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Abstract

The problem of efficient multirobot coordination has risen to the forefront of robotics research in
recent years. Interest in this problem is motivated by the wide range of application domains demanding
multirobot solutions. In general, multirobot coordination strategies assume either a centralized approach,
where a single robot/agent plans for the group, or a distributed approach, where each robot is responsible
for its own planning. Inherent to many centralized approaches are several difficulties. The key advantage
of centralized approaches is that they can produce globally optimal plans. While most distributed
approaches can overcome the obstacles inherent to centralized approaches, they can only produce
suboptimal plans. This work presents the philosophy and traces the development of "TraderBots": a
market-based architecture that is inherently distributed, but also capable of opportunistically forming
centralized sub-groups to improve efficiency. Robots are self-interested with the primary goal of
maximizing individual profits. The revenue/cost models and rules of engagement are designed so that
maximizing individual profit has the benevolent effect of moving the team toward the globally optimal
solution.
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1. Introduction
In this digital age, the demand for technological solutions to increasingly complex problems is

climbing rapidly. With this increase in demand, the tasks which robots are required to execute also rapidly
grow in variety and difficulty. A single robot is no longer the best solution for many of these new
application domains; instead, teams of robots are required to coordinate intelligently for successful task
execution. For example, a single robot is not an efficient solution to automated construction, urban search
and rescue, assembly-line automation, mapping/investigation of unknown/hazardous environments, and
many other similar tasks. Multirobot solutions are paramount for several reasons:

1. A single robot cannot perform some tasks alone, a team is required for successful
execution. While in many cases it may be possible to design a single robot capable of
executing all tasks, many problems are better suited to team-execution. For example, a single
robot can accomplish moving heavy objects if the robot is designed appropriately. However,
in many cases, it is simpler to design a team of robots that cooperate to move the heavy
objects efficiently. Other application domains such as robotic soccer require a team of robots
and cannot be executed with a single robot.

2. A robot team can accomplish a given task more quickly than a single robot can by dividing
the task into sub-tasks and executing them concurrently in application domains where the
tasks can be decomposed. Application domains such as mapping of unknown areas and
searching for landmines require careful coverage of a large area. Problems such as these can
be easily decomposed into components such that a team of robots can divide the workload and
execute sub-portions of the task concurrently, thus completing the overall task more
efficiently.

3. A team can make effective use of specialists designed for a single purpose (for example,
scouting an area, picking up objects, or hauling payload), rather than requiring that a single
robot with versatile capabilities be a generalist, capable of performing all tasks. This allows
more flexibility in designing the robots since a robot that needs to haul heavy payloads can be
built with a heavy base for stability and strength, while a robot required to provide visual
feedback can be designed to be more agile and move around with greater speed.

4. A team of robots can localize themselves more efficiently if they exchange information
about their position whenever they sense each other. This allows more robust localization
capabilities. In an environment where a single robot would have to rely on landmarks of
some sort for localization, a team could have the added advantage of being able to benefit
from the localization information of their teammates.

5. A team of robots generally provides a more robust solution by introducing redundancy,
and by eliminating any single point of failure as long as there is overlap between the robots'
capabilities. For example, a team of robots equipped with cameras, will be a more reliable
system than a single robot with a camera for constructing vision-based maps of a dynamic
environment because the failure of a single one of the robots in the team will not jeopardize
the entire mission.

6. A team of robots can produce a wider variety of solutions than a single robot can, and
hence a team can opportunistically respond to dynamic conditions in more creative and
efficient ways. Even if a team of robots does not overlap entirely in terms of specialization,
the collective resources of the group can be used in creative ways to solve problems. For
example, if a diagnostic robot loses its camera during operation, another robot with a camera
could aid the diagnostic robot to complete its tasks by providing visual feedback [28].
Similarly, if a rover gets stuck in the mud, one or more of its teammates can assist the stuck
robot by pushing it out of the mud [28].

Thus, for many applications, a team of robots can be used more effectively than a single robot can.
Introduced below are some of the more prominent application domains that would benefit from efficient
coordination of multirobot systems:



Autonomous robot colonies for operations in remote locations:

Many applications in the future (for example extra-planetary exploration) will require a colony of
robots to autonomously execute complex tasks, while humans intervene remotely from time to time to
alter the procedure of operations, remedy a situation beyond the capabilities of the robots, or
coordinate with the robots to accomplish additional goals.

Robotic aids for urban reconnaissance:

Military Operations in Urban Terrain pose fierce constraints and the use of biochemical threats against
both land forces and indigenous population in urban settings is an increasing likelihood. These
conditions place humans in a highly dangerous environment. Robots can enable minimally invasive
and precise operations that reduce these risks. Potential tasks for robotic systems include
minesweeping, reconnaissance, monitoring, and providing communications infrastructure.

Robotic aids for urban search and rescue:

Urban Search and Rescue (USAR) workers have forty eight hours to find trapped survivors in a
collapsed structure, otherwise the likelihood of finding victims still alive is nearly zero. Also, the
mechanics of how large structures collapse often prevent rescue workers from searching buildings due
to the unacceptable personal risk and the added risk to survivors from further collapse of the building.
Furthermore, both people and dogs are frequently too big to enter voids. Robots can make a significant
impact in this domain if made capable of aiding humans in USAR efforts.

Intelligent environments:

Intelligent Environments are spaces in which computation is seamlessly integrated to enhance ordinary
activity. Many familiar environments such as office buildings and schoolrooms are highly likely to
incrementally evolve into intelligent environments. In these environments, automated agents will
oversee optimized utilization of the resources, resolve conflicts regarding resource utilization, and keep
track of maintenance requirements for all resources.

Automated construction:

Automated construction involves the assembly of large-scale structures, such as terrestrial buildings,
planetary habitats, or in-space facilities. Such domains need heavy lifting capabilities, as well as
precise, dexterous manipulation to connect parts together. Future space facilities, characterized by their
immense size and the difficulties of human construction in space will be assembled in part by groups
of autonomous heterogeneous robots.

Robotic educational and entertainment systems:

Robotic toys, educational tools, and entertainment systems are rapidly gaining popularity. Many of
these systems will require coordinated efforts by multiple robots. An example in this domain is robotic
soccer.

Automated production plants:

A growing trend in production plants is automation. In order to increase production, decrease labor
costs, improve efficiency, increase safety, and improve quality in general, more and more industries
are seeking to automate their production facilities. This trend demands efficient and robust
coordination of heterogeneous multirobot systems.

Robotic exploration of hazardous environments:

Exploration of hazardous environments has long been a problem demanding robotic solutions. Some
examples in this category are exploration of extra-planetary regions, exploration of volcanic regions,
exploration of disaster zones, and exploration of minefields.

Robotic cleanup of hazardous sites:

Robots continue to play an important role in cleanup of hazardous sites. Some examples in this
domain are robotic minesweeping, robotic cleanup of nuclear waste, and robotic cleanup of disaster
zones.



• Agricultural Robots:

Many groups involved with agricultural work are now seeking automated solutions to their labor
problems. Due to the long hours, hard physical work in rough conditions, and tedious and repetitive
nature of some of the tasks in this domain, there is a growing decline in the available labor. Spraying
fields, harvesting, moving plant-containers (potted plants), and sorting plants are some such examples.
For many of these tasks, coordinated teams of robotic agricultural machines could provide efficient
solutions.

Thus, for many applications, multirobot systems can improve efficiency. However, simply increasing the
number of robots does not improve efficiency in itself. Thus, the problem of efficient multirobot
coordination has risen to the forefront of robotics research in recent years. The wide range of application
domains demanding multirobot solutions motivates interest in this problem. In general, multirobot
coordination strategies span a spectrum of methodologies ranging from fully centralized systems to fully
distributed reactive systems. A centralized approach entails a single robot planning for the entire group
based on state information gathered from the group, whereas a distributed approach is where each robot is
responsible for its own planning. Inherent to many centralized approaches are difficulties such as
intractable solutions for large groups, sluggish response to changes in the local environment, heavy
communication requirements, and brittle systems with single points of failure. The key advantage of
centralized approaches is that they can produce globally optimal plans. While most distributed approaches
can overcome the obstacles inherent to centralized approaches, they typically produce sub-optimal plans.
Moreover, distributed coordination schemes are often fortuitously cooperative and hence do not allow for
explicit coordination. This limits the capability of the system since the robots are prevented from
performing more tightly coordinated tasks.

To realize the best characteristics from both approaches, we developed a market-based approach,
"TraderBots", that is inherently distributed, but can also opportunistically form centralized sub-groups to
improve efficiency, and thus approach optimality ([31], [10], [11]). Robots are self-interested agents, with
the primary goal of maximizing individual profits. The revenue and cost models and rules of engagement
are designed so that maximizing individual profit has the benevolent effect of moving the team towards the
globally optimal solution. This architecture inherits the flexibility of market-based approaches in allowing
cooperation and competition to emerge opportunistically. The outlined approach is ideally suited to solve
the multirobot coordination problem for autonomous robotic colonies carrying out complex tasks in
dynamic environments where it is desirable to optimize to whatever extent possible.

2. Illustrative Scenario1

A complex multirobot scenario is the problem of robotic exploration of Mars. For the foreseeable
future, mobile robots will serve as the remote sensors and data collectors for scientists. To create an
outpost for such long-term exploration, the robots need to assemble solar power generation stations, map
sites, collect science data, and communicate with Earth on a regular basis. Envision the scenario illustrated
in Figure 1 where on the order of ten robots are sent to Mars, many with different capabilities. Some of the
robots specialize in heavy moving and lifting, some in science data collection, some in drilling and coring,
and some in communication. The rovers have different, but overlapping, capabilities.

The rovers cooperatively search for a location suitable in size and terrain for a base station. Once such a
location is found, rovers with appropriate capabilities form several teams to construct the base station
capable of housing supplies and generating energy. Two rovers carry parts, such as solar panels, that are
too large for a single rover. Complementary capabilities are exploited.

Meanwhile, other rovers begin general exploration of the region. To start, several scouting robots (perhaps
joined by aerial vehicles) quickly survey the region. Scientists on Earth (and perhaps the rovers

1 Motivation for this scenario was obtained from the FIRE team's proposal to NASA for the
"Heterogeneous Multi-Rover Coordination for Planetary Exploration" program.



themselves) identify sites within the region that have high likelihood to contain interesting science data.
Rovers with specialized sensing instruments are sent to investigate. If a particular subtask requires more
intensive scrutiny, additional rovers with appropriate capabilities are brought in. Rover failures are
addressed by dispatching a rover with diagnostic capabilities. The diagnostic rover can use its cameras to
view the failed robot to see if it can be aided in the field, or it may drag the rover back to the base station to
be repaired by replacing its failed modules. In the meantime, another robot with the same (or similar)
capabilities can be substituted, so as to complete the original task with minimal interruptions.

Figure 1: Conceptual Illustration of a Multirobot Martian Outpost (Illustration produced by
courtesy of Jet Propulsion Laboratory)

At any given time, different teams of rovers may be involved in exploration, base-station
construction/maintenance, and rover diagnosis/repair. Many tasks will be time critical, requiring execution
within hard deadlines or synchronization with external events. The teams form dynamically, depending on
the task, environment, and capabilities and availability of the various robots to best meet mission
requirements over time. The rovers negotiate their individual roles, ensure safety of the group and
themselves, and coordinate their actions, attempting as a group to avoid unnecessary travel-time, to
minimize reconfiguration and wait-time, and to prefer more reliable alternatives in cases of overlapping
capabilities. The challenge is to keep all the robots healthy and busy in appropriate tasks in order to
maximize the scientific data collected.

A scenario like this is illustrative of a challenging multirobot application that demands high quality
performance. Hence, a multirobot coordination scheme suitable for an application domain such as this
must fulfill many requirements. The following characteristics describe these requirements for a
coordination mechanism able to successfully execute the motivational scenario:

1. Robustness: Robust to robot failure, or no single point of failure for the system.
This is an important characteristic since many applications rely on continued progress even if
some components in the system fail. The motivational scenario expects that several robots will
malfunction or be destroyed during operation, and still require the overall mission to be completed
in the best way possible given the remaining resources.

2. Dynamic Conditions: Opportunistically optimized response to dynamic conditions.
This characteristic is desirable in general, and required in some domains. Since the scenario
described above involves dynamic conditions, the ability to opportunistically optimize the system
response to these conditions is necessary for efficiency and success.

3. Speed: Quick response to dynamic conditions.
Often in dynamic environments, a key to successful task execution is the ability to respond
quickly to the dynamic conditions. If information always needs to be channeled to another
location for plan modification, conditions can change too rapidly for the planning to keep up.



4. Extensibility: Easily extendable to accommodate new functionality.
A key characteristic to building a generalized system that can evolve with the needs of the
different applications is the ability to easily add and remove functionality as needed. This is
identified as extensibility.

5. Communication: Ability to deal with limited and imperfect communication.
In general, many application domains cannot realistically guarantee perfect communication among
all robots at all times. Hence, any generalized coordination architecture should be robust to
communication failures and limits in range of communication.

6. Resources: Ability to reason about limited resources.
The ability to reason about the limited resources available in a robotic system is very important for
optimization purposes. For example, in the illustrative scenario, it is undesirable to use the only
robot with some very costly science sensor to perform a simple but risky scouting task. Also,
when a robot is assigned a task, the planner must understand the resource requirements for that
task in order to allow efficient task-allocation. The planner must also take into account events
scheduled to occur in the future and the resources that will be required for those events before
committing to any new tasks.

7. Task Allocation: Efficient allocation of tasks.
A key difficulty in coordinating multiple robots is deciding who does what. Thus, the task
allocation mechanism is an important factor in the architectural design. Factors such as robot
capabilities and resources, risk involved with different tasks, and task constraints need to be
considered in order to maximize the efficiency of the task allocation.

8. Heterogeneity: Ability to accommodate heterogeneous teams of robots.
Many architectures assume homogeneity for ease of planning. The coordination problem is more
difficult if the robots are heterogeneous. A successful architecture will be able to accommodate
any team regardless of its homogeneity or heterogeneity.

9. Roles: Efficient adoption of roles.
In many architectures robots are restricted to being able to play only a single role in the team at
any given time, even if they possess the resources to be able to play multiple roles simultaneously.
Efficient role adoption will enable robots to play as many roles as required at any given time based
on resource availability, and also allow robots to change in and out of different roles as conditions
change. Some roles may require the robots to work in tight coordination with other robots.

10. New Input: Ability to dynamically handle new tasks, resources, and roles.
In many dynamic application domains, the demands on the robotic system can change during
operation. Hence, it may become necessary to assign new tasks, change existing tasks, add new
resources, or introduce new roles. All of this would ideally be supported by the architecture.

11. Flexibility: Easily adaptable for different applications.
Since different applications will have different requirements, a general architecture will need to be
easily configurable for the different problems it proposes to solve. Instructions and advice on how
to reconfigure the architecture for different applications will also be useful.

12. Fluidity: Easily able to accommodate the addition/subtraction of robots during operation.
Several applications could require the ability to introduce new robots into the system during
operation. Conversely, robots can exit or malfunction during task execution. A successful
architecture will be able to support such events gracefully.

13. Learning: On-line adaptation for specific applications.
While a generalized system is often more useful, its application to specific domains usually
requires some parameter tuning. The ability to tune relevant parameters automatically in an on-
line fashion is thus a very attractive feature that can save a lot of effort.

14. Implementation: Implemented and proven on physical system.
As with any claim, a proven implementation is far more convincing. Moreover, successful
implementation of an architecture on a robotic system requires discovering and solving many
details that are not always apparent in simulation and software systems.



3. Related Work
Many research groups ([6], [21], [5], [27]) have implemented centralized approaches for

multirobot coordination. The principal advantage of such centralized approaches is that optimal plans can
be produced. The leader can take into account all the relevant information conveyed by the members of the
team and generate an optimal plan for the team. However, centralized approaches suffer from several
disadvantages as detailed in the Introduction.

Local and distributed approaches address the problems that arise with centralized, globally coordinated
methods by distributing the planning responsibilities among all members of the team. Many research
efforts have modeled distributed systems inspired by biology ([1], [4]). Others have designed systems
based on fluidics and similar physics-based concepts ([2], [7]). Some have chosen to pursue rule-based,
heuristic-based and model-based approaches ([9], [18], [33]). Economy-based models have inspired still
others ([14], [25], [30]). However, the principal drawback of distributed approaches is that they often result
in highly sub-optimal solutions because all plans are based solely on local information.

Smith [30] first introduced the concept of using an economic model to control multi-agent systems as the
Contract Net protocol. Many groups have since adopted similar strategies for controlling multi-agent
systems. Work done by Krovi et al. [23], Faratin et al. [14], Jung et al. [22], Brandt et al. [3], Wellman and
Wurman [36], Smith [30], Gibney et al. [16], Collins et al. [8], Jennings and Arvidsson [20], Sandholm
[25], Turner, Agogino, and Wolpert [35], and Sycara and Zeng [32] are examples of economy-based
sofware-agent systems. In contrast, work done by Simmons et al. [28], Dias and Stentz [10], Gerkey and
Mataric [15], and Golfarelli et al. [19] are examples of economy-based coordination approaches applied to
multirobot systems. Many characteristics differentiate software-agent domains from situated-agent
(robotic) domains. Some principal differences between robotic systems and software systems are
highlighted next.

Tasks assigned to robotic agents can vary significantly from tasks in software domains. Also, robotic agents
often deal with more restricted resources and robotic systems often have to deal with more restricted
communication. Failures occur with higher frequency and in a wider variety in robotic systems.
Furthermore, robotic systems have to be able to accommodate larger error bounds in performance since
they often deal with faulty sensors and interact with real-world environments. Finally, robotic systems
often require more creative solutions to recover from faults (for example, one robot pushing another robot
that is stuck, two robots cooperating to lift a heavy obstacle, etc.). Thus, controlling multirobot systems
can be a significantly different problem compared to controlling multiple software agents.

Hence, a multirobot coordination approach has to take into account many robot-specific details. Our
market-based coordination mechanism aims to satisfy all of these requirements.

4. The TraderBots Approach
Stentz and Dias [31] first introduced the concept of using a market approach to coordinate

multiple robots to cooperatively complete a task, building on the contract net protocol by Smith [30], its
extension by Sandholm and Lesser [26], and the general concepts of market-aware agents developed by
Wellman and Wurman [36]. This work introduced the methodology of applying market mechanisms to
intra-team robot coordination (i.e. in typically non-competitive environments) as opposed to competitive
multirobot domains and competitive inter-agent interactions in domains such as E-commerce. Simulation
results using this approach were produced by Dias and Stentz [10], and proven robot results were presented
by Thayer et al. [34], and Zlot et al. [37]. A few other groups have also published research relevant to
market-based multirobot coordination. Golfarelli and Rizzi [19] proposed and implemented a swap-based
negotiation protocol for multirobot coordination that restricted negotiations to task-swaps, and Gerkey and
Mataric [15] developed the MURDOCH publish/subscribe mechanism that includes a single-round auction
for task distribution. Rabideau et al. [24] published a comparison study of three multi-rover coordination
mechanisms that included a contract-net-based approach. However, to date, no other group has explored, in



detail, a market-based approach to multirobot coordination. A brief summary of our approach is presented
next.2

Consider a team of robots assembled to perform a particular set of tasks. Consider further, that each robot
in the team is modeled as a self-interested agent, and the team of robots as an economy. The goal of the
team is to complete the tasks successfully while minimizing overall costs. Each robot aims to maximize its
individual profit (which can translate to minimizing individual cost where possible); however, since all
revenue is derived from satisfying team objectives, the robots' self-interest equates to doing global good.
Moreover, all robots can only increase their profit by eliminating unnecessary waste (i.e. excess cost).
Hence, if the global cost is determined by the summation of individual robot costs, each deal made by a
robot (note that robots will only make profitable deals) will result in global cost reduction. The competitive
element of the robots bidding for different tasks enables the system to decipher the competing local
information of each robot, while the currency exchange provides grounding for the competing local costs in
terms of the global value of the tasks being performed.

4.1 Revenues, Costs, the Role of Price and the Bidding Process

Appropriate functions are needed to map possible task outcomes onto revenue values and to map possible
schemes for performing the task onto cost values. As a team, the goal is to execute some plan such that the
overall profit (the excess of revenue over cost) is maximized. Furthermore, these functions must provide a
means for distributing the revenue and assessing costs to individual robots.

Thus, robots receive revenue and incur costs for accomplishing a specific team-task, but the team's revenue
function is not the only source of income. A robot can also receive revenue from another robot in exchange
for goods or services. The price dictates the payment amount for the good or service. A common approach
is to bid for a good or service in order to arrive at a mutually acceptable price.

4.2 Cooperation vs. Competition

Two robots are cooperative if they have complementary roles; that is, if both robots can make more profit
by working together than by working individually. Conversely, two robots are competitive if they have the
same role; that is, if the amount of profit that one can make is negatively affected by the presence of the
other robot. The flexibility of the market-model allows the robots to cooperate and compete as necessary to
accomplish a task efficiently.

4.3 Self Organization, Learning and Adaptation

Conspicuously absent from the market approach is a rigid, top-down hierarchy. Instead, the robots organize
themselves in a way that is mutually beneficial. Since the aggregate profit amassed by the individuals is
directly tied to the success of the task, this self-organization yields the best results.

Moreover, the robot economy is amenable to learning new behaviors and strategies as it executes its
complex global task. An added strength of the market approach is its ability to deal opportunistically with
dynamic environments.

4.4 Architectural Format

The envisioned structure for the architecture is shown below in Figure 2. The illustration is tailored to the
distributed mapping application and shows the architectural format envisioned for each robot in the team.
It is organized in layers. In the bottom layer are the resources under the robot's control, such as sensors,
computers, and communication devices. These resources are available to the robot to perform its tasks—
some unused resources can be leased to other robots in the team if there is a demand for them. For
example, if a robot is not using its entire computing capacity, it can do another robot's data processing for a
fee. The next layer consists of the agent's roles for accomplishing tasks. Roles are application-specific

2 For a detailed description of this market approach please see Dias and Stentz [11].



software modules that implement particular robot capabilities or skills, such as acting as a communication
router or generating optimal plans for the team as a leader. The roles utilize resources in the layer below to
execute their tasks. Roles execute tasks that match their specific capabilities. They receive assignments
from the trader and could be monitored by an executive. As they execute their tasks they may generate
other tasks or subtasks to be bid out to the other robots. These new tasks will be communicated to the
trader.

Planner

Negotiations

Other Agents

Tasks

Roles

Negotiation
Protocol Robo

Trader

Online
Learning
Module

Survey
Area"X"

Send
Teiemetiy

Surveyor COfTfT) Leader

Resources

Radio Locomotor Sensors CPU

Figure 2: Architectural management of resources, tasks, and roles on a single robot

At the top layer in the architecture, the RoboTrader coordinates the activities of the agent and its
interactions with other agents. All of the planning is carried out at this top layer. The trader bids on tasks
for the robot to perform and offers tasks for sale. It passes on tasks it wins to an executive who matches
tasks to roles, schedules the roles to run, and resolves any contention for resources. The trader could be
equipped with an on-line learning module that enables it to perform better over time by adapting to the
specific application and environment. But the architecture for a single robot does not complete the picture.
Figure 3 below illustrates potential high-level interaction between a group of robots and two users:

Trad«r

4—»; Op
Tnitt

-——1
Trader |

Rabt

Figure 3: Interaction between robots and operator

As shown above, the operators can communicate high-level tasks to the interface agents known as the
"Operator Traders" (or the OpTraders). The OpTraders then interpret the operator's commands and
translate them into tasks that the robots can recognize. Next these tasks are bid out to the RoboTraders on
the robots within communication range. The OpTraders could also negotiate amongst themselves.



4.5 Satisfying the Identified Requirements

The TraderBots approach addresses the identified requirements of a successful multirobot
coordination approach as follows:

1. Robustness:
Since the TraderBots approach has no single leader it has no single point of failure. Note that
although a single OpTrader could represent the operator, if one OpTrader fails for some reason, a
new one could be initiated and it could gather information from the RoboTraders to assess their
current operational status. Thus, although some information may be lost with the failure of agents
or robots, the system performance will degrade gracefully and the robot team will always aim to
complete the assigned tasks with the functioning resources if possible.

2. Dynamic Conditions:
The TraderBots approach will respond to dynamic conditions by accounting for these conditions
during negotiations. For example, if new conditions arise which make an assigned task no longer
profitable for a robot it will try to sell that task to another robot who may find it profitable due
to/in spite of the new conditions.

3. Speed:
Since each robot in this approach will make decisions for itself, the system as whole can respond
more quickly to dynamic conditions than if new information had to be conveyed to a different
agent and the robot had to wait for the new plan before acting.

4. Extensibility:
The TraderBots approach allows for the addition and subtraction of different levels of
functionality in a modular fashion since tasks and resources and roles are described in a modular
fashion.

5. Communication:
The TraderBots approach does not assume any guarantees about communication. Robots make
trades with any robot within communication range.

6. Resources:
The available resources on the robots are always taken into account when determining costs and
savings for tasks being traded in this approach. Furthermore, the TraderBots approach allows for
an executive that can monitor the addition and depletion of resources and roles on the robots and
notify the trader of changes to the robot capability so that the current capabilities of the robot are
taken into account during negotiations.

7. Task Allocation:
In the TradeBots approach, actors such as robot capabilities, risks, and task constraints can be
considered when determining costs and savings for tasks during trading. Note that different cost
and revenue functions can result in different allocations of tasks. Hence, designing appropriate
cost and revenue functions can be very important in this approach. However, imperfect cost and
revenue functions could be altered to some extent via learning.

8. Heterogeneity:
The TraderBots approach makes no assumptions about the heterogeneity or homogeneity of the
team.

9. Roles:
In this approach, robots are not restricted to being able to play a limited number of roles at any
given time. Robot capabilities are derived at any time from available resources at that time. If a
robot needs to switch out of a current role, it can decide to do so by selling the task that requires it
to play that role or deciding to default on its commitment and paying a penalty.

10. New Input:
Adding new resources and introducing new roles can be handled by the TraderBots approach as
long as the robots are able to detect the changes in resources and roles when evaluating their
current capabilities. New task assignments can be handled if they can be communicated to a
capable robot, and changes to existing tasks can be handled as long as the change is communicated
to the relevant robot in time for the change to be made before execution.



11. Flexibility:
The TraderBots approach is not specifically geared to a single application domain. While the
modularity of the TraderBots approach allows the approach to be applied to different task
domains, an on-line learning capability could enhance the flexibility of the approach by
autonomously tuning the market parameters to adapt to the application domain.

12. Fluidity:
If a new robot enters the team, it can join the team activities by participating in any on-going
trading. If the failure of a robot can be detected (by means of a heart-beat or occasional pinging of
the robot) all tasks assigned to that robot could be re-auctioned to other robots thereby assuring the
completion of tasks as long as the necessary resources are available.

13. Learning:
A learning module could allow the robots to autonomously tune the market parameters according
to the prevailing conditions, and thereby improve efficiency.

14. Implementation:
The TraderBots approach has been implemented and tested in simulation and on robot teams to
different extents. These implementations and tests are summarized next.

5. Implementations
Previously published work includes an implementation of the market-based architecture that was

developed and tested for a distributed sensing task in a simulated interior environment ([10] and [34]) and
also on a group of Pioneer II-DX robots [37].

Figure 4: Team of Pioneer II-DX robots

In this implementation, the TraderBots market approach seeks to maximize benefit (information gained)
while minimizing costs (in terms of the collective travel distance), thus aiming to maximize utility. The
system is robust in that exploration is completely distributed and can still be carried out if some of the team
members lose communications or fail completely. The effectiveness of this approach was demonstrated
through successful mapping results obtained with the team of robots. Zlot et al. [37] found that by allowing
the robots to negotiate using the market architecture, exploration efficiency was improved by a factor of 3.4
for a four-robot team.

The authors implemented an initial version of the leader role as a combinatorial exchange, and tested, in
simulation, the advantages of multi-party and multi-task negotiations in the TraderBots approach [12].
Results show a significant advantage to be gained from trading in clusters of tasks. Results further show
the TraderBots approach capable of producing task allocations within 10% of the optimal allocation for
simple distributed sensing problems.

A third implementation focuses on the space application domain, and more specifically, presents simulation
results for market-based coordination of a group of heterogeneous robots engaged in information gathering
on a Martian outpost.

In this implementation the market-based, multi-robot planning capability, is designed as part of a
distributed, layered architecture for multi-robot control and coordination3. More specifically, this
architecture is an extension to the traditional three-layered robot architecture (illustrated in Figure 5) that

3 See Goldberg et al. [17], and Simmons et al. [29] for more details about this layered architecture.



enables robots to interact directly at each layer - at the behavioral level, the robots create distributed
control loops; at the executive level, they synchronize task execution; at the planning level, they use the
TraderBots approach to assign tasks, form teams, and allocate resources.

Figure 5: Extended three-layer architecture

This implementation is tested using a 3D graphical simulator developed for the project (see Figure 6).

Figure 6: Screen shot from 3D graphical simulator

The market-based planning layer of each robot has two main components: a "trader" that participates in the
market, auctioning and bidding on tasks, and a "scheduler" that determines task feasibility and cost for the
trader, and interacts with the executive layer for task execution. The focus of the development and testing
of the current system has been on a characterize task that will fit within the broader scenario of the Martian
outpost. In this task, a user/scientist specifies a region on the Mars surface, indicating that rocks within that
region are to be characterized with an appropriate sensing instrument. The scientist may also specify the
locations of rocks, if known.

In a fourth implementation, Zlot and Stentz [37] investigate task abstraction using tree structures within the
market framework. The participants in the market are permitted to bid on nodes representing varying levels
of task abstraction, thereby enabling distributed planning, task location, and optimization among the robot
team members. Results in simulation demonstrate that this approach can introduce a significant
improvement on the total solution cost for the team.



6. Conclusion and Future Work
The authors are currently implementing a comparative study between three multirobot

coordination schemes that span the spectrum of coordination approaches: a fully centralized approach that
can produce optimal solutions, a fully distributed behavioral approach with minimal planned interaction
between robots, and the TraderBots approach which sits in the middle of the spectrum.4

Figure 7: Pinoeer II-DX robots enhanced with vertically or horizontally mounted Sick lasers

A team of researchers at Carnegie Mellon University is currently working on extending the implementation
of the TraderBots approach on the Pioneer II-DX robot team. The robots have been enhanced by adding
vertically mounted Sick lasers on some of them, and horizontally mounted Sick lasers on others (see Figure
7). This group aims to extend the implementation in many ways including the addition of an executive to
manage resources and roles on each robot, the introduction of robots capable of playing a variety of roles in
complex scenarios, and the inclusion of tasks that require tight-coordination between robots. The goal of
this work is to produce a fully functional market-based coordination mechanism capable of efficient and
robust multirobot coordination.
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