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ABSTRACT

With the rapid development of 3D imaging technology, the wide usage of 3D surface infor-

mation for research and applications is becoming a convenient reality. This study is focused

on a quantified analysis of facial asymmetry of more than 100 3D human faces (individuals).

We investigate whether facial asymmetry differs statistically significantly from a bilateral

symmetry assumption, and the role of global and local facial asymmetry for gender discrim-

ination.



1 Introduction

The recent advent of 3-dimensional imaging technology has spurred on several new research
questions regarding the development of precise human detection and identification algo-
rithms. Most of the object detection research done in 3D has thus far focused on non-human
objects. Several 3D descriptors have been developed for classification of objects that make
use of localized surface matching, e.g. [7], and global symmetrical attributes of a surface
[8]. Little research has been done in the area of human face identification using 3D media.
Howrever, 3D imaging technology has advanced so rapidly that performing a quick 3D scan
of every person who passes through an airport security gate may become routine in the near
future. Some researchers have already shown certain success in 3D face comparison [6, 1].

One of the common characteristics of human faces is that they are approximately bilater-
ally symmetrical. Previous work has explored both human facial symmetry and asymmetry
in different applications. Vetter and Poggio [17] suggest that object detection within the 2D
framework can be greatly simplified by exploiting the known symmetries of an object in 3D.
In [16], Seitz and Dyer assume Mona Lisa's face is bilaterally symmetrical to achieve realistic
3D morphing. Zhao and Chellappa [18] have also taken advantage of facial symmetry in 3D
reconstruction of human faces. On the other hand, facial asymmetry has long been reported
[4, 2, 3]. Especially, expression lateralization is commonly accepted in the psychology lit-
erature, where some findings show facial expression is more intense on the left side. For
human identification purposes, half faces have been tried, with some reported differences in
recognition rates when left and right face images are used alone [13, 14], while others [5] did
not report any differences. More recently, Liu et al have demonstrated that quantified facial
asymmetry contains discriminating information for human identification under expression
variations, and for expression classification across individuals on 2D videos [12, 9, 11, 10].
They show statistically significant improvements can be achieved by combining facial asym-
metry with classic human identification algorithms [11, 10].

The diverse applications and opposing assumptions on human facial bilateral symmetry
and asymmetry are the primary motivations for this current investigation on 3D human
faces. The objectives of this study are to

1. define a set of 3D facial asymmetry measurements that are readily computable directly
from 3D digitized data sets;

2. find out whether the computed 3D facial asymmetry differs statistically significantly

• from a facial bilateral symmetry assumption, and

• between genders (male versus female)



3. learn correspondences between projected facial asymmetry (2D) and pose estimation in
3D.

The emphasis of this paper is on the first two objectives. Some initial observations on the
third are also demonstrated.

2 3D Face Data

The database of human 3D face images that we use in this study is maintained by researchers
in the department of Computer Science at the University of South Florida, and sponsored
by the U.S. Department of Defense, Defense Advanced Research Projects Agency (DARPA).
The database contains one digitized scan (image) for each of TV = 111 subjects (74 male; 37
female). All subjects have a "neutral" facial expression.

2.1 Data Format

Each image file is stored in the database in the form of a triangle mesh, which consists of x-
,y-,z- coordinate triples (observed locations of the surface of the face), and a list of triangles
(plane segments) connecting these points. The triangle mesh representation is commonly
used as a piecewTise linear approximation to the true surface of an object in 3D space. The
raw data consists of approximately 200, 000 mesh points and 250, 000 triangles per subject.
The images have been normalized with respect to seven user-selected landmark locations on
the face via an affine transformation of the original data [1], such that they are bilaterally
located with respect to the YZ-plane.

Refer to Figure 1 for an example of a rendered image from the database, with x-,y-,z-
coordinate axes superimposed on a 3D head. The x axis represents left-to-right displacement,
y axis front-back, and z axis up-down of the head.

2.2 Data Preprocessing

To increase computational efficiency, we have employed a triangle decimation algorithm [15]
to produce a subsample of the original mesh down to 5% of the original data volume.

Since the focus of our analysis in this work is the asymmetrical attributes of the human
face, we consider a more conceptually intuitive coordinate system by transforming each 3D
image from its Cartesian coordinate system indexed by (x, y, z) to a cylindrical coordinate
system (0, r, z), i.e.

/x\
0 = tan"1 ( — ), r — \Jx2 + y2, z — z. (1)
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Figure 1: Example rendered image from database with x-,y-,z- coordinate axes superimposed.
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Figure 2: Left: cropped 3D face of the same subject. Right: meshed 3D face.



Note, the YZ-plane, where 9 — 0, bisects a 3D face.
For convenience of computation, we impose a 2D grid pattern on each 3D face which

covers the wrhole face from chin to forehead in the vertical z direction, and from outside of
one eye outer corner to outside the other eye in the 9 direction (left of Figure 2). We split
the grid into 125 equally spaced intervals in both the 9 and z directions, yielding a total of
125 x 125 = 15,625 grid points. For each of these 15,625 grid points, we interpolate its
r value (distance from the z-axis) using trilinear interpolation on the original surface mesh.
See /usr2/figures/Face/3Dface 1 and 2 for a 3D face of the same subject in its rendered,
cropped and meshed forms.

If wre use Fi to denote the original mesh data and fi the re-parametrized Ff each 3D face
Fi in the database is now mapped into /2, a 125 by 125 grid matrix with

fi = r(9,z) (2)

where 9 takes on a discrete set of values in the range [—0.75,0.75] radians with increment
0.012, and z takes on a discrete set of values in [—50, 75].



3 3D Face Analysis

In this section wre define a pair of facial asymmetry measures for 3D faces. These definitions
are general and not limited to frontal faces.

3.1 3D Facial Asymmetry Measures

Let 7 represent a plane in 3D space passing through the origin. In general, 7(0,0) is a
function of rotation about the z-axis (9) and rotation about y-axis (</>). We are currently
keeping <j> fixed at 0 and varying 9 only. If we further restrict 7 to only take on 9 values
that coincide with our grid definition, then with respect to each position of the 7 plane when
Q = QlJ each point pj on a 3D face mesh with coordinates (#7 + 0$, r^Zi) has a corresponding
reflected (with respect to 7) point p\ with (91 — #2, r(, Zj)1 given that the point is within the
boundary of the grid.

For a given face / and plane 7, we introduce the following asymmetry measurements:

Height Difference (HD):

where r' is the r value of face / at (91 — 0,z), the reflected point of (#, z) with respect to
plane 7. We refer to 7 as the symmetry plane.

Orientation Difference (OD):

where (3^0 zi&$ is the angle between the normal vector of the face mesh at grid point (9, z),
and the normal vector of its corresponding reflected point with respect to 7.

For each 3D face / and plane of symmetry 7 pair, the HD(fi) and OD(fi) functions
both yield feature vectors with dimensions as high as the number of grid points. Given the
symmetry of the HD, OD definitions the left or right half of HD-f&ce (OD-face) already
contains all of the facial asymmetry information in HD-fa.ce (OD-face). We refer to these
measurements as HD-F&ce and OD-Face. Figure 3 shows the original mesh, the i/D-Face,
and the OD-Face for six subjects from the database. The top three rows in the figure are
females and the bottom three rowrs are males.

3.2 Global Facial Asymmetry

To obtain an overall measure of asymmetry for a particular subject with respect to a plane
of symmetry, we can take the average of all the values over the grid of HD-F&ce or OD-Face.
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The resultant value will be a norm representing | | / - /7 | | where f1 is the reflection of /
through the plane of symmetry 7. In the //D-Face case, this norm is the 1-norm. So, we
define the following global metrics:

Overall Height Difference (OHD):

O.z

Overall Orientation Difference (OOD):

where / is the total number of grid points that have a corresponding reflected point on
the grid. For 91 — 0 (symmetry plane that bisects the head through the midline of the face
into a right and left hemisphere), each point on the grid has a corresponding reflected point
that is also on the grid (so, / = 125 x 62 = 7750). For values of 7 other than 0, however,
there will be fewer grid points with which to use in the computation of OHD and OOD.



4 Analysis Results

We start with an analysis of global 3D facial asymmetry of the OHD and OOD measure-
ments, followed by a local analysis. We are looking into the question of whether there are
statistically significant differences between the measured facial asymmetry of all subjects
and the human facial bilateral symmetry assumption. We then compare male and female
facial asymmetry globally and locally.

4.1 Global Asymmetry

For each subject in the database with a 3D face /*, we vary the symmetry plane such that
Ory E [—0.36, 0.36] radians. Table 1 shows the means and standard errors of OHD and
OOD for a range of values of 91. The question is: Do the mean asymmetry values differ
significantly from the bilateral symmetry assumption?

Table 1: Means and standard errors of OHD and OOD for varying values of 91.

91 (radians)
-0.363
-0.302
-0.242
-0.181
-0.121
-0.060
0.000
0.060
0.121
0.181
0.242
0.302
0.363

OHD

Mean

12.33
13.13
11.69
10.07
8.12
4.81
1.44
4.94
8.28

10.29
11.97
13.45
12.75

SE

2.28
2.22
2.09
1.74
1.25
0.82
0.35
0.80
1.22
1.73
2.07
2.20
2.33

OOD

Mean
0.73
0.67
0.64
0.58
0.54
0.41
0.20
0.40
0.54
0.58
0.64
0.67
0.73

SE

0.07
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.03
0.04
0.04
0.07

As expected, with the increase of 91 the values of OHD and OOD increase. It is interest-
ing to note that the OOD measurement has a nearly constant variance for different values
of 7, while the variance of OHD is fanning out as the symmetry plane moves away from the
frontal view. Figure 4 shows the OHD and OOD plots, respectively, for all subjects in the
database. Note the single aberrant profile in the OOD panel of Figure 4, who upon inspec-
tion of Figure 3, appears to have a beard that contributes a large amount of asymmetry in



terms of the vectors normal to the mesh. We have removed this subject from subsequent
analysis.

The vertical reference line in Figure 4 signifies the frontal view plane of symmetry, note
both the means and the variances of the 3D facial asymmetry measures are non-zero. Figure
5 shows the facial asymmetry distribution histograms with density estimates overlayed on
the graphs, when the symmetry plane is the YZ-plane (frontal viewT). The outlier in the
OOD measurements is the same subject 023 as in Figure 4.

In terms of frontal faces {61 — 0), a perfectly symmetric face would yield a global asym-
metry measurement of zero. To assess the statistical significance of the level of overall
asymmetry we have observed on the frontal faces, we compare the distribution of the ob-
served values to a null hypothesis of a facial asymmetry distribution with expected value of
zero. The level of variation associated with this null distribution is unknown, but we can
estimate it via a bootstrap approach by using the variance of the observed values from OHD
and OOD respectively.

The observed values are approximately normally distributed with a lowrer bound of zero,
so wre assume that they follow a truncated normal distribution. A test of significance yields
a p-value of < 0.001 for both OHD and OOD measurements, suggesting that the frontal
faces are nominally bilaterally asymmetric.

4.2 Global Frontal Face Asymmetry by Gender

Previous results have reported a facial asymmetry difference between genders (e.g. [4]). In
this section we focus our attention on the relationship between facial asymmetry and the
gender differences. Once again, we restrict our attention to the global asymmetry measures
obtained for the frontal face (plane of symmetry corresponding to 07 = 0). Figure 6 presents
box-plots portraying the distributions of the two global measures by gender.

A simple t-test comparing the mean asymmetry value between males and females is
statistically insignificant for the OHD measure (j9-value=0.88), yet is highly statistically
significant for the OOD measure (p-value < 0.001).

4.3 Local Frontal Face Asymmetry

We now turn our focus to the localized asymmetry vectors HD-F&ce and OD-F&ce. For this
discussion, we will again restrict our attention to the frontal face. See the left column in
Figure 7 for the average i/D-Face and OZ)-Face (averaged over all subjects). The darker
regions in the images represent areas of higher asymmetry. The images in the right column of
Figure 7 show the top 20% most asymmetrical regions measured by i/D-Face and OD-Face.
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Figure 4: Profile plots of global asymmetry measures. Left panel: OHD, Right panel: OOD.
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F i g u r e 5 : Histograms of global facial asymmetry measures when the symmetry plane 0^=0 with density

estimates overlayed.

It is clear from these average faces that there are significant trends in the regions of
asymmetry for both types of asymmetry measurements. For the i/D-Face, the regions with
the highest asymmetry are around the sides of the nose and in the lower portion of the cheek
area. For the OD-Face, the regions are the eyes, nostrils, and mouth. The two measurements
appear to complement one another quite well in that they capture different information about
the regions of asymmetry of the frontal face.

4.4 Local Frontal Face Asymmetry by Gender

We will now investigate the differences in the local asymmetry measures (HD-F&ce and OD-
Face) between male and female 3D faces. In particular, we are seeking to locate discriminative
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Figure 6: Dox-plots for global asymmetry measures divided by gender.

subspaces of the asymmetry features (facial asymmetry measures belong to certain subregions
of the face) where male versus female facial asymmetries differ the most.

Each feature in the full range of i/D-Face and OD-Face vectors is not equally important
for discriminating between male and female faces. We attempt to reduce the size of the
feature space (dimensionality of i/D-Face and OD-Face) through the means of a variance
ratio. In general, for a feature F with C total classes, we define the variance ratio as follows:

vr(F) = -
Var(F)

C Z_«=l..(
Varx(F)

mini-£j(\meani(F)—meanj(F)\)

where mearii(F) is the mean of feature F's values in class i. This variance ratio is the
ratio of the variance of the feature between classes to the variance of the feature within
classes, with an added penalty for features wThich may have small intra-class variance but
which have close inter-class mean values.

Refer to Figure 8 for a feature-by-feature representation of vr(F) applied to the HD- and
OD- Faces with male and female as two gender classes (C = 2). The darker regions in the
plot signify features that have higher vr(F) values, and thus higher gender discriminating
power.

Comparing /usr2/figures/Face/3Dface 8 and 7, one can observe resemblance between the
regions on the face with the highest gender discriminating power and the regions of high
asymmetry measures.

We may now obtain a feature subspace that is suitable for discriminating between genders
by simply looking at those features representing a certain percentage of the largest values
of vr(F). If we choose to retain the highest 1% of the features, then we are left with a

13
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Figure 7: Average frontal HD-Faces and OD-Faces (left column), and top 20% most asymmetrical regions
(right column).

feature space that has slightly less than 100 dimensions. If wTe use this subspace in a logistic
regression setting with gender acting as the dichotomous outcome, we observe a highly
statistically significant difference between genders (p-value < 0.001 in both cases).
This result suggests that there is enough information in the localized asymmetry measures
for gender classification.

5 Discussion and Future Work

While 3D imaging technology is still in its formative stages of development, many current
research efforts are showing promising gains towards the ultimate goal of constructing a

14
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Figure 8: Variance ratio surfaces of HD-face and OD-face for discriminating between two classes: male
versus female faces.

completely autonomous 3D human identification system. We have attempted in this paper
to quantify the level of asymmetry possessed by the 3D human face. We have also addressed
the issue of whether there exists significant facial asymmetry in frontal faces and differences
in asymmetry between males and females.

In this paper, we defined two types of 3D facial asymmetry measures: height difference
faces (HD-f&ce) and orientation difference face (OD-face). From the statistical analysis,
OD-face presents itself as a more compact representation for facial asymmetry (Figure 4).
Thus it is a good candidate for asymmetry-based pose estimation. OD-face also shows
more significant departure from the bilateral symmetry assumption and better discriminating
powrer between genders. On the other hand, HD face requires less computation cost and is
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less sensitive to outliers.
Our result on 3D human faces of more than 100 subjects shows that human facial asym-

metry is statistically significant, therefore facial asymmetry should not be ignored without
a justification. If properly utilized, it is foreseeable that facial asymmetry may provide non-
trivial contributions to human face analysis. One such example has been demonstrated for
human identification under expression variations [11].

Our result on 3D facial asymmetry divided by gender also supports early research in
psychology that the male face possesses a larger amount of asymmetry than does the female
faces. We showT that a statistically significant difference arises between male and female
faces in terms of the OOD measurement, but not so with respect to the OHD measure. By
analyzing 3D facial asymmetry locally, we are able to identify which part of the face that
is most asymmetrical, and which part of the 3D face that is most discriminative in gender
classification (Figure 8). The latter finding of regions around the nose bridge echos the
discriminative asymmetry measures found from expression videos for human identification
[11]. We show that a statistically significant difference exists for both HD and OD facial
asymmetry measurements between males and females when we look at an appropriate subset
of the feature space.

Our current work is focusing on the use of facial asymmetry measures for pose estima-
tion in aiding 2D human identification. Some initial attempt along this direction seems to
be promising. Figures 9 and 10 shows the pose variation measured by the corresponding
asymmetry faces wThile the asymmetry plane 7 rotates in 3D space.
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Figure 9: Pose variations can be determined by the variation of facial asymmetry measures under a varying
symmetry plane. Here the symmetry plane 7 changes from #7 = 0 to —0.363 radians (also see Table 1 for
facial asymmetry values).
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