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Abstract

We consider a natural parallel version of the classical greedy algorithm for finding
a maximal independent set in a graph. This version was studied in Coppersmith,
Rhagavan and Tompa [CRT] and they conjecture there that its expected running time
on random graphs of arbitrary edge density is O(logn). We prove that conjecture.

1 Introduction
In this note we consider the problem of finding the lexicographically first maximal indepen-
dent set (LFMIS) in a random graph. Coppersmith, Rhagavan and Tompa [CRT] describe
a parallel version of the standard greedy algorithm for this problem:
Suppose we are given a graph G = (V, E)y V = [n] = {1,2,.. . , n}. For Z C V we let

T+(Z) = {x£ Z : xz £ E for some z <x, z£ Z},

and
T'(Z) = {x£Z : xz e E for some z > x, z e Z}.

Note that we have implicitly oriented the edges from low to high.

algorithm PARALLEL GREEDY (G);
begin

GIS *- 0;
until G has no vertices do

begin
let A={a:r-(a) = 0};



end

end
output GIS

GIS <- GISUA;
remove A U T(A) from G

It is easy to see (Lemma 2.1 of [CRT]) that GIS is the LFMIS. Cook [CO] showed that
the problem of computing the LFMIS of a graph is complete for P and so is not in NC unless
NC=P. PARALLEL-GREEDY can be implemented on a CRCW PRAM in 0(1) time per
iteration if one processor is allocate to each edge of G.

Coppersmith, Rhagavan and Tompa showed that if T(ny p) denotes the expected number
of iterations r = r(G) when G = Gn,p then T(n,p) = O(figj*). (Gn,p is the random graph
with vertex set [n] where each edge occurs independently with probability p = p(n).).

They conjecture that T(n,p) = O(logn) and it is the aim of this paper to prove it. We
also prove a lower bound T(n,p) = fl(lo^") for a range of values of p. More precisely

Theorem 1
(a) 4£°$£n < T{n,p) for±<p<±- where 0 < a < 1 is constant

The hidden constant in (b) is independent of p.

Note that our inequalities are only claimed for n large.

2 Lower Bound Proof
Let m = [p"1 J and consider the subgraph H of G induced by [m]. If H contains a component
which is a directed path of length / then clearly r > |7. (The direction of an edge ijy i < j
is from i to j). Now let

/ = = I 2 1 ° 6 m I
L3 log log mi

and Z\ = the number of components of H which are directed paths of length /.

1
We show

Pr(Z, ^ 0) >

and the lower bound follows.
Now

But

W+i

w- m e
lJ-l2/2m+O(l3/m3)
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and

and so
(2) E(Zi) > m1'3

Furthermore

(3) E(Zt{Z, - 1)) = Ofj h ~

We can now use the useful inequality

by (3)

and (1) follows. D

3 Upper Bound Proof

We shall, as in [CRT] consider a modified algorithm which always takes at least as long as
PARALLEL-GREEDY. It is similar to the one described there.
In what follows we may take r = 5.

algorithm MODIFIED PARALLEL-GREEDY (G);
begin

X := V; Y :=GIS:= 0;
while \X\ > m do

A: begin
Z := m lowest numbered elements of X\
run PARALLEL-GREEDY for r iterations on Y U Z
and let A be the independent set constructed;
X := X - r+(A); Y := (Y U Z) - r+(A);
GIS:=GISUA

B: end
C: run PARALLEL-GREEDY to completion o n X U F

end

We claim that MODIFIED PARALLEL-GREEDY (MPG) constructs the LFMIS of G
and always requires at least as many iterations as PARALLEL-GREEDY. This is because
the difference between the modified algorithm and the original algorithm is that it does not



necessarily add vertices to GIS the first time they become sinks. Instead we may have to
wait until they become members of Z first. This does not change what goes into GIS, but
instead delays the time when subsequent members of GIS become sinks.

We will show first under the assumption

- 7p<(logn)

that with sufficiently high probability
(4) there are at most [log10/9 n] executions of the main loop A-B, and
(5) at most |flog10/9 n] iterations of PARALLEL-GREEDY are needed to execute statement
C.

Now let XuYuZt C Xt be the values of Xy V,Z at the start of the tth execution of the
main loop A-B of MPG. Let At denote the set A constructed during the tth iteration.

The key to an analysis of MPG is an understanding of the distribution of the edges
contained in (j£=i £,- for fc = 1,2,...

Suppose we condition on the values of Zx, Z2..., Z*. We claim that
(6a) the edges contained in each Z{ are unconditioned, i. e. are chosen independently

with probability p.
(6b) a possible edge uv, u G Zt, v G Z^i < j will occur independently with probability 0

(u G A$ or p (u & A|).
Knowing this we first prove

Lemma 1 If m is large and t < m1^4 then

PR(\Yt\ > 2 (jpj m) <200r4f3

m

Proof
Let v £Yt and suppose v G Za, a < t — 1. We claim there exists b < a and a directed path

with head v, of length greater than 2r(t — 6), contained in U£=& Z%* Now either Za contains
a directed path of length greater than 2(t — a)r with head r, in which case we take b = a,
or not. In the latter case there is a vertex i/ G Zc n Ya, where c < a, and a directed path of
length greater than 2r(t — a) from v' to v which is contained in U£=c Zi. For otherwise, at the
start of iteration a the longest directed path with head t; contained inYaUZa is of length
at most 2r(t — a). But then t; will be eliminated by the end of iteration t — 1, contradiction.
Inductively, for some d < c, t/ is the head of a directed path of length greater than 2r(a — d)
which is contained in UL<* Z%. The result now follows with b = d. (The base case, t = 2, for
this induction is of course identical to the case where b = a above.)

Let & denote the number of paths of length exactly 2r(t — b) contained in UlZl %i- ft
follows that



Now it follows from (6) that & is dominated stochastically by the number of directed
paths rjb of length 2r(t — 6) in the random graph Gm^h^p.

We prove in an appendix that

/ e 2 \ r ( < - 6 ) 200r4*2

(7) Pr(f/6> — m) < , KKt-1.
\2rJ m ~" ~~

Hence
f-i 'e^N* < 200r4*3

m
and the lemma follows. D

If \Yt\ is small compared with m then we can show that \Xt+i\ < ^\Xt\ with high
probability.

Lemma 2 / / \Yt\ < 2 ( g ) * m and \Xt\ > 2m t/ien

/or some constant a > 0.

Proof
We can proceed somewhat similarly to Lemma 2.2 of [CRT]. Let ft = 2 f |M and assume

I J 11 S: pm. Juet
JEJ. =^ "i jgr t ^y$ i A^y ^ ^ j V vi Ĵ t ̂  ^ t a n d yz \z. xS r

and
X't = {xeXt-Zt:3z€ Z't such that zx e E).

Then clearly X t+i CXt- (Zt U Xt'). Now \i z £ Zt we have

G Zt') > (1 - p)(1+«m > .236...

and since the events {z € Z't} for z G Zt are independent we have

Pr(|Z;| < \m) < e-°'m for some a' > 0.

(Here we use the fact that the tails of the binomial distribution are exponentially small.)
On the other hand, for x G Xt — Zt we have

Pr(x * XI | |ZJ| > | m ) < (1 - p)^m < .81

and since, given ZJ, the events {a: G ̂ } for x € Xt — Zt are independent

Pr(|X;| < ±-\Xt\ | |Z;| > im) < e-a"m for some a '> 0.
10 5



The result follows. D
Now let / = R°6io/9nl — rn}lA (since p < (logn)"7). For there to be more than /

executions of the main loop of MPG we must have

— I m for some t < I

or

©• m and \Xt+i\ > — \Xt\ for some t < I.\Yt\ < 2

But, by Lemmas 3.1 and 3.2 the probability of one of these events is at most

200r4/4

(8) h /e am = O((logn) ).
m

Suppose now that r < / iterations of the main loop of MPG suffice. Let A = A(r) = the
length of the longest directed path in U[=i Z%* Clearly the execution of Statement C of MPG
requires at most A/2 iterations of PARALLEL-GREEDY. But

Pr(3r < / : A(r) > 3/) <

<

Together with (8) we have

Pr(MPG requires more than (r+f) log10/9 n iterations of PARALLEL-GREEDY) =O((log n)"3).

Hence
(9)Pr(PARALLEL-GREEDY requires more than (r + |) logs / 4n iterations ) =O((logn)~3).

Now it is shown in [CRT] that
(10) Pr(PARALLEL-GREEDY requires more than ^ ^ f iterations)=O(l/n).

It follows immediately from (9) and (10) that we can write

(11) T(n,p) < clogn for some absolute constant c > 0, provided p < (logn)"7.

We now consider p > (log n)~7. For this we introduce another modification of PARALLEL-
GREEDY which we call MPG2. Let m' = \p-2].

Algorithm MPG2
begin X := [n]; GIS:= 0;



while \X\ > m' do
A: begin

Z := min{m', \Z\} lowest numbered elements of X\
run PARALLEL-GREEDY to completion on Z and
let A be the independent set constructed;
X:=X-T+{A);
GIS:=GIS UA

B: end
end

One can see as for MPG that MPG2 constructs the LFMIS of G and requires at least as
many iterations as PARALLEL-GREEDY.

We will assume from now on that p~2 > (logl/p)7. This is true for p < .001. For
p > 0.001 we know that with probability 1 — o(l/n) the size of GIS is less than say 2 log6 n
(6 = —-) and since PARALLEL-GREEDY finds at least one new member of GIS at each
stage, it requires O(logn) iterations when p > 0.001.

Let a denote the number of iterations of the main loop A-B of MPG2. Define Xt, Ytj Zt in
analogy to MPG. Next let £t, t = 1,2,..., <r denote the number of iterations of PARALLEL-
GREEDY required for the tth execution of A-B, and let (t = 0 for t > a + 1.

(12)

Now let oro = gii7F + 1 a n d n o t e

(13) £(Ct)<clogl/p, t = l , 2 , . . . n .

(Actually E((a) = Em»{T(m",p)) where m" < m is a random variable. Clearly T(m'\p) <
T(m,p) always.)

We will show that
(14) Pr(<7 > a0) < -.

Hence

E(t(t) = E{f:Ct) + E( £ Q

t=i

< (70clogl/p + 1
= O(logn)

We will therefore have finished the proof of our theorem once we have completed the
Proof of (14)



We will show in the appendix that if t < a, b = j ^ - , £ > 2, a = logfe(m'p + 1) — 2 log6 logc(m
7p +1)

( »-Zh t <? m#p+l
then

(15)

Thus jfxeXf — Zt and £0 = 4/w"?ltiiu^ t^ ien

- 4(loge(m'p+l)F
otherwise.

1 _

1 f°°
< + / -

to
= — + 2pe$ +

to P2

< P2/3.

Hence if \Xt\ > m' then
(16) E(\Xt+1\\\Xt\)<p2<3\Xt\.

So if we define xt = \Xt\ for i < a and #* = 0 otherwise, then

(17) E(xt) <

This is true for t = 1 and assuming that it is true for t we have

Jb=O
= ib) by (16)

and (17) follows. Note that the argument here works regardless of t < a or t >
It follows from (17) that

< -

n
and so

and (14) follows.

1_
n
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APPENDIX
Proof of (7)

We first note that

E(m)=( m(<"6) Vr(<-6)

Km} \2r(t-b) + l)P

and so, since t2 = o(m) in out range of interest,

(i) ^R{Trit~b) ~ Eivb) ~ m&2rit~b

Furthermore, where s0 = 2r(t — 6) and m0 = m(t — 6), we have

(2) E(Vb(Vb - 1)) < E(Vb)(E(r,b) + g 1 ± (2l* J (5Q _;_ ^

In the summation s denotes the number of edges that a general path of length so has in
common with a given fixed such path, / denotes the number of subpaths made up by these
common edges.

^ X J . Then

_ (s0 — s — 2l)(s0 — s — 2 / —

m 2/(2/ + l)(m0 - s0 + s + I + 1) - m0'

But since t3 = o(m) we have from

m °
5=1

50-1

5=1

where
V50—5/ — 8

Observe now that
^541 so — s ^ o 2

v, (m0 - s0 + s + l)p ~ mop

Also Vi < ~ . We deduce then that

10



and hence

TYl 771

Now the Chebycheff inequality yields

p2
(l.)« ifo>2(—)-.

~ a2m V2ry " V2r^
Putting a = (f^)'o/2 yields (7). D

Proof of (15)
Now At is the set of vertices picked by the ordinary sequential greedy algorithm for

finding a maximal independent set. Assume without loss of generality that t = 1 and
S = {si = 1,52,.. •, Sjt} C [m']. Then, where $*+i = m' + 1,

< ( i -

Hence

= k) <

Let now A = m'p + 1 and k = log6 A — 2 log6 logg A — logt ^, £ > 2. Assume first that

£ ) > - We then have

m'-k

y
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