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Abstract

Discovering underlying structure from co-occurrence data is an important task in
many fields, including: insurance, intelligence, criminal investigation, epidemiology,
human resources, and marketing. For example a store may wish to identify underlying
sets of items purchased together or a human resources department may wish to identify
groups of employees that collaborate with each other.

Previously Kubica er. al. presented the group detection algorithm (GDA) - an
algorithm for finding underlying groupings of entities from co-occurrence data. This
algorithm is based on a probabilistic generative model and produces coherent groups
that are consistent with prior knowledge. Unfortunately, the optimization used in GDA
is slow, making it potentially infeasible for many real world data sets. For example,
in the co-publication domain the MEDLINE database of medical publications alone
contains over 2 million papers published within just a 5 year period, 1995-1999 [14].

To this end, we present k-groups - an algorithm that uses an approach similar to
that of k-means (hard clustering and localized updates) to significantly accelerate the
discovery of the underlying groups while retaining GDA's probabilistic model. In ad-
dition, we show that k-groups is guaranteed to converge to a local minimum. We also
compare the performance of GDA and k-groups on several real world and artificial data
sets, showing that k-groups’ sacrifice in solution quality is significantly offset by its in-
crease in speed. This trade-off makes group detection tractable on significantly larger
data sets.
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1 Introduction

Co-occurrence data is an increasingly important and abundant source of data. This type
of data has long been important in the social sciences, marketing, and the government
intelligence community. More recently it has become a topic of increasing interest in
computer science for such tasks as: analysis of text documents [2, 4, 10], analysis of
internet content and structure [8], and collaborative filtering [1, 3, 16].

In one general form the input consists of a series of links. Each link is a set of
entities that have been joined by some event or relation. Table 1 shows example links
from the co-publication domain. Each paper defines a single link containing its au-
thors. Similarly, links could be formed from such events/relations as: co-occurrences
in purchases (market basket analysis), co-occurrences at meetings, or direct phone con-
versations. It is important to appreciate that our definition of a link may vary from other
usages, such as a link on a webpage. We do not assume any directionality or restrict
links to contain a fixednumber of entities. Depending on the domain links may contain
noise or even be pure noise (sets of unrelated entities).

One important task is the identification of underlying structure buried within large
amounts of noisy link data. Many algorithms have been proposed to find different types
of structure from this type of data. We discuss these algorithms and their relation to
this work in the related work section. Below we examine the group detection algorithm
(GDA), an algorithm that attempts to find underlying groups of entities given link and
demographic data [13]. GDA is based on a probabilistic generative model, in the form
of a Bayesian network, that assumes that links are the result of underlying groups.
Qualitatively GDA has been found to produce groups that are consistent with prior
knowledge. Unfortunately GDA makes use of heuristic optimization techniques that
may be slow, making it potentially infeasible for many real world data sets that may be
large. For example, in the co-publication domain the MEDLINE database of medical
publications alone contains over 2 million papers published within just a 5 year period,
1995-1999 [14]. Domains such as criminal intelligence and market basket analysis
present the possibility of even more daunting amounts of data.

To this end we propose k-groups, an algorithm that uses a probabilistic model sim-
ilar to GDA but uses localized updates to improve both speed and convergence proper-
ties. We show that k-groups is guaranteed to converge to a local minimum and compare
its performance to that of GDA on several real world and artificial data sets. We show
that k-groups’ sacrifice in solution quality is significantly offset by its increase in speed.
This trade-off makes group detection tractable on significantly larger data sets.

The rest of this paper is organized as follows. In section 2 we introduce our nota-
tion. In section 3 we formally describe the group detection algorithm and input data
sets. In section 4 we provide additional notation. In section 5 we formally describe the
k-groups algorithm and prove that it converges to a local minimum in a finite number
of steps. Sections 6 and 7 examine the relative performance of GDA and k-groups on
real world and artificial data respectively. Finally, related work and its relation to GDA
and k-groups is discussed in section 8.



PAPER ID SET OF ENTITIES

KGROUPS  {J KUBICA, A MOORE. J SCHNEIDER}

GDA {J KUBICA, A MOORE, J SCHNEIDER, Y YANG}
CGRAPH

Table 1: Example links from a co-authorship domain. Each row (paper) is a single link
containing its authors as entities.

ENTITY TITLE AFFILIATION
J KUBICA  STUDENT CMU
A MOORE PROFESSOR CMU

Table 2: Example demographics from a co-authorship domain.

2 Notation

We begin our discussion by introducing some notation. The input data is assumed to
contain Np unique entities. We denote the set of all entities as & and a single entity as
e; € &. The input data consists of Np links, each of which is a subset of entities. A
single link is denoted L; C & and contains |L;| entities. The entire set of links is denoted
as LD. Finally we are attempting to find K groups. We denote a group as g; C & and the
set of all current groups as G. The subscripts on e, L, and g are often left off for clarity.

As stated above, links can contain noise or be entirely noise. We say that a link
contains noise if the link L was generated by some group g and there is some entity
e € Lsuchthat e ¢ g. In this case we break down the link size as |L| = Mg+ Mg, where
M is the number of entities in the link that are also in the generating group g and My
is the number of entities that are random noise (i.e. not in g).

Below we also make extensive use of the fact that the logarithm is monotonic.
Therefore maximizing log(X) is equivalent to maximizing X itself.

3 The Group Detection Algorithm (GDA)

The group detection algorithm (GDA) uses maximum likelihood estimation to find
groupings of entities given two input data sets [13]). The first data set is the demo-
graphics data set, which contains all the entities under consideration and their demo-
graphic information. The word “demographic” should not be interpreted too narrowly
as it can include any information available about that entity. Table 2 shows example
demographics from the co-publication domain, including the author’s title and affilia-
tion. The second data set is the link data set, which is just a set of records specifying
observed links. This data set can also be viewed as a sparse N x Np matrix where
there is one column for each entity and one row for each link. The entries in this matrix
indicate whether a given entity is in a given link.



The below formulation of GDA follows the one given by Kubica et. al. and uses
the same models [13].

3.1 Generative Model and Probabilities

The basis of GDA is a probabilistic generative model shown in Figure 1. The model is
a Bayesian network where the ovals indicate parameters to be learned from data. The
five primary components of this model are:

1. the demographics data set (DD) described above;
2. the link data set (LD) described above;

3. the chart (CH), which indicates which entities belong to which groups. This data
structure can be pictured as a sparse Np x K matrix where the columns indicate
the groups and the rows indicate the entities. Note that unlike traditional clus-
tering models, an entity can simultaneously be a full member of several groups
(have a “one” in several columns);

4. the demographic model (DM), which defines a recipe for placing a entity in a
group based on demographic information; and

5. the link model (LM), which defines a recipe for link generation. The link model
contains two parameters for each link type: the probability a link of that type is
completely random (innocent), Py, and the probability that an entity in a link of
that type is noise (random), Pg. These probabilities can be learned or specified
by the user. Below we treat these probabilities as given.

The above components provide a recipe for generating the data from the model. Using
the decomposition provided by the Bayesian network in Figure 1 we can examine the
steps of data generation:

P(DM,DD,CH,LM,LD) = P(CH|DM,DD)P(LM)P(DM)P(DD)P(LD|LM,CH)
(M

The first step of data generation is the formation of groups. Each group has its own
demographics model, a probability density function that indicates the probability an
entity is a member of the group given its demographic information. Each entity/group
membership is considered with the demographics model indicating the probability the
entity is a member of the group given its demographics. P(CH|DM, DD) represents the
probability that all of the group memberships in the chart occur, or do not occur, given
all the demographic information and the demographic model for each group.

The second step of data generation is the formation of links from the link model and
groups. The model assumes that links are generated individually by choosing a group g
and uniformly sampling members from it. The amount of noise in a link is determined
by the link model. Again, we say that a link L contains noise if it was generated g and
there is some entity e € L such that e ¢ g. During link generation, this corresponds to
choosing each entity in the link directly from g or with some probability Pk as noise
(from § — g). Consequently links are noisy reflections of the underlying groups. In

|8}



Demographics Demographics
Model Data

Link
Data

Figure 1: Probabilistic model of group membership and link generation.

addition, with probability P; a link can be completely random. A completely random
link is one where all of its entities are chosen uniformly from &. Since the links are
i.i.d., we can calculate log P(LD|LM,CH) as:

N
log P(LD|LM,CH) = Y log P(L;|LM,CH) 2)

i=1

where P(L;|LM,CH) is the probability of an individual link given the link model and
the chart. If we make the simplifying assumption that the priors for each group gener-
ating a link are equal, we can define P(L|LM,CH) as:

P 1-P
P(LILM,CH) = ((Mf + 'y P(L|g,LM)) 3)
Izl 8€G

P(L|g,LM) is the probability of link L given that group g generated it. Using the
assumption of uniform sampling (without replacement), P(L|g,LM) is defined as:

(Pr)"R (1 — PR)Me (Mo T )
DO

Again Mg is the number of people in the link that are members of group g and M, is
the number of people in the link that are not members of g.

One important approximation is shown in (5). This creates the concept of a group
“owning” a link and both allows the distribution of the logarithm and can lead to sig-
nificant computational speedups.

Cy)

P(L|g,LM) = (

log(P(L|LM,CH)) = log (max (NL:, —]—jK—Q max(P(L|g,LM))> > %)
(|L|) &
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Finally, we do not consider the contributions of P(LM), P(DD) or P(DM) to (1).
Formally, we consider all DMs and LMs to be equally likely and accordingly ignore
their contributions to (1). P(DD) can be ignored since it will be the same for all pa-
rameters.

3.2 Optimization

The actual maximum likelihood estimation is accomplished by using noisy hill climb-
ing, a heuristic optimization method. The goal is to find the chart, demographics model,
and possibly link model that maximize the likelihood as given by the entire Bayesian
network in Figure 1. This is done by trying different moves (adding an entity to a
group or removing an entity from a group) and evaluating the change in the loglikeli-
hood. The max approximation shown in (5) was used to achieve significant computa-
tional speedups by restricting the number of groups for which the likelihood had to be
evaluated when evaluating a move.

4 Additional Notation

Before we introduce the k-groups algorithm, we first introduce some additional nota-
tion and make a few additional observations for use below. We define the world group,
Gw = {ej : 1 < j < Np}, to be the group of all entities. Thus the probability of a
completely random link becomes:

P
P(L.L isRandom|LM) = o~ = PP(L|Gw.LM) (6)
(|L{)
We can then define Q = {g1,...,gk,Gw } as the set of all possible link generators/owners.

In other words, a link can be created by any of the K groups or be completely random.
Finally, we observe that the probability of a group, g € Q, having generated a link can
be written as: R
P(LglM)={ @
(I*PI)PI((LU‘M-K) if g # Gw

5 The K-groups Algorithm

The k-groups algorithm focuses on the task of learning the underlying groups directly
from the link data. That is to say that it optimizes P(LD|LM,CH) and does not con-
sider the demographics information in the inner loop. Intuitively k-groups optimizes
P(LD|LM,CH) in a fashion similar to that of the k-means algorithm. Specifically, it
alternates between two greedy steps:

1. Determine group ownerships given the groups.

2. Determine the groups given group ownerships.



The key difference between k-groups and k-means algorithm is that groupings in
the k-groups algorithm are not disjoint and can in fact have significant overlap. This
approach can still be adapted by noting that the max approximation in (5) forces groups
to “own” links. If we define LG, to be the set of links “owned” by a group g € Q, we
can re-express log(P(LD|LM,CH)) as:

log(P(LDILM,CH)) = Y1e1p geq 10&8(P(L,g|LM))

®)
= Ygealog(P(LG; A g|LM))

where
log(P(LGy A gILM)) = >, log(P(L.g|LM)) ©)
LELG,
In step 1 we can partition the links into sets owned by the groups so as to optimize
log(P(LD|LM,CH)) and in step 2 we can assign entities to groups so as to optimize
log(P(LD|LM,CH)). The k-groups algorithm becomes:

Until convergence:
1. For each link, determine which group owns it.

2. For each group g, determine which entities form g so as to optimize
P(LG,|g,LM).

5.1 Determining Group Ownerships

The first step of the k-groups algorithm is to determine which links each group owns.
This can be done quickly with a single linear scan through the links using the approxi-
mation in (5):
argmax ;
LG, ={L:g= P(L,g'|LM 10
g=1{L:¢ g,gQ(,gl )} (10)

5.2 Updating the Groups

The second step of the k-groups algorithm is to find the “optimal” groups given the
links they own. Since we are considering only the links owned by the current group
we wish to optimize P(LG, A g|LM). Note that by combining equations (4) and
(9) we can examine the effect of adding or removing a single entity to the group on
log P(LG,,g|LM). Let A% (e) be the change in log P(LGy, g|LM) if we add entity e to
group g and Af (e) be the change in log P(LG,, g|LM) if we remove entity e from group
g. Then by algebra:

(LT, [loe (Fei ) —tos (#5) | ;s
lf e 8

M) =4 Frebiee [tog (1722 ) — tog (fiess )| an

0 if ecg



Pr s N—lgl+1
LeL(i:eeL log ( IAPR) ~ LELG, Iog( |;| )
if ecg
by N—|g|-Mg+1
AR(e) = tLelGypedt IOg( e ) (12)
0 if ed¢g

Using these observations we can define a second, inner greedy procedure to opti-
mize P(LG,|g,LM):

1. For each e € LG, calculate A% (e) and A% (e).

2. If there exists some entity e such that A% (e) > 0 (or Af(e) > 0) then add (or
remove) the entity that would lead to the greatest improvement.

A R ;
3. If Ay (e) < 0and Ay (e) <0 Ve, terminate.

This procedure greedily adds/removes entities until it no longer results in an im-
provement. This approach has three major computational advantages. First, we do not
have to recalculate P(LG,. g|LM) for each change that we wish to evaluate. This allows
us to rapidly try each entity exhaustively. Second, k-groups only needs to consider a
subset of links for each group. Finally, k-groups only needs to consider a subset of
entities for each group. Specifically, k-groups only needs to consider adding entities
that are not in the group and are in at least one link in LG, and removing entities that
are currently in the group.

Finally it is important to appreciate that this search is localized and therefore may
not find groups that would optimize the overall likelihood of the data. It is relatively
easy to construct a case where Ag(e) < 0, but adding e to g will increase the overall
likelihood by causing g to own new links. Such a move will not be found by the above
procedure.

5.3 Demographics Information

The k-groups algorithm does not currently make use of demographic information dur-
ing the course of the localized updates. Rather it can learn a demographic model after
it has finished building the groups. It is possible that incorporating the demographic in-
formation into the localized updates may lead to further improvements in performance.
We leave this investigation as future research.

5.4 Proof of Covergence

One important advantage of the k-groups algorithm is that we can show that it con-
verges to a local optimum in a finite number of steps. Formally we state this as:



Theorem: Upon termination P(LD|LM,CH) can not be improved by any
one of the following three changes: adding a single entity to a group,
removing a single entity from a group, or assigning a link to be owned by
another group.

Intuitively this holds because steps 1 and 2 above use these three changes to maximize
P(LD|LM,CH). We provide a formal proof below. We use as the termination criteria
that neither step results in an improvement of P(LD|LM,CH).

Proof: First we prove that upon termination P(LD|LM,CH) can not be im-
proved by any one of the above three changes. After step 1, the links have
been assigned to groups so as to optimize P(LD|LM,CH). This follows di-
rectly from the update given in (10). Thus after step 1 if the groups remain
fixed, no change in link ownership will improve P(LD|LM,CH). Similarly
step 2 maximizes P(LD|LM,CH) by adding entities to or removing enti-
ties from groups. This follows directly from the update rule presented in
section 5.2. Thus after step 2 if the link assignments remained fixed, there
is no single entity that can be added to or removed from a group so as to
improve P(LD|LM.CH). Further, both steps will only make a change if it
leads to an improvement in P(LD|LM,CH). Thus if neither step results in
an improvement of P(LD|LM,CH), then neither step resulted in a change
(both the groups and link assignments remain fixed) and the algorithm is
at a local optimum.

Next we prove that this optimum will be reached after a finite number
of steps. Consider each possible set of link ownerships and group mem-
berships as a state. There are a finite number of states, O(2(NPK) gMe),
As shown above, each iteration of k-groups (steps 1 and 2) increases
P(LD|LM,CH) or leads to termination. Thus each iteration of k-groups
transitions to a better state or terminates. Since there are a finite number
of states, the algorithm will terminate in a finite number of steps. Q.E.D.

While k-groups is guaranteed to converge in a finite number of steps, this number
could be as large as O(2(NPK)KNL) . Despite this upper bound, we have empirically
found that the algorithm often converges relatively quickly.

5.5 Avoiding Local Minima

Although k-groups is guaranteed to converge to a local minimum, early results showed
that, as often is the case, this minimum is not likely to be the global minimum. To com-
bat this, we use two simultaneous strategies for “getting unstuck” from local minima.
Both serve to preturb the solution before the inner k-groups loop is rerun. Conse-
quently, each convergence becomes a single iteration of the larger k-groups algorithm.

The first strategy is similar to the approach used in Split-Merge EM [18]. Specif-
ically two groups are chosen such that merging them causes the smallest decrease in
likelihood. We merge two groups by merging their sets of links and creating a new
single group to account for these links. The two groups are merged into a single group,



DATA SET Np Ny K

LAB 115 94 20
INSTITUTE 456 1738 100
DRINKS 136 5325 50
MANUAL 4088 5581 25

CITESEER 104801 181395 50

Table 3: Summaries of the data sets.

which replaces one of the original groups. The other group is simply replaced by a
group filled with random entities.

The second strategy is to add a small amount of noise to a random number of groups
in the solution. Specifically with some fixed probability, P,, we chose to add noise to a
group by iterating through the Np entities and adding/ removing them with some fixed
probability, Pj;p,. In the below experiments we chose these probabilities heuristically
as Pg = % and Pflip = ?V—:

6 Comparison with GDA on Real World Data

The key advantage of the k-groups algorithm is that by using localized updates it
finds “better” solutions faster than the simple heuristic optimization used by GDA.
To demonstrate this performance we tracked the training set log-likelihood versus the
time spent in the process for both algorithms.

6.1 Data Sets

To test the k-groups algorithm, we used a variety of real world data sets. These data sets
are described below and are summarized in Table 3. These data sets include filtered ver-
sions of the data sets used in [12] and will be available athttp: //www.autonlab.org/

1. The Lab data consists of co-publication links for members of our research lab
and includes as entities all authors.

2. The Institute data is a set of links of three different types (co-publication, com-
mon research interest, and advisor/advisee) that was collected from publicly
available data listed on Carnegie Mellon University Robotic Institute’s web-

pages.

3. The Citeseer data is a collection of co-publication links from the Citeseer online
library and index of computer science publications. Each publication served as a
single link containing its authors. Since entities were represented by first initial
and last name, a single name could correspond to multiple authors.

4. The Drinks data set consists of a series of popular bar tending recipes found
on various websites. Each link consisted of a list of all ingredients (entities)
contained in that drink.



DATA K-GROUPS K-GROUPS GDA TIMES

SET 1ITR. LL TIME TIME SPEEDUP
LAB -726 0.13 145 1163.2
INSTITUTE -18847 16.00 667 41.7
DRINKS -42664 23.25 349 15.0
MANUAL -86509 9.38 5033 536.9
CITESEER -4763400 1319.00 N/A N/A

Table 4: The average loglikelihood after one iteration of k-groups and the average time
(in seconds) for k-groups and GDA to reach that loglikelihood.

5. The Manual (Webpages) data is a set of links created by a human who manually
read a set of public web pages and news stories related to terrorism and subjec-
tively linked entities mentioned in the articles. Each link was created by hand
from a single relation, such as memberOf or funded, and contained the entities
for which this relation was mentioned.

6.2 Results

Both algorithms were run on all data sets using identical parameter settings, P; = 0.2
and Pg = 0.2. The parameters were set heuristically so as to allow a reasonable amount
of noise. Group sizes varied among the data sets as: 20 for the Lab data, 100 for the
Institute data, 50 for the groups data, 25 for the manual data, and 50 for the citeseer
data.

Figure 2 shows the results of the runs. Since both GDA and k-groups are random-
ized algorithms, they were run multiple times on each data set. For the Lab, Institute
and Drinks data each algorithm was run 24 times. For the Manual and Citeseer data
they were each run 8 times and 1 time respectively. To this end, at each time each
plot indicates the mean loglikelihood and the bounds of the 95% confidence interval on
performance. No confidence intervals were included on the Citeseer results.

As the results illustrate, k-groups can offer a significant speedup. As the size of
the data sets increase (number of links and entities) this speedup can become more
pronounced and also more important. For example, on the Citeseer data k-groups was
able to converge to a local minima in under 22 minutes that was better than any solution
found by GDA within 24 hours.

The above results lead to another natural question: “How good is the first local
minima found by k-groups?” For each data set we examined the average loglikelihood
after a single iteration of k-groups (after it converges to the first local minima) and
the average time it took to execute this iteration. This was then compared to the GDA
results. Specifically we asked: “How long on average does it GDA to reach this log-
likelihood?” The results are shown in Table 4. Entries marked with N /A indicate that
GDA did not find a solution as good as the one from kGroup’s first iteration in the time
allotted. As shown a single iteration often performs relatively well and is much faster
than finding a equally good solution using the heuristic optimization technique.

10
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Figure 2: Loglikelihood versus time for (A) Lab, (B) Institute, (C) Drink, (D) Manual,
and (E) Citeseer data. Larger values on the y-axis indicate better performance at a

given time.

7 Comparison with GDA on Artificial Data
The above results demonstrate a significant computational advantage for the k-groups

update. To further explore this, we used artificial data to examine how the algorithms
perform as various factors (number of links or groups) change.
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7.1 Data and Evaluation

The data consisted of links generated from the above GDA model and known groups.
At the start of each test the groups were generated at random such that each group
had an average of 10 entities. Links were then created using a fixed link model with
Pr = 0.2 and P; = 0.2. The number of links, groups, and entities were given for each
run.

Since we knew the true groups that generated the data, we can evaluate the learned
groups by asking: “If we had to represent the true groups as the learned groups, how
many errors would we make?” In other words, for each true group g we found the
learned group ¢ that best approximated it and counted the number of errors. The sum
of these errors was the overall score of the learned groups. Formally, we define the
error between two groups as the Hamming distance:

ERR(g.8) = |g|+ 18| —2lgné| (13)

and the overall error as:
K

ERR = min ERR(g, §) (14)
k=1 &

7.2 Results

It should first be noted that on most data sets it is likely that GDA will eventually out-
perform k-groups. K-groups uses a localized update and may never find the global
optimum. In contrast, GDA uses an update that tests a variety of moves and there-
fore will most likely eventually find the global optimum. Despite this, the k-groups
algorithm may often be able to find good solutions significantly faster than GDA and
therefore produce good approximations in a tractable manner. Accordingly a key factor
examined below is the time it takes GDA to “catch-up” to k-groups. We refer to this
time as the carch-up time and define it formally as the latest time when k-groups had an
average performance better than that of GDA. A larger catch-up time indicates better
initial performance of k-groups relative to GDA.

Increasing the number of groups should negatively effect both algorithms simply
because it adds additional information to be learned. Figures 3 (A), (B), and (C)
demonstrate the effect of the number of groups on the algorithms, illustrating the av-
erage error versus the wall clock time with 20, 50, and 100 groups respectively. All
of the runs use 500 entities and 10000 links. As expected, increasing the number of
groups negatively impacts both algorithms. Further, increasing the number of groups
increased the catch-up time. This indicates that as the number of groups increases so
does k-groups’ initial advantage.

In contrast to the number of groups, both GDA and k-groups can be expected to
benefit from the existence of additional links, because the links provide more data.
Figures 3 (D), (E), and (F) demonstrate the effect of the number of links on the algo-
rithms, illustrating the average error versus the wall clock time with 5000, 20000, and
40000 links respectively. All of the runs use 500 entities and 50 groups. As expected,
the number of links positively affected both algorithms performances. Again, increas-
ing the number of links increased the catch-up time. This observation agrees with the

12
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Figure 3: The average error versus time as the number of groups and number of links
is varied. (A)-(C) show results for a varying number of groups: (A) 20, (B) 50, and (C)
100. (D)-(F) show results for a varying number of input links: (D) 5000, (E) 20000,
and (F) 40000. Results indicate errors; lower values are better.

key performance gain of k-groups. Specifically, k-groups uses hard clustering and lo-
calized updates. Therefore we would expect that the algorithm would scale better as
the number of links increases.

From the above results we can see that while increasing either of two key factors
(number of groups and number of links) can have different effects on the performance
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of both algorithms as a whole, they both lead to better performance of k-groups relative
to that of GDA. We would expect that as these factors continue to grow, the k-groups
algorithm will scale more gracefully than GDA.

8 Related Work

The k-groups algorithm is an improvement of the GDA algorithm [13]). In addition
there are a variety of similar algorithms that extract different types of structure from
link data, including: underlying structural graphs [11, 12, 14], hubs and authorities
[8], latent class labels [4, 10], latent dirichlet models [2], and other Bayesian models
[3, 5, 7, 17]. We discuss these models and their relations to GDA in more detail below.

Underlying structural graph algorithms attempt to build a graph model of the data
[11, 12, 14]. The nodes represent entities and the edges capture pairwise relations
between the entities. Unlike GDA, all underlying structure is pairwise and there is no
attempt to discover underlying groups.

Hubs and authorities algorithms find structure and “web communities” from di-
rectional link information, such as the internet links [8]. Where as these algorithms
make explicit use of the directionality, we examine data without directionality, such as
co-publication information.

Latent class label algorithms and latent dirichlet models (LDA) are similar to GDA
[2, 4, 10]. They use an underlying generative model to explain link creation and the
latent class variable can be viewed as a group. In fact Cohn and Hoffman present a
model for document connectivity, where document terms play a role similar to our
demographic information [4]. Despite this, the type of “group” returned by these algo-
rithms is different. They are effectively clustering the links themselves and using prob-
abilistic models of the entities’ occurrences in the links to measure the likelihood that a
group (or groups) generated the link. In contrast, by design GDA returns groupings of
entities with definite memberships. Although it may be possible to adapt these meth-
ods to return groupings of entities from their probabilistic models, these algorithms are
not trying to find this type of grouping and the best approach to this adaptation is not
immediately clear.

Finally, other probabilistic approaches, such as probabilistic relational models and
Bayesian networks, have be used to model this type of data [3, 5, 7, 17]. For example,
Tasker et. al. propose a clustering approach based on the relational aspects of the data
[17]). While they also focus on clustering the entities, they use a latent class model.
This model restricts assignments such that an entity can only be a “full” member of
a single group. Therefore unlike GDA this approach does not allow an entity to fully
belong to several different groups.

Although GDA'’s approach is similar to some of the algorithms mentioned above,
GDA is inherently trying to extract a different type of structure from the data. Specif-
ically, GDA tries to extract underlying groupings of entities with definite group mem-
bership. Our model is thus designed to easily and directly capture the group mem-
bership nature of the data, including the fact that a person can be a member of many
groups.

The k-groups algorithm is similar in approach to, and inspired by, the k-means
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algorithm [6]. Both algorithms use a “hard clustering” approach for assigning group
membership and use only these member points to update the group. Despite this simi-
larity, the two algorithms differ significantly on their domains and optimization criteria.
In addition, the use of a split/merge operation was proposed by Ueda et. al. for use in
EM optimization of mixture models [18].

When rephrased as the problem of assigning link ownerships to groups, our work
becomes similar to approaches that attempt to cluster this type of information by clus-
tering the links themselves [2, 9, 15]. There are several key differences between these
approaches and our own. First, we are using a relatively novel underlying generative
model. Second, we are primarily interested in the resulting “clusters” of entities, which
we restrict to be hard clusters representing group memberships. Finally, k-groups uses
a novel greedy approach that is designed for both this generative model and the “hard”,
but nonexclusive, assignments of entities to groups.

9 Conclusions

Above we presented k-groups, an algorithm that uses localized updates to improve
both speed and convergence properties while still using GDA's probabilistic model.
We motivated the derivation of the algorithm using the same properties as k-means and
showed k-groups is guaranteed to converge to a local minimum. Finally we compared
k-groups performance to that of GDA on both real world and artificial data sets, show-
ing that k-groups’ sacrifice in solution quality is significantly offset by its increase in
speed.

There are several remaining questions that we plan to investigate in future research.
The first is to learn K while learning the underlying groups by using a measure such as
AIC or BIC. The second is to incorporate the use of demographics information into the
localized update steps.

Finally, the results on the artificial data sets indicate that given enough time GDA
will eventually catch-up to and surpass k-groups. This suggests several hybrid ap-
proaches. K-groups can be used to do initial optimization and the learned chart can
then be feed into GDA for further refinement. Additionally, it might be beneficial to
alternate the k-groups and GDA optimization step. Thus, in future research we hope to
investigate how best to combine these optimization schemes.
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