km f ||Vu£(x)||dx= f ||Vu(x)||dx, (7.17)

by the Sobolev Embedding Theorem and by Corollary 5.3 we have
( Vue(x) ^ r ( Vu<x> ^

1 J l | V ( ) | | d ( ) l f [ Jl'V
for all f e Co(ftxMNxN). On the other hand, as det(A) = det(B) by Theorem 7.6 we obtain

det(Vue) = det(B) — det(Vu), i. e. det(Vu(x)) = det(B) for a . e . x e Q. (7.19)

Since for all Borel subsets E of Q,

f ||Vu(x)|| dx < Urn inf f ||Vue(x)|| dx = f [X(x) ||A|| + (1 - X(x)) ||B||] dx,

(7.17) yields
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|| Vu(x)|| = X(x) ||A|| + (1 - X(x)) ||B|| for a. e. x e Q. (7.20)

Finally, setting in (7.18) f(x, F) = <p(x) det(F) with qx= Q>(Q), by (7.19) and (7.20) we have
f Vu(x) ̂

||Vu(x)||d(x),limo ja <p(x) det ( l j g g f ) ||Vu£(x)|| d(x) = J[ <p (x) de{- ^

i. e.

f det(B) f det(B)

and so
lim

= lim f
£->0 JQ

= f <p(x) — dx.

Therefore, for a. e. x e Q
X(x) • +

CX(x) ||A|| + (1 - XOO) HBIO*1"1

Setting
P -Elq> HAH'

weobtaw= J i | L [x(x) ||A|| + (1 -X(x)) \\B\\f~1

tX(x) + (1 -XCx))^]^1 + (1 - X ( x ) ) " [ ! ^ + (1 - X ( x » ] . (7.21)

If £ = 1 then by Corollary 7.15 we conclude that u£ —> u strongly in W1^ for all l<p <+«>,

and the result follows from Proposition 7.10 (ii).

Now suppose that £ ** 1. Then (7.21) is equivalent to saying that

h(£) = 1 (7.22)

where

9 = X(x) and h(t) := [ 9 + (1 - 9)t]N-11~9 + - ^ p ] .

Clearly

min h = h(l) = 1 and hf(t) = (N - 1) (1 - 9) [9 + (1 - 9)t]N"2 rN (9tN - 9).

On the other hand, i f O < 9 < 1 then hf(t) = 0 if and only if 9tN- 9 = 0, i. e. t = 1. As %* 1 we

deduce that h(£) > 1, which contradicts (7.22). Therefore, 9 € {0, 1} and by Lemma 7.7 we

have (7.16), which concludes the proof.
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