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1. INTRODUCTION.

The energy functionals involved in variational problems associated to phase transitions
correspond to nonconvex integrands. This feature induces failure of weak lower semicontinuity
and typically these variational problems are characterized either by nonexistence or by
nonuniqueness of solutions. Nonexistence is generally associated to highly oscillating
minimizing sequences and nonuniqueness might be due also to the fact that, by neglecting small
interfacial effects, interfaces can form without an increase of the energy.

When trying to either eliminate the oscillating behaviour or to find a selection criterion
yielding the most likely observed solutions, we are lead naturally to the study of models
involving bulk and surface energy terms.

Interfacial energies may be introduced either by direct penalization of sharp interfaces or by
singular perturbations taking into account higher concentration gradients on a thin transition
layer, as in the Van-der-Walls-Cahn-Hilliard theory of phase transitions for fluids (see
FONSECA [18], [19], GURTIN [22], KINDERLEHRER & VERGARA - CAFFARELLI
[27]). For solid crystals which have been subjected to thermal or mechanical treatments,
HERRING [23] assumes that interfaces are sharp and he shows that the anisotropic surface
energy may determine the surface structure and geometry of phase boundaries. Indeed, according
to HERRING [23] if the dimensions of the crystal grains are sufficiently small, then the tendency
of the crystal to lower its surface free energy is often the principal motivation for changes in the
surface structure when approaching an equilibrium configuration of minimum free energy.

Therefore, the analysis involved in the study of such variational problems requires results
concerning continuity and lower semicontinuity of surface energies of the type

JE) = L}m T(vg(x)) dHy_; (), (1.1)

where E is a smooth subset of RN, vy, is the outward unit normal to its boundary and I'" denotes
the anisotropic surface energy density per unit area of the deformed configuration. In order to
extend J(.) to sets of finite perimeter, (1.1) suggests the study of sequentially weak * lower
semicontinuity properties of functionals of the type

L) = J’Q £(x, 0e(x)) dALY), (1.2)

where [ is a RP-valued measure with polar decomposition dy. = o dA.

As we mentioned before, the nonexistence of minimizers is related to the fact that
oscillations of minimizing sequences cannot be prevented due to the failure of lower
semicontinuity of the energy functional . This situation is particularly interesting when the
material has a crystalline structure, in which case the stored energy function has several potential
wells (see ERICKSEN [12], [13], FONSECA [17], KINDERLEHRER [25]). Indeed, it may
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happen that the macroscopic weak limit of a minimizing sequence is not a minimizer of the total
energy functional, although being stable enough to be observed. Therefore, the study of
minimizing sequences becomes crucial for understanding the role in equilibria of the underlying
oscillations at the microscopic level.

The tool generally used to control the oscillations of minimizing sequences of deformations
relies on Young's probability measures (see TARTAR [31]). As an example, this is the treatment
required by fine phase twinning of crystals (cf. BALL & JAMES [5], CHIPOT &
KINDERLEHRER (8], JAMES & KINDERLEHRER [24], KINDERLEHRER & PEDREGAL
[26]).

Similarly, indicator measures (see RESHETNYAK [30]) may be particularly useful to
handle oscillating weakly convergent sequences of surfaces, and they may be relevant to treat
those cases where the interfaces are not sharp but thin transition layers. Here, the limiting
"surface" may be a generalized surface which macroscopic properties are described by the
indicator measure of the sequence. These Radon measures turn out to be helpful for studying the
weak lower semicontinuity properties of functionals of the type (1.2), and in particular, surface
energy functionals as in (1.1).

In Section 2 we introduce the notation and we review briefly some concepts of the theory
of functions of bounded variation.

In Section 3, using an approach similar to that of EVANS [14] and RESHETNYAK [30],
we introduce the notion of slicing measures and indicator measure associated to a weakly *
converging sequence of vector-valued measures (see Theorem 3.7). In Proposition 3.13 we
establish the relations between the weak * limiting measure and the indicator measure. For the
related notions of varifolds and generalized surfaces, see ALLARD [2] and ALMGREN [3] and
L. C. YOUNG [32].

In Section 4, we prove that convexity of the integrand is a necessary and sufficient
condition for sequential weak * lower semicontinuity of (1.2) (see Theorems 4.5 and 4.7).

In Corollary 5.3, we show that if the total variation of the weak * limit is equal to the limit
of the total variations then continuity of functionals holds. Some of the results of Sections 4 and
5 can be found also in FEDERER [16], who relies heavily on concepts of geometric measure
theory, in GOFFMAN & SERRIN [21] and in RESHETNYAK [30]. Here, we use the
terminology of RESHETNYAK [30], and we provide a more detailed analysis of this problem in
the context of functions of bounded variation and sets of finite perimeter.

As mentioned before, we are interested in the lower semicontinuity properties of surface
energy densities of the type (1.1) associated to elastic solid materials that undergo a change of
phase. These functionals are integrals of the type (1.2) where W is the gradient of a function of
bounded variation, namely i = VX g. As shown by DACOROGNA [9] (see also ACERBI &



FUSCO [1], MORREY [28]), in this case the W1l - weak lower semicontinuous envelope of
the functional is the integral of the quasiconvexification of the energy density, and so
quasiconvexity becomes the natural constitutive assumption rather than convexity. We address
this question on Section 6. In Theorem 6.6 we prove that lower semicontinuity holds when the
density is quasiconvex and homogeneous of degree one, and when the sequence ¢ and its weak
* limit are absolutely continuous with respect to the Lebesgue measure. We conjecture that the
result is still true even in the presence of a singular part with respect to the Lebesgue measure.

In Section 7 we use the notions of indicator measure and Young's measure associated to a
weakly * converging sequence in order to obtain strong convergence. In particular, in Theorem
7.4 we show that if a sequence of twinned configurations of an elastic crystal converges in Wl
weakly * to a configuration and if the L! norms of the corresponding deformation gradients do
not oscillate then the sequence itself has no oscillations and the limiting configuration is also
twinned.

2. PRELIMINARIES.

Let Q C RNbe an open set and consider the canonical euclidean norm in RN. In what
follows, || . || : RP— [0, +e°) is a norm, SP-! := {x € RP|||x|| = 1} and LN is the Lebesgue
measure in RN,

Let p be a RP -valued measure in Q. The polar decomposition of i is represented by

dp = a dA,
where o : Q — SP-1is the density of y and the positive and finite Radon measure A is the total
variation of [ (also denoted by ||u|)).

Definition 2.1.
We say that i, % 1, (weakly *) in the sense of measures if

fn @(x) oe(x) dA —*fﬂ o(x) ag(x) dAg
for all g € Co(Q; R) :={p e C(Q; R) : support @ C C Q}.

We recall briefly some results of the theory of functions of bounded variation (for details
see De GIORGI [11], EVANS & GARIEPY [15], GIUSTI [20]).

Definition 2.2.
A function u € LY(Q) is said to be a function of bounded variation (u € BV(Q)) if



JQIVu(x)l dx :=sup { ‘[Qu(x) .divex)dx|¢@e C(l, Q; IRN), lloll o < 1} < +oo

Definition 2.3.
If A is a subset of RN then the perimeter of A in Qis defined by

Perq(A) := L VX a(x)] dx = sup { L divox)dx |pe C(l) @ RN, ll9ll. < 1} ,

where X 5 denotes the characteristic function of A.

Now we state the structure theorem for functions of bounded variation.

Theorem 2.4.
If u € BV(Q) then there exists a Radon measure ||Duj| on Q and a ||Dul|-measurable function
o : Q — RN such that

(i) |[Duj|(Q) = J. [Vu(x)| dx < +o0 ;
Q

@) |l =1 for ||Dujla.e. x € Q;

99 .

Gi) jﬂ w52 ax _—jﬂ ¢ 0; dDu]

fori= 1, ..., N and for every ¢ € Cly(Q).
We write u ~ (a, ||[Du])]).

Remark 2.5.
(i) Note that by Theorem 2.4 (iii), o ||[Du]| = Vu in the sense of distributions;

\% .
(ii) If u € W2 then a(x) = u_v%))u and |[Dul| = LN [|Vull, i. e. d|[Dul| =|[Vulldx;

(iii) Suppose that u : Q — R is a function of bounded variation. Let u = (uy, ...,u,), where
u;~ (04, Ay). Thenu ~ (F, A), where F € S* := {nxN matrices with euclidean norm 1} and A is
a positive finite Radon measure, i, €.

N
jnui(x) div o) dx=-|_ {Z Fy(0) 900 ] ),
j=1

foralli=1, ..., nand for every ¢ € C(l)(ﬂ ; RN), It is easy to see that

o f
Fyj=—g anddA=|ifl dc,



where d{ := dA;+ ... + d\A; as A, is absolutely continuous with respect to § (A; << ), by the
Radon-Nikodym Theorem there exists a nonnegative function f;e L1 ({) such that dA;= f; dC.

As in (ii), if u is locally in W1! then it turns out that
uj

&; ;2 12
Fy = Toep “here [Vull = (12} (3;:) J .
(iv) Suppose that E C RN is bounded and has finite perimeter in RN, Then
IOE]| := DX gll = Hy ; Lo*E
where Hy; is the N-1 Hausdorff measure and J*E is the reduced boundary of E, i. €.
IGE]| (A) = Hy; (A N O*E).
Moreover, X g ~ (- Vg, ||IOE||) where v is the outward unit normal to the reduced boundary of E,
and, as in (i),
-V [IPE|=VXg in D'(RN).

Theorem 2.6. (Generalized Green-Gauss theorem)
J’E div ¢o(x) dx = jRN ¢x) . vg(x) d ||9E||

- L ., 900 VeG) dHy
forall ¢ e Cy(RN; RN).

Let {h.} be a sequence bounded in BV(Q; R1n), i. e.
Ilhllgy = JQ lhe(x)| dx + jﬂthe(x)l dx < Const. < +oo,
and assume that h; — hy strongly in L1(Q; Rn). From Definition 2.2 it follows immediatly that

J IDhy(0)] dx < lim infj' IDhy ()] dx.
Q Q

According to Theorem 2.4, let h, ~ (o, A¢) and hy ~ (0, Ag), where Ag:= ||[Dh,|| and Ag:=
|IDhg||, and define

dy == ag dAg, dug := o dAg. 2.7)

Lemma 2.8.
He = Mo weakly *.

Proof. (a) Let ¢ € Co(Q). By Theorem 2.4 and since h, — hy in L1(2),



[odne=] oocar=-] nVodo-[ 1 Ve ax=] oooaro=[ oau
Q Q Q Q Q Q
) If ¢ e Co(Q), let @, € C(l)(.Q)besuch that || @ - @, |l = 0. Given & > 0, and assuming

IIDhy| () = Llwx)l dx <M,

choose ng such that
P = g llo < 357
Then
IL ¢ ot dh - fn ¢ agdrg| < IL (0~ ¢p) o dhe| + U;, Pa, e A = L Pa, %o o]
+1[ @-e)oard
25
S5+ UQ @n, O dA; — jﬂ @n, %o dA). (2.9
Finally, by (a) there exists an € such that forall 0 < € < g
)
|J‘Q(Pn0a€dxe_"‘g(pnoa0dl0l < 3

which, together with (2.9) and the arbitrariness of , yields
j (Pasdls-—)j (pocodlo.
Q Q

For the remaining of this section, we refer the reader to GOFFMAN & SERRIN [21]. Let
K be a RP -valued measure in Q with polar decomposition dp = oo dA, and let f € Co(€2xRP).

Definition 2.10.
j f(x, dy) := j f(x, (%)) dA().
Q Q

It is possible to show that for every Borel set E C € and for every xj € 2 we have
J o 02 = sup ), 00, WCE)
iel
where the supremum is taken over all finite Borelian partitions {E; | i € I} of E. Using the
Lebesgue Decomposition Theorem (see EVANS & GARIEPY [15]), it follows immediatly from
the definition that if dA(x) = a(x) dx + b(x) d§, where LN and { are mutually singular, then

_[ f(x, du) :=j £x, a(x)) a(x)dx+J. (x, ol(x)) bx) dECX).
Q Q Q



3. SLICING MEASURES AND INDICATOR MEASURES.
We start by introducing the concept of slicing measures (see EVANS [14]). Let A be a
finite, nonnegative Radon measure on Qx[RP and consider its projection ® onto L, i. €.

7(E) := A (E x RP)
for every borel set E C Q. Clearly, <7, ¢ >=< A, ¢ ® 1> forall ¢ € Co(Q), i. e.

j o) dn(x)=j 0(x) dAx, y).
fo) QxRP

Given a borel set BC RP, define pg(A) := A(A x B) for every borel set A C Q. As pg is
absolutely continuous with respect to ® ( pg << ), by the Radon-Nikodym Theorem there
exists Ag € L1( ) such that dpg =Agdm,i.e.

pp(A) = jA Ap(x) dn(x).

Definition 3.1.
For ma. e. x € Q, we define the slicing measure A, on RP by A, (B) := Ag(x).

Proposition 3.2. ([14])
O A xB)= [ 2,(B) dntx)
A
for all A and B borel sets of Q and [RP respectively ;
(ii) A, is a nonnegative Radon probability measure,i.e. A, (RP)=1 forwa.e.xe Q;
(iii) (Fubini's decomposition) I f(x,y) dA(x,y) =j (J f(x,y) dA,(y) ) dmn(x)
QxRP Q \JRP
for every f € Co(Q2xRP).

Note that by (i), for all Borel subset A of Q we have
n(A) = A(A xRP) = j A (RP) dr(x),
A

and so, by the Lebesgue - Besicovitch Differentiation Theorem (see EVANS & GARIEPY [15])
we deduce (ii), i. e. A, (RP) = 1 for wa. e. x € Q. Due to Proposition 3.2 (iii) , we write
A=\

Definition 3.3.
Forma.e. x € Q, we define the center of mass v of A by

v(x) := fmp y dA(y).



Proposition 3.4.
<, QV>=<A, ¢ ®y>forall p € Co(Q).

Proof. By Proposition 3.2 (iii) and by the definition of the center of mass,
| owveo ane=[ 000 ([ |y a0 ) anco
Q Q RP

= Imm? o(x)y dA(x, y).

Using the terminology of RESHETNY AK [30], we define indicator measure of a vector-
valued measure.

Definition 3.5.
Let p be a RP -valued measure on Q with polar decomposition dy = o0 dA. The indicator
measure of U is the finite, nonnegative Radon measure A on Qx [RP defined by

<A, > = jf(x, o(x)) di(x)
Q

for all f € Co(QxRP).

Remark 3.6.
From the previous definition we deduce that

(i) AE) = M{x € Q| (x, a(x)) € E}) and A(Q x SP1) = [|ul|(Q);

(ii) support A C (support A) x SP-1;

(iii) Using the slicing measures (see Proposition 3.2 (iii)), A = A,® ® where
lx=8y=a(x), T=A and V=q.

Now we introduce the notion of indicator measure of a weakly * converging sequence of

measures.

Theorem 3.7.
Let {p.} be a sequence of RP -valued measures on Q with polar decompositions dy; =
o dA, and suppose that p, % p, weakly * in the sense of measures, with dyy = ctgdAg. Then
there exists a subsequence {H,} and a nonnegative Radon measure A, = 7\.':@ ., on Q x Sp-1
such that
dyy = v.dn., (3.8)
and for every f € Co(Q2x[RP) we have



Jim [ s o) 0= [ 106,y Ay
= J'Q(J-sl’" f(x,y) dAY (y)) dr..(x). (3.9)

Proof. Let A, be the indicator measure of . (see Definition 3.5). As p, * |, weakly*,
the sequence of total variations {A.(Q)} is bounded, and so, by Remark 3.6 (i), there is a
subsequence {un} such that Aﬂ X A, weakly *. Thus, by Definition 3.5 and Proposition 3.2
(iii), for every f € Co(Q2x[RP) we have

11lil)nO <Ap, f>= 11lii)nO J;} f(x, 0y (x)) dAy(x) = J'me" f(x, y) dA..(x, y)

-[ ( [ o) dx;:(y)) dr(x).
Q\JRP
Setting f(x, y) = ¢(x)y, where ¢ € Cy(£2), by Definition 3.3 and Proposition 3.4 we have

nl%.r_)no JQ. (P(X) arl(x) d)"l(x) = J'mel’ (p(x) Yy dAoo(x’ y) = JQ (P(X) VQ(X) dnm(X).
On the other hand, as y,; * g weakly *,
[ 000 0 0ary00= [ 000 aiag0 > [ 000 e

and so,

J' o(x) dugx) =I o(x) v.(x) dr(x)
Q Q

for all ¢ € Co(Q), i. €. dilg = Voo d Too.
Finally, as by Remark 3.6 (iii) support A, C QxSP1, we conclude that support 7\.;°C Sp-1,

Corollary 3.10.

Let {h.} be a sequence of W1! functions bounded in BV(Q2 ; R™) and assume that h, — h,
strongly in L1(Q;R®), with hy ~ (cty, Ag). Then there exists a subsequence {hy} and a
nonnegative Radon measure A_, = ?»:® 7., on Q x S*, with S* := {F e MaxN | ||F|| = 1}, such
that

Vhj = agdAg = VeodTo in the sense of distributions, (3.11)
and for every f € Co(Q x M2xN) we have

lim f(x M)HV x)| d( )"J' f(x, F) dA..(x, F)
1o Jo T TR, Gon ) VPN 0 = | T B dA,

= .LUs* f(x, F) dx;"(F)) dr..(x). (3.12)



Note : On (3.12) it is understood that
( Vh, (x)
f( Ith( Ol ) ||th(x)|l if ||th(x)|l #0

hy,(x)
f( th"‘l( )“)||th(x)||=<

0 if |Vhy Gl =0.

Proof. (3.12) follows immediatly from (3.9) and Remark 2.5 (ii), (iii). By Remark 2.5
(i), (ii), (iii), and by Remark 3.6 (iii)

Vhe=0gdAg=Ved g = Vood Too  in the sense of distributions.
Indeed,

el:-u-}lo L @(x) v(x) dre(x) = Eli_III0 J‘QxSN_I o(x) y dAg(x, y)
o vy
=L o(x) v.(x) dr.(x)

for all ¢ € D (). On the other hand, as hy = hg in L1(Q;R?) it follows that Vh, — Vhg in
D'(Q), and SO Veod Teo = V hy in D'(Q).

Next, we search for relations between A_, = ).:® 7. and the indicator measure of L (see
Remark 3.6 (iii)),
Ap= 8y=0!0(x) ® lO

Proposition 3.13.
Under the hypotheses of Theorem 3.7, we have

(1) drg = IVooll d Tos
(ii) Vo, =|Veoll 09 forAga.e.x € Qand ||Vl < 1formoa.e. xe Q;

(iii) support V., = support Ag.

Proof. By (3.8) we have

d v.|| d
Mo = M V.l ar.

which yields dAg = ||V..|| d&t..and v,, = |[Vooll 0ty for Ag a. e.x € Q. On the other hand, since Ax
is a probability measure (see Proposition 3.2 (ii)), we have that v(x) € closed convex hull of
SP1i €. || v(x) || < 1. This proves (i) and (ii).

10



(iii) Let U € RN be an open set such that Ay (U) = 0. Let xg € U and consider B(xg, €) with
0<e<gy where B(xg, €g) C U. Then, by (i),

0=J' Ay = J' XY

B(xg, €) B(xg, €
andsov_ (x)=0 w_a.e.xe U,i.e. support v., C RN\ U. Thus
support V., C support A,.
Conversely, if v..(x) =0 =, a. e. x € U, then by (i) we have
A(0) = jU VGOl d(x) =0

and so,
support Ay C support V...

Corollary 3.14.
Under the hypotheses of Corollary 3.10, the density of n., with respect to [[Dhy/
. n..(B(x, 1))
E(x) := lim

r— 0 |[Dhy||(B(x, 1))
exists, is finite and E(x) > 1 for |[Dhyl| a. €. x € Q.

Proof. By (3.11) and since || Vool| £ 1 (see Proposition 3.4 (i)),
IDhy|| (E) < n.(E) (3.15)
for every Borel set EC Q. Finally, by Besicovitch Differentiation Theorem (see BESICOVITCH
[71, EVANS & GARIEPY [15] Theorem 1.6.1) &(x) exists and is finite for ||Dhg|| a. €. x € Q,

which, together with (3.15) concludes the proof.

Remark 3.16.
If hy turns out to be a W1L.! function, then by Remark 2.5 (ii), (iii), (3.11) and (3.15)
IVhglidx = dAg = [Iv.| dn. < dn,
and so,
IVhollL LN < ..

Proposition 3.17.

Let {E.} be a sequence of bounded sets of finite perimeter in RN such that meas (E;) — k
and {Per (E;)} is bounded. Suppose that A, *= A, weakly *, where A; is the indicator measure
of (&g, Ag) ~ X g, and let E. cc B(0, R) for some R > 0. Then

i) L X. Vo (x) drn_(x)=—Nk;

11



(i) J'Q vo(x) dr_(x) = 0.

Proof. Let ¢ € Co(RN) be such that ¢ = 1 in B(0, 2R).
(i) By Theorem 2.6 and as support .. C B(0, R), we have

k= lim meas(E)= Lm j VX = — Gim [ =
e-0 e 0Jg N e->0JpN N

Log(x) dA,

. X X
= - eh—IPO J‘mesN“ (p(x)ﬁ Ly dAKx, y)= - ij ey o(x) Ny dA..(x, y)

X

= - '[RN —I\T . V‘”(X) dn,,(X).

(ii) Once again by Theorem 2.6 and for all € > 0,
oe(x) dA, = 0

[RN
and so

0=jim, [ o A = Jim [ ., 0y At

= -[RN s (P(x)y dAoo(X, y) = ‘[RN V.,,(X) dnoo(X).

4. LOWER SEMICONTINUITY OF SURFACE ENERGIES : THE
CONVEX CASE.
In this section we search for necessary and sufficient conditions ensuring the lower
semicontinuity of a surface energy functional of the type

J(E) = Lm T(vg(0) dHy_;(x),

where E is a smooth subset of RN, vy is the outward unit normal to its boundary and I" denotes
the anisotropic surface energy density per unit area of the deformed configuration. In order to
extend J(.) to sets of finite perimeter, and according to Remark 2.5 (iv), we rewrite the energy
functional as

X(E) =L o0 dAg(0), @.1)

where X g ~ (&g, Ag) = (- Vg, Hy.,LO*E), 9*E is the reduced boundary of E and vy is the
normal to 0*E. Using the notation introduced in Section 2, the formulation (4.1) suggests the
study of sequentially weak * lower semicontinuity properties of functionals of the type

I = jﬂ £(x, 0100)) (),

12



where [ is a RP-valued measure with polar decomposition di = o dA. Note that if E is a set of
finite perimeter, then J(E) = I{u) where B = - VX g and f(x, y) = I'(y).

In what follows, let Q be an open subset of RN, and let p. and py be RP- valued measures
with polar decomposition dyi, = o dA, and dyg = 0 dAy,.

Lemma 4.2.

If A = A,®mn is the indicator measure of the RP- valued measure | with polar
decomposition dit = adA then

J'Q f(x, a(x)) dA(x) = L f(x, v(x)) dm(x)

for all f € Co(Q2x[RP) such that f(x, .) is homogeneous of degree one, for every x € Q.

Proof. Define

v(x) )
VoI if [[v(x)]| #0

¥x):=
0 if [[v(x)|| = 0.

As f(x, .) is homogeneous of degree one, by Proposition 3.13 (i) we have
[l fovooy ameo =[x, v iveol amco

- L f(x, ¥x)) dAx). 4.3)

By Proposition 3.13 (ii), (iii), (iv), V=] V./l&t and v#£0 forA a.e.xe , thus y=a for
A a.e. x € Q which, together with (4.3), concludes the proof.

Definition 4.4.
Given f € Co(QxSp-1), we define the homogeneous of degree one extension of f, Hy, by

i) ify=o

0 ify=0.

H(x, y) :=

The following lower semicontinuity result was proved independently by GOFFMAN &
SERRIN [21] and by RESHETNYAK [30].

Theorem 4.5 (sufficient condition) ([30]).
If p % po and if He(x, .) is convex for all x € Q, then

13



J' f(x, 0g(x)) dAg(x) <lim infj fx, ag(0)) dA(x).
Q e—->0 Jg

Proof. Given a subsequence {po} of {j1.}, by Theorem 3.7 there exists a subsequence
{H,} and a Radon measure Ao, = A ® Mo, 0n QxSP-1 such that

timg [ 10 @) D= lim [ Hx g0 g0
=[ ([, ey @50)) anto),

Due to the convexity of H(x, .) and since X; is a probability measure (see Proposition 3.2 (ii)),
by Jensen's inequality we deduce that

tim [ 105, 6y (30 B2 | Hilx, Vo) ),

n—->0

Finally, by Lemma 4.2 we conclude that
timinf [ £, 000 A0 | Hx, ag) dhg®) = [ £0x, 6w ko).

€0

Corollary 4.6.
(i) Let h, € W1L1(Q) be such that hy — hy strongly in L1(Q) and {|| he [l;,1} is bounded. If

hg~ (0, Ag), then
Vh,(x)

f(x, 0p(x)) dAo(x) <lim inf | f| x,
IQ X, 0g(x)) dAo(x) <lim in IQ{X IVh&Il

for all f € Co(Q2xRP) such that H{(x, .) is convex for all x € Q.
(ii) Let E; C RN be bounded with finite perimeter in RN, If the sequence {meas(E) + Per(Ey)} is
bounded and if X g — X, strongly in LY(RM), then

J [IVhe (Il dx

f(x, VEO(X)) dHN—l (X) < llgl) loﬂf f(x, VEE(X)) dHN——l (X)

J'a*p,ong 9*E, nQ
for all f € Co(2x[RP) such that H(x, .) is convex for all x € Q. Moreover, if g € C(RP) is a

nonnegative, convex, homogeneous of degree one function then
(Vo)) dEly 10 <Tim it [ g(v () dB (0.
'["*Eog E, N-1 1m m a*Eeg E, N-1

Proof. (i) Let du, = o dA, where hy ~ (o, A) (see Theorem 2.4). Since by Remark
2.5 (ii)

£
O = VA and dA¢=|/Vhg|| dx

the result follows immediatly from Theorem 4.5 and Lemma 2.8.
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(ii) As in part (i), let d po = 0z, where X ge ~ (0tg, Ag) = (- Vg, Hy.1LO*E). As in Lemma
2.8, it is easy to check that pe % o which, together with Theorem 4.5 concludes the proof.
Suppose now that g e C(RP) is a nonnegative, convex, homogeneous of degree one function,
and consider an increasing sequence of cut-off functions ¢, € Co(£2) such that 0 < ¢, <1 and
for all x € Q, lim @,(x)= 1. Then, for alln e N we have

[ 2200 (v 000 ity 10 < tim L*E:"“(") (Ve (x)) dEly ()

<lim inf
e—>0

B g(VEe(X)) dI’IN_l(X).

J9*E,
Finally, by Lebesgue's Monotone Convergence Theorem,
[ £ve,000 dit 10 = tim_ [ 9,60 gtve, 000 ity 10

and so we conclude that
(v (x)) dHy_;(x) < lim infj (Vi (x)) dHyy_; ().
L*Eog E, | N-1 m a*Eeg E, N-1

Now we prove the converse of Theorem 4.5.

Theorem 4.7 (necessary condition).
If f € Co(C2xRP) is such that

J' f(x, ap(x)) dAg(x) <lim inf I f(x, ote(x))  dAg(x)
Q €e—>0 Jg

whenever [l £ Lo, then H((x, .) is convex forall x € Q.

Proof. Let xge Q,letO e (0, 1),leta,be RP,a=b,andlet§ = (1,0, ..., 0) be a unit
vector in RN, Let X be the characteristic function of the interval (0, 6) extended periodically to
R with period 1. Clearly, the function

x = X(x.§)
is periodic with period Y := [0, 1]N. Define the sequence of functions

(1 X —Xp .
-Fl:b+x( 5 .E)(a—b)] ifx € xg+€Y

£ £
ug(x) :=<
| 0 otherwise.
Setting
dy, = ug dx,
we have
He = (0a+(1-6)b) 8,., weakly * in the sense of measures. 4.8)
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Indeed, if € D(Q) then
j ¢(x) ug(x) dx = <P(X)[ (x 2X0 §)(a b)]
Q Xg+ €Y e

€

I <p(xO+ey)[b+ x( ]
and so, as

x(% . F,) -0 inL” weak *,

we deduce that

L 900 ux) dx — 9(xg) (Ba+ (1~ B)b) = < (Ba + (1 - O)b) 8-, >

which proves (4.8). Since
_ Ba+(1-6)b

e = = 0a+ (1 - O)b]|

Ae = llugll dx and Ay =||0a + (1 - O)b]] &

ﬁu_z-:"-, X = Xg?
by (4.8) we have

f(x, 0p(®)) dhg(x) < lim inf_[ f(x, 0 () dAo(x)
Q e—>0 Jgo

Hg(xq, 62 + (1 - 0)b) < lim inf J- Hi(x, ug) dx

= lim inf H,{ 1 [b+ x( —x".&)(a—b)])dx
£ 0 Jx +ey g2
=timjnf | e { y g)ﬂ,{xo+ey, )+ (1—X(%.§))H{x0+ey, -GEN-)} dy

= OHg(xg, a) + (1 - 0) H(xq, b).

S. CONTINUITY OF SURFACE ENERGY DENSITIES.

Here we provide necessary and sufficient conditions for the sequential weakly * continuity
of the surface energy functionals. As in Section 4, in what follows Q is an open subset of RN,

Mg and g are vector valued measures with values in RP and with polar decomposition,
respectively, di, = o, dAg and dp = g dAy. Let A, = A, ® 7, be the indicator measure of |,

(see Definition 3.5).

Theorem S5.1.

Let g * oin the sense of measures and assume that A *» A= A ®Te.. Then A7 is a

Dirac mass if and only if
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j f(x, ag(x)) dho(x) = lim j £(x, 0e(x)) dhe(x)
Q e—o0 Jo

for all f € Co(QxRP).

Proof. Suppose that A}’ is a Dirac mass, A] = 8y - £(x). By Proposition 3.2(ii), support
AL C SPland AJ(SP!) = 1, therefore |[§(x)|| = 1 for oo a.€.x € Qand

Veo(X) = &(X), with |[Veo(X) || =1 T a.€.x€ Q.
By Proposition 3.13 (i), (ii), we conclude that

Voo = 0y and Moo = Ay, (5.2)
Therefore, and according to Definition 3.3,

A = 8y = og(x)

and by (5.2) and Proposition 3.2 (iii),

dim [t 0e) De00= fim [ f0y) dhxy)

= JQxSP'I fx, y) dA.(x,y)

= IQ (Lp—l f(x, y) dl:(y)) dr_(x)

=J.Q f(x, ag(x)) drg(x).

Conversely, if for all f € Cy(Q2xRP)
J' f(x, 0g(x)) dAg(x) = lim j £(x, 0t ()) dAo(x)
Q e->0 Jg

then Ag= A.., and by Remark 3.6 (iii) we conclude that
)\,: = A’Ox = 8}' = ao(x).

Corollary S.3.
Assume that i ¥ pgin the sense of measures, A¢(2) — Ao(Q) and A, *- A_.. In addition,

suppose that the norm ||.]| in RPis an euclidean norm. Then

jﬂ f(x, @g00) dho(x) = lim jﬂ flx, 0 (x)) dAy(x)
for all f € Co(QxRP).

The proof of this result is based on Theorem 5.1 and on the following lemma.
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Lemma 5.4.
If g % Mg in the sense of measures, if A, (Q) — Ay(Q) and if A, 2 A_=A7® 7, in
the sense of measures, then v,, = 0gand ., = Aq.

Proof. Let ¢ € Cy(R2). Then
j 0(x) dA(x) = j o) 1log 0Ol dA(x)
Q Q

=[ . 9 Iyl dAcy)
QxS
and so,

lim_ l 0w DW= . 9 Iyl aAtx,y)

- L o(x) dr_(x). (5.5)

On the other hand, as p; * o and as Ag = || ke ||, Ag = || Ko Il, we have that Ay < lim inf A,.
Thus, since by hypothesis A;.(2) — A((L2), we deduce that

A¢ — Ag weakly * in the sense of measures. (5.6)
Therefore

LMy j, ¢ dA(x) =£ @00 dAg(x)

which, together with (5.5) implies that

oo = Ag. 6.7
By Proposition 3.13 (i), (ii), we have dAg = |[Voo|l dteo and Voo = ||Veoll0tg, and so, by (5.7) we
conclude that [[Vooll =1 and veo = a1

Proof of Corollary 5.3. Let ¢ € Co(Q2 ;RP). By (5.6) we have
tim [ 060 - @I @)= tim [ 11 - 20,6, 00 + 9GP ] dAy(x)
e—- 0 Jg e>0 Jo

— () -2 L g (1).9(x) dhg + jﬂ 9GO dAox). (5.8)

On the other hand,
Jim L llote®) = @G| dAe(x) = Jim Jaxsr’ ly — 0Ol dA(x, y)

=[ 0 Iyt aay)
=[([,+ ty-owi* a5 ) ar.co
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and so, by (5.8) we deduce that
2 aeo _ _ 2
[([ =000 @56 Jan.0= Ag(@ -2 [ o9 aho-+ [ 1o ahoto

By Lemma 5.4, Voo = 0y and T, = A, and so taking ¢, € Cy(€2; RP) such that || ¢, || <1 and
¢,— 0 in L1(Ay), we obtain

LUSP-I ly — oGO dA5(y) ) dn..(x) =0.

Therefore, as ||og(x)|| = 1, we conclude that y = og(x) for )J: a.e.y e SP! and for 7., a. €. X
e Q ie.

Ay = y = og(x)

The conclusion follows from Theorem 5.1.

Corollary S5.9.
(i) Let hg, hyg € WLI(Q ; Rn) be such that h, — hg strongly in L1(Q; R®) and

[ 1m0t ax = [ 1vho0ol ax.
Q Q

Then

jf( M)IVh()lldx—lim Jf( —Vi‘f(x—)J Vh.| d
o % TWageon ) Vool dx = lm, - f1 % 19, cojy 1V hetl dx

for all f € Co(QxMnxN),
(ii) Let B, R be bounded with finite perimeterin R™. If Xz —Xg, strongly in L'(R™) and if
Per(E,.) — Per(Eg) then |

f(x, vg (x)) dHy_; = lim f(x, vg (x)) dHy_;

-[(B*Eo)nﬂ e—0 JerE)nQ

for all f € Co(QxRP).

Proof. (i) As in the proof of Corollary 4.6, let d p, = ot,dA., where h,~ (g, A;) (see

Theorem 2.4) and, by Remark 2.5 (ii),
Vhe(x)

('X.e(x) = m and d"'s = HVhe(x)ll dx.

By Lemma 2.8 and since ||Vh, [|;— ||[Vhg ||;, we have that i, % 1y and A () — Ag(Q). Now the
result follows from Corollary 5.3.
(i) Here X g ~(0tg, Ag) = (—vg (%), Hy_L 9*E,). Since p .converges weakly * in measure to |1, and

as A¢(Q) = Per(E;) — Per(Eg) = Ao(Q), we can apply Corollary 5.3.
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Example 5.10.
In R2 consider the canonical euclidean norm. Consider the sets Ey and E, as in Figures 1

and 2, respectively.

Fig. 1 Fig. 2
Clearly
XE‘k - XEO strongly in L!
and
2 + 22 =Per(Ey) < lim  Per(Ey) = 42,
Setting
n; = (—1:11:2_11, ny = cLy le.l), n3 = (0, -1)
and
L, := segment joining the points (1, 0) and (0, 1),
L, := segment joining the points (0, 1) and (-1, 0),
L, := segment joining the points (-1, 0) and (1, 0),
it is easy to verify that
1. SUppPOTt Voo = SUPPOTL Moo = SUPPOTt O = support Ag = dEg, with
n; onl,
—-0p=q N onl,
n; onlg
and '
Ao = Hy_4L 9E,.

2.m LLi=2glL; fori=1,2 and m,lL3= V2 Aol L,
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Vo=
Do,
4, By, ifx e L fori=1,2
A7 =
5@y g+ 8yoy)  ifxels

6. LOWER SEMICONTINUITY OF SURFACE ENERGIES : THE
QUASICONVEX CASE.
We are interested in the lower semicontinuity properties of surface energy densities of the
type (1.1) associated to elastic solid materials that undergo a change of phase. According to
Remark 2.5 (iv) and Definition 2.10, these functionals are integrals of the type

L f(VXp)

where E is a set of finite perimeter, or equivalently, X g is a function of bounded variation.
Consider the class of functionals

(V) := J'Q £(V)

defined for u € BV(Q;R1), where Q C RN and N, n=> 1. It was shown on Theorem 4.5 that if
{uc} is a sequence bounded in BV, if ug — u strongly in L! and if f(x, .) is convex and
homogeneous of degree one then
I(Vu) <liminf IgVug).

However, as shown by DACOROGNA [9] (see also ACERBI & FUSCO [1], MORREY [28]),
the W11 weak lower semicontinuous envelope of the functional Ifis the integral of the
quasiconvexification of the energy density, and so quasiconvexity becomes the natural
constitutive assumption rather than convexity. Precisely

Definition 6.1([6]).

Let 1 <p < +oo. A function f: M&XN — R is said to be W!P-quasiconvex if

1
f(F) < m J-D f(F + Vo(x)) dx,

for all F € MoxN and for all ¢ € W, *(D; Rv).
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Proposition 6.2.

Let f : MaxN — R be a nonnegative continuous function such that

f(F) < C(1 + [[Fll) (6.3)
for some positive constant C and for all F e M™N, Then f is Wl.1-quasiconvex if and only if f is
Wle_quasiconvex.

ACERBI & FUSCO [1] and DACOROGNA [9] showed that if f satisfies (6.3), then the
sequential W11 weak lower semicontinuous envelope of

) = L f(Vux)) dx

is its quasiconvexification QJ(.), namely
Ql(u) = j Qf(Vu) dx,
Q

where Qf is the biggest W11-quasiconvex function smaller than or equal to f.

It turns out that if f is homogeneous of degree one then f verifies (6.3) and there exists a
positive constant C' such that

If(F) - f(G)| < C'||IF - G| (6.4)
for all F, G € MoxN (see DACOROGNA [10], EVANS [14]). Therefore, if in addition f is
quasiconvex then

J' (Vu(x)) dx < lim infj' f(Vu,(x)) dx 6.5)
Q e->0 Jo

whenever ug — u weakly in WL1,

Conjecture : If f is quasiconvex and homogeneous of degree one and if {uc} is a sequence
bounded in BV and ug — u strongly in L1, then
I(Vu) < liminf IgVug).

In Theorem 6.6 we prove the conjecture in the case where Vug and Vu are absolutely
continuous with respect to the Lebesgue measure. Let MoxN := {nxm real matrices} and set S* :=
{F € MaxN | ||F|| = 1}, where

Il =(Z F?-)m-

Theorem 6.6.
Let f: QxMoxXN—> R be a nonnegative continuous function such that f(x,.) is homogeneous
of degree one and Wl~-quasiconvex. Suppose further that there exists a continuous function g
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with g(0) = 0 such that |f(x, A) - f(y, A)| < g(llx - yll) (1 + |JA]]) forall x,y € Q and forall A e
MexN_ Let {ug} be a bounded sequence in W11(Q; Rn) and assume that ug — u strongly in
LY(Q; Rp). If u e WLI(Q; Rn) then

f(x, Vu(x)) dx < lim infj (x, Vuy(x) dx. ©.7)
0 e—>0 Jo

Proof. (a) Suppose that f does not depend on the variable x. By Corollary 3.10, given a
subsequence {ug'} of {ug} there exists a subsequence {u,} and a nonnegative Radon indicator
measure A, = A, ® &, on Q x S*, such that

Jim | G( ’“zunll )uvu,,ndx (] cxpa 76 an.00 6.8)

for all G € Cy(Q2xMnxN), By the Lebesgue-Besicovitch Differentiation Theorem (see EVANS &
GARIEPY [15], Theorem 1.7.1), by Corollary 3.14 and by (3.15), there exists a set E C Q
such that |[Dul|(E) = 0 and for all xy ¢ E the following hold :

1
Vu(xg) # 0, h_{)no m Brg) [IVu(x) — Vu(xg)l| dx =0, (6.9

. (B(xg, 1))

1 < &(xg) < +oo, where E(xg) = in 0 m (6.10)
and 1 _ -
R e W ( ) a3 (F)) dm.(x) J's* £(F) dA, (F). 6.11)

Fix xo ¢ E and let By := B(xq, 1/k) with k € IN. Consider a family of cut-off functions @€
D(Q) such that 0 < @, < 1, ¢, = 1 on By and @, = 0 outside B, (set B, := Q). By Proposition
6.2 we have

f(Vu(xp) meas(Q) < j (Valxg) + Vg )y () — uG)D) dx

= f(Vu(xg)) meas(Q\By_,) +J f(Vu(xp) + Vg (x)(up(x) — u(x))]) dx

k—l\Bk

+| 6(Vutp) + Va0 ~Vu() ax.
Bk

Therefore, by (6.4) we deduce that
meas(B,_;) — meas(B,) C
f(v < -
(Vulxg)) <C meas(B,_,) + meas(By_;) IVl Lk_,\Bk”u"(X) ubol dx
C C
T _[ VurGll + ——e— f IVu)|| dx
meas(B,_,) By 1\By measiBby-1) JB, \B,
+
meas(By_;) Jp,

[IVu(x) — Vu(xg)|| dx
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J f(Vuy(x)) dx. (6.12)

+ E————————————
mcas(Bk_l)
By Remark 2.5 (ii) and by (6.8), we have

ligr1 15up _Lk_l\Bk IVun (Il dx < ligI 1 SUp L (P11(3) = Py 0 [V (Ol dx

= J;) (Pp—1 (%) = @41 (x)) dr..(x)

ST (By_g) — T (By, ). (6.13)
Thus, as by (6.8)
lim _fup j b, f(Vu, (x)) dx < ligl 1 Sup Lk @ (x) f(Vu, (x)) dx

- J’Q %) (js 1) AP ) a0,

and as uy—u strongly in L1(Q; R®), (6.12) yields
meas(B,_;) — meas(B,) . .(By o) — . (By.1)
f(Vulxg)) <C k-1 k k-2 k+1
meas(B,_;) mCaS(Bk—l)

C
+ measBk_ J'Bk B, IVuGll dx + I IVu(x) — Vu(xg)|| dx

easB

I)J' o (x) ( j £(F) dA (F)) dm (). (6.14)

+ ——————
meas(Bk_

As
meas(By)

meas(By_;)

by (6.9) and (6.10) we have
T(By )  T(Byy) [Dul(By_;) meas(By ;)

meas(By_;)  [[Dul/(B,_,) meas(B, ;) meas(B,_;)
which, together with (6 11) implies that
lim sup ———7 J. @ (x) (J f(F) dA (F)) dr.(x) <
1

k — +e meas(B,_

— 1 ask — +oo,

= E(xg) IVulxpll,

1
< lll(n_l)SlloP m - ( " f(F) dlx (F)) dr_(x)

s eo(By—p) 1 -
- lkln—l)s-il-lo? meas(Bk_l) nw(Bk—l) B ( S* f(F) dlx (F)) dnm(X)

= &(xo) [[Vulxo)l| _L* £(F) dAg ().

Therefore, (6.14) reduces to
f(Vu(xg) <80x0) IVuCxo)l [ 109 k5, )

for all x5 ¢ E and so, as ||Dul|(E) = 0 and f(x, .) is homogeneous of degree one,
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jn £(Vu(x) dx = ‘L\Ef(Vu(x)) dx < LUS* £(F) dx::(F)) £ IVuGOll dx.

Finally, by the Lebesgue Decomposition Theorem (see EVANS & GARIEPY [15]),

dr,, = &(x) d |[Dul| + B(x) dp = &(x) [[Vux)ll dx + B(x) dpr
with B > 0 and where ||Dul| and p are nonnegative mutually singular Radon measures, thus by
(6.8) we conclude that

jﬂ f(Vu(o) dx < LUS* £(F) dx;:(F)) dr.(x)
- lim, jﬂ £V () dx.

(b) Fix 8 > 0 and let {Q; | i = 1, ..., q} be a disjoint collection of subcubes of Q such that
meas(Q\WQ))<d, g(lIx- ylD<d if x, y € Qj, Teo( QWQ))< & and J. [IVu(x)||dx<9d. (6.15)
In each cube Qj select a point x;. Then, by (6.3) and as f is nonngg\zkijt?sire we have

lim mf[ _L £(x, Vug(x)) dx — _[Q £(x, Vu(x)) dx] -

€e->0

€50

= lim inf j f(x,Vu,(x)) dx — J fi(x, Vu(x)) dx +
QuQ, QuQ,

+ sz [ f(x,Vu(x)) — f(x,Vu(x))] dx]

> lim inf[- J’muqi C(1 + [[Vu@|) dx +§i:jQi [ £(x, Vue(x) — f(x;, Vu(x)] dx +

€—>0

+2J-Q [ f(x;, Vug(x)) — f(x;, Vu(x))] dx + ZJQ [ f(x;, Vu(x)) — f(x, Vu(x))] dx]

By (a)

lim inf j [ x5, Vu () — fx;, VaGO)] dx = 0
€— 0 JQ

and by (6.15)
ZJ'Q | £x, Vu () — fx;, Vu(x))] dx < ZJQ g(lx = x) (1 + [IVu()]) dx

<0 (meas(Q) + IVul} 1),

ligl}_) sup iZfQi | fx, Vug(x)) — f(x;, Vug(x))] dx < li{:n _)s%pz '[Qi gllx — x;) (1 +||Vux)|)) dx

< 8 (meas(Q) + T(Q)).
We conclude that
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lim inf [ JQ £(x, Vu (x)) dx — L f(x, Vu(x)) dx] >_Cs

€E—>0

and so, as d is arbitrarily small, we obtain (6.7).

Remark 6.15. :

Under the hypotheses of Theorem 6.6, (6.5) holds when f satisfies the growth condition
(6.3) but is not necessarily homogeneous of degree one in F. The proof is a replica of that for the
case where ug— u weakly in Wl1 (see DACOROGNA [10]), using (6.13) instead of De La
Vallée-Poussin Theorem to estimate

f IVu GOl dx.

However, the proof of Theorem 6.6 presented above seems to be more adapted to deal with the
case where Vu has a singular part with respect to the Lebesgue measure.

7. OSCILLATIONS OF TWINNED CONFIGURATIONS OF ELASTIC
CRYSTALS.

In this section we are going to use indicator measures and Young probability measures to
show that deformations supoported on two potential wells with non-oscillating L1 norms cannot
oscillate.

We start by describing briefly the notion of twinned configuration of an elastic crystal. The
foundations of this theory are due to ERICKSEN (see ERICKSEN [12], [13]). Assuming
isothermal conditions, in what follows Q C RN represents the reference configuration,
W:MNxN_; [0, +oo] is the stored energy density and u : Q — RN is the deformation, where
N>1. In order to prevent changes in orientation and interpenetration of matter, we prescribe that

W(F) < +oo if and only if det(F) > 0 and W(F,) — +ee if det(F,;) — 0.

Moreover, due to frame indifference,

W(F) = W(RF) (7.1)
for all F e MNxN__:= {F e MNxN_| det (F) > 0} and for all rotation R € O+(N) := {Fe MNXN|
FTF = 1 and det(F) = 1}. Moreover, and according to ERICKSEN [12], if the solid has
crystalline structure then W should be independent of the choice of lattice basis. This implies that
W is invariant by the action of an infinite discrete group 3* conjugate to 3 := {Fe MNXN|F; e
Z for alli, j=1, ..., N and det(F) = 1}, precisely

W(F) = W(FH) (7.2)
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for all Fe€ MNxN_ and forall He @*, where 3* = LGL-! for some L € MNXN (for details, see
FONSECA [17], JAMES & KINDERLEHRER [24], KINDERLEHRER [25]). Due to (7.1)
and (7.2) W is periodic in many directions and the total energy

E(u) = jn W(Vu(x)) dx

is not sequentially weakly * lower semicontinuous. Thus, oscillations may develop and the study
of oscillating twinned configurations is particularly relevant to the understanding of stable and
metastable configurations of ordered materials (see BALL & JAMES [5], CHIPOT &
KINDERLEHRER (8], FONSECA [17], [18], JAMES & KINDERLEHRER [24],
KINDERLEHRER & PEDREGAL [26], KINDERLEHRER & VERGARA-CAFFARELLI
[27]). Precisely, a configuration is said to be twinned if it corresponds to a deformation u such
that

Vue {A,B} fora.e.xe Q,
where A and B are symmetry related , i. e.

B =RAH (7.3)
for some R € O+(N) and some H e 3*. Then

det(A) = det(B)
and by (7.1) and (7.2), if W has a minimum at A then O+(N)A and O+(N)B are two orbits of
mimima for W.

Here, we will study the oscillations of a sequence of twinned configurations : if Vu, €
O+MN)A U O+(N)B fora.e. x € Q and if u. * u weakly * in W1,>°, what can we say about
the structure of u ?

In what follows, we assume that A and B lie on two distinct wells, precisely
(H) det(A) >0, det(B) > 0 and O+(N)A N O+(N)B = Q.

Theorem 7.4.

Let u, € W1.°(Q ; RN) be such that Vu,(x) € {RA,RB|R e O+(N)}fora.e.xe Q
and let u; % u weakly * in W=, If det(A) = det(B) and if

sh'_r)nO JQ [IVu ()|l dx = L [[Vu(x)|| dx,

then u; — u strongly in WLP for all 1 < p < 4+, and Vu(x) € {RA, RB |R € G+(N)} for a.e.
xe Q.

We will prove this result using indicator measures (see Section 3) and some properties of
Young measures summarized in the following theorem (for details, see EVANS [14], TARTAR
[31D).
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Theorem 7.5.

Let {h¢} be a sequence bounded in L>°(Q; C), where C is a closed subset of Rm, and let
h% h weakly * in L. Then there exists a subsequence {h,} and for a. e. x € Q a Borel
probability measure p, on R™ such that spt p, C C,

h(x) =ij y dun(y) (aexe Q)

and for every G € C(Rm) we have
G(h.q) X G* weakly * in L™
where
G*(x) = J:Rm Gy dnGy) (aexe Q).

Moreover, W, is a Dirac mass for a. . x € Q if and only if
Hx =8y and hy — h strongly in LP(Q; R™) forall 1 <p < oo

We will use also the weak continuity property of the minors of {Vu.} (see BALL [4],
MULLER [29]). In what follows, adj(F) is the matrix of cofactors of F, i. e. F-1 = (det F)-1

adj(F)T.

Theorem 7.6.
Assume that u, € W1=(Q ; RN) is such that u, % u weakly * in W1,*, Then
det (Vuy) — det(Vu) and adj(Vu,) — adj(Vu) weakly in LP , for all 1 < p < +ee,

We divide the proof of Theorem 7.4 into a series of lemmas and propositions, the first of
which is well known.

Lemma 7.7.

Let {h.} be a sequence of characteristic functions, i. €. hg € {0, 1} for a. e. x € Q, such
that h.* h weakly * in L*°, with h € {0, 1} for a. e. x € Q. Then h,— h strongly in LP, for all
1<p<+eo.

Proof. Consider a subsequence {h.} and let {p,}be the Young probability measures
corresponding to a subsequence {h,} of {hy}. By Theorem 7.5 we have that spt p, C {0, 1},
and so

Hy=0(x) 8y _o+(1-06(x)) 8y,
for some O(x) € [0, 1]. Thus, setting a(x) := 1 - 6(x), we obtain
Hx = 6a(x)
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which, by Theorem 7.5, implies that a(x) = h(x) a. e. x € Q and hy— h strongly in LP, for all
1<p<+oo.

Lemma 7.8.
Let u, € L=(Q ; Rn) be such that ug £ u weakly * in L*°, [lug|| — g strongly in L! and
s{ lu(x)|| dx = ({g(x) dx. Then u; — u strongly in LP, for all 1 < p < +oo,

Proof. Consider a subsequence {ug} and let {j1,} be the Young probability measures
corresponding to a subsequence {uy} of {ug}. As |lug || * k* weakly * in L*°, with

)= [ Iyldix®) (aexe Q)
Rn
and since |juy|| — g strongly in L1, we conclude that

g0 =k*0= [ Iyldiy) (ae.xe Q).

Rn
On the other hand, fora.e. x € Q
u@= [ yduy), (7.9)

Rn
and so, since |1, is a probability measure,
lux)|l <gx) (a.e.xe Q).
Therefore, as by hypothesis
[u@)lldx = [ g(x) dx,
Q Q

we deduce that [lu(x)|| = g(x), and so, by the Dominated Convergence Theorem and by Theorem
7.5, given G € C(R) we have

G(llugll) = G(llull) strongly in L1
and

G(llu

where

G*®):= | Gyl diy) (ae.xe Q).
Thus, Re
G = G*(x) := [Rj G(lyl) dux(y) (a.e.xe Q)
n
and so, given the arbitrariness of G, we deduce that
spt iy C {y € R2|llyll = llu(x)II}
which, together with (7.9) and since p, is a probability measure, implies that
Hx = 8y = u(x)-
The conclusion of the proposition follows from Theorem 7.5.

ql) % G* weakly * in L>°
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Proposition 7.10.

Let u; € WLe(Q ; RN) be such that Vug(x) = Re(x) X £(X)A + R(x)(1 - X £(x))B, where
Re(x) € O+(N) for a.e. x € Q and X ¢(.) is a characteristic function. Let u. % u weakly * in
whe and assume that

lim L IVu GOl dx = jﬂ IVuGl| dx.

@) If X ¢ — X strongly in L1, then u; — u strongly in WP for all 1 < p < +oo, and
Vu(x) = R(x) X (x)A + R(x)(1 - X (x))B, where R(x) € O+t(N) for a.e. x € Q.

(ii) If ug — u strongly in WLP for some 1 < p < +oo, then X ¢ — X strongly in L! and
Vu(x) = R(x) X (x)A + R(x)(1 - X (x))B, where R(x) € G+(N) for a.e. x € Q.

Proof. (i) Without loss of generality, we can assume that R, *» R, weakly * in L*°,
Clearly,

det(Vug(x)) = X (()det(A) + (1 - X ()det(B),
and so, by Theorem 7.6

det(Vu(x)) = X (x)det(A) + (1 - X (x))det(B) fora.e. x € Q. (7.11)
On the other hand, since X ; — X strongly in L1, fora.e. x € Q
X (x) € {0, 1}, Vu(x) = Reo(x) X (X)A + Roo(x)(1 - X (x))B (7.12)
and '

det(Vu(x)) = det(Roo(x)) ['X (x)det(A) + (1 - X (x))det(B)]
which, together with (7.13) implies that

det(Roo(x)) =1 a.e.in Q. (7.13)
Also, adj(Vug) = Re(x) X ¢(x) adj(A) + Re(x)(1 - X ¢(x)) adj(B) converges weakly * to

R..(x) X(x) adj(A) + R, (x)(1 - X (x)),
thus, by Theorem 7.6, (7.12) and (7.13)

R.(x) [X (%) adj(A) + (1 - X.(x))adj(B)] = RosT(x) detR..(x))[ X (x) adj(A) +

(1-X(x))adj(B)].  (7.14)

As det(A), det(B) > 0, we have det [ X (x) adj(A) + (1 - X (x))adj(B)] > 0 and so (7.12), (7.13)
and (7.14) imply that R_(x) € O+(N) and

Vu(x) = R(x) X x)A + R(x)(1 - X (x))B, where R(x) =R_(x) € O+(N) fora.e.x e Q.
Therefore

IVuell = X A+ (1- X IIBll = X Al + (1 - X) Bl ={[Vul|  strongly in L1
and by Lemma 7.8 we conclude that u, — u strongly in W1P for all 1 <p < +ee.
(ii) Assume that u, — u strongly in W1.P for some 1 < p < +eo. As {Vu.} is bounded in L* we
have (Vu)T (Vuy) = X ¢ ATA + (1 - X¢) BTB = (Vu)T (Vu) strongly in L! and, i. e.

X ¢ (ATA - BTB) converges strongly in L1,
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Due to the hypothesis (H), ATA - BTB # 0 and so
X.e = X strongly in L1
By (i) we conclude that
Vu(x) = R(x) X (x)A + R(x)(1 - X (x))B, where R(x) € O+(N) for a.e. x € Q.

Corollary 7.15.
Let u; € WL(Q ; RN) be such that Vu,(x) € {RA,RB|Re O+(N)} fora.e.xe Q
and let ug & u weakly * in Wl If

IAI= 1Bl = | IVutollax

then u, > u strongly in WLpfor all 1 £p < +o and Vu(x) € {RA, RB |R € G+(N)} for a.e.
xe Q.

Proof. As ||A|| = |IB||, it is clear that [|Vu.(x)|| = ||A|| =: g(x) for a. e. x € Q and, by
hypothesis
j [IVu&)|| dx=j g(x) dx.
Q Q

Thus, by Lemma 7.8 we have that u; — u strongly in W1.P for all 1 < p < +eo, and so, by
Proposition 7.10 (i) we deduce that Vu(x) € {RA, RB R € G+(N)} for a.e. xe Q.

Proof of Theorem 7.4. As in Proposition 7.10, let
Vue(x) = Re(X) X (A + Rex)(1 - X ((x)B,
where R¢(x) € O+(N) for a.e. x € Q and X ¢(.) is a characteristic function. By Proposition 7.10
(i), it suffices to show that
X ¢ — X strongly in L1, - (7.16)
As
sli_x_;no J;l [Vu(x)|| dx = J.Q [IVu(x)|| dx, (7.1

by the Sobolev Embedding Theorem and by Corollary 5.3 we have

im f( Vu(x) )V q ( Vu(x))V
e 0 Vagoq IV el 4o = f acor ) VReol o) (7.18)

for all f € Co(QxMNxN)_ On the other hand, as det(A) = det(B) by Theorem 7.6 we obtain
det(Vu,) = det(B) — det(Vu), i. e. det(Vu(x)) = det(B) fora.e.x € Q. (7.19)

Since for all Borel subsets E of Q
fE VGl dx < lim inf jE IVu Ol dx = me) AT+ (1 = X GO) 1B d,

(7.17) yields
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| Vu@)ll = X (x) llAll + (1 - X (x)) |IB]| fora.e.xe Q. (7.20)
Finally, setting in (7.18) f(x, F) = @(x) det(F) with pe Cy(£2), by (7.19) and (7.20) we have

lim (x)det(vu())llv()d() ()d{V())V()d()
dmme )o@ Va.con ) 1V ol dx .L"’" ot wacor IV el 40,

. det(B) det(B)
im | ¢&x) ———dx)=]| ¢ x) ——— dx
HOL IV )IN! fn IVuGoN!

i e.

and so

1
im | ¢x) dtx) =
Hofg Y LONAIN L (1=% BN

= lim J’ 000 1% .00 AN+ (1 = %, 6) IBI*N dx
e 0JQ

=J‘ ¢ (x) 1 N-1 dx.

Q [X GO Al+ =X &) |BI]

Therefore, fora.e. x € Q

1 _X® L 1-%
IxG Al+a = xe) Bt pjat
Setting
¢ . Bl
"52"(’) (x)
we obtgin —=2= [ (0 [IAll + (1 X(x)) BV LR [x<x>||An+(1 = ) BN

= &(Jx) [X () + (1 =X G)EN t

X (x)) . (7.21)

If € = 1 then by Corollary 7.15 we conclude that u, — u strongly in WLP for all 1<p <+oo,
and the result follows from Proposition 7.10 (ii).

Now suppose that § # 1. Then (7.21) is equivalent to saying that

h(E) =1 (7.22)
where

6= X.(x) and h(®) := [0+ (1 - )" [9 + ‘N‘_f’].
t

Clearly

minh=h(1)=1andh'() =N -1) (1-6) [0 + (1 - 0)]N2 tN (6tN - 9).
On the other hand, if 0 < @ < 1 then h'(t) =0 if and only if OtN -0 =0,i.e. t =1. As& # 1 we
deduce that h() > 1, which contradicts (7.22). Therefore, © € {0, 1} and by Lemma 7.7 we
have (7.16), which concludes the proof.
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