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Abstract
Multirobot coordination, if made efficient and robust, promises high impact on automation. The

challenge is to enable robots to work together in an intelligent manner to execute a global task. The market
approach has had considerable success in the multirobot coordination domain. However the implementation
of this approach to date restricts the negotiations to two-party, single-task deals which often forces the task
allocation solution into a local minimum. This report investigates the effects of introducing multi-party and
multi-task negotiations to enhance the market-based approach to multirobot coordination. Multi-party
negotiations are enabled by implementing a combinatorial exchange mechanism, while multi-task
negotiations are accomplished via clustering of tasks in cost space. Presented results show that global costs
can be considerably reduced (on average to within 10% of the optimal solution for the tested scenarios),
and hence task allocation can be considerably improved, by enhancing the negotiation capabilities of the
robots.

This report also investigates the effects of introducing opportunistic optimization with leaders to enhance
market-based multirobot coordination. Leaders are able to optimize within subgroups of robots by
collecting information about their tasks and status, and re-allocating the tasks within the subgroup in a more
profitable manner. The presented work also considers the effects of introducing pockets of centralized
optimization into an otherwise distributed system. The implementations were tested on a variation of the
traveling salesman problem. Presented results show that global costs can be reduced, and hence, task
allocation can be improved, utilizing leaders. Note the presented work only addresses scenarios where
leaders run exchanges to optimize task allocation within a group of robots. Some leaders are also capable
of clustering tasks and hence can conduct combinatorial exchanges. But these are not the only opportunities
for leaders to optimize within the market. It is also possible to have combinatorial exchanges and leaders
as distinct entities within the economy. Leaders could also use other approaches to generate plans for a
subgroup of robots. Finally, a leader could simply act as a means of enabling trade between subgroups of
robots who are otherwise unable to communicate, thus enriching the set of possible trades. Thus, leaders
can enhance the market-based approach by several means including optimizing task-allocation, generating
plans, optimizing plans, and enabling better trade opportunities between groups of traders.
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1. Introduction
The growing demand for robotic solutions to increasingly complex and varied problems has

dictated that a single robot is no longer the best solution for many application domains; instead, teams of
robots must coordinate intelligently for successful task execution. Driven by these demands on technology,
many research efforts have focused on the challenge of multirobot control.

Multirobot solutions are paramount for several reasons. A single robot cannot perform some tasks
alone. In task-decomposable application domains, robot teams can accomplish a given task more quickly
than a single robot can by dividing the task into sub-tasks and executing mem concurrently. Moreover, a
team can make effective use of specialists, can localize itself more efficiently by sharing information, and
can produce a wider variety of solutions, and thereby respond opportunistically to dynamic conditions in
more creative and efficient ways. Generally, a team of robots provides a more robust solution by
introducing redundancy, and by eliminating any single point of failure as long as there is overlap between
the robots' capabilities. Thus, for many applications, robot teams are more effective than a single robot.
Dias and Stentz [5] present a detailed description of multirobot application domains and their demands on
multirobot coordination schemes, and show that robot teams are more effective than a single robot in many
of these domains.

Simply increasing the number of robots assigned to a task does not necessarily solve a problem
more efficiently; multiple robots must cooperate intelligently to achieve efficiency. The difficulty arises in
coordinating many robots to collectively perform a complex, global task. Dynamic environments,
malfunctioning robots, and multiple user requirements add to the complexity of the multirobot coordination
problem. Dias and Stentz [5] explore some of these complexities, and present some of the principal efforts
in this field of research.

One approach is to design the team such that a single robot or central computer acts as a "leader"
and is responsible for planning the actions of the entire group. An example of the centralized approach is
work done by Brummit and Stentz [1]. The principal advantage of such centralized approaches is that they
allow optimal planning. However, they often suffer from several disadvantages including sluggish
response to dynamic conditions, intractable solutions for large teams, communication difficulties, and
single points of failure.

Local and distributed approaches address these problems by distributing the planning
responsibilities amongst all members of the team. Each robot operates independently, relying on its local
sensor information. Many research efforts have modeled distributed systems inspired by biology [1],
physics [3], and economics [17]. The principal drawback of distributed approaches is that they often result
in highly sub-optimal solutions because all plans are based solely on local information with minimal inter-
robot coordination.

Recently, negotiation-based and economy/market-based multirobot coordination has gained
popularity. This work in multirobot coordination draws from the software agents literature that began with
Smith's Contract Net Protocol [14] and has since been extended to control a variety of multiagent (and
more recently multirobot) systems. Golfarelli and Rizzi [9] proposed a swap-based negotiation protocol for
multirobot coordination that restricted negotiations to task-swaps. Rabideau et al. [11] utilize a Contract
Net approach to include local rover estimates for path information into their centralized planning approach
to solving a Multi-Traveling Salesman Problem for a scenario where multiple rovers are used to sample
spectra of rocks on Mars. Stentz and Dias [15] introduced the use of a sophisticated market mechanism to
coordinate a team of robots performing a group task, building on work by Smith [14] and Wellman and
Wurman [17]. The approach proposes opportunistically injecting pockets of centralized optimal planning
into a distributed system, thereby exploiting the desirable properties of both distributed and centralized
approaches. Thayer et al. [16], Gerkey and Mataric [7], and Zlot et al. [18] have since produced market-
based multirobot coordination results. Economic approaches are not without their disadvantages.
Negotiation protocols, mapping of task domains to appropriate cost and revenue functions, and introducing
relevant de-commitment penalty schemes can quickly complicate the design of a coordination-architecture.
Furthermore, some negotiation schemes can drastically increase communication requirements.



2. The Market Approach
Stentz and Dias [15] first introduced the concept of using a sophisticated market approach to

coordinate multiple robots to cooperatively complete a task, building on the Contract Net protocol by Smith
[14] and the work on market-aware agents by Wellman and Wurman [17]. This work introduced the
methodology of market mechanisms for intra-team robot coordination (i.e.,non-competitive environments)
as opposed to competitive multirobot domains and competitive inter-agent interactions in domains such as
E-commerce. Simulation results using this approach were produced by Dias and Stentz [6], and proven
robot results were presented by Thayer et al. [16], and Zlot et al. [18]. A brief introduction to this approach
is presented here.

Consider a team of robots assembled to perform a particular set of tasks. Consider further, that
each robot in the team is modeled as a self-interested agent, and the team of robots as an economy. The
goal of the team is to complete the tasks successfully while minimizing overall costs. Each robot aims to
maximize its individual profit (which often translates to minimizing individual cost where possible);
however, since all revenue is derived from satisfying team objectives, the robots' self-interest equates to
doing global good. Moreover, each robot can only increase its profit by eliminating unnecessary waste (i.e.
cost). Hence, if the global cost is determined by the summation of individual robot costs, each deal made
by a robot (note that robots will only make profitable deals) will result in global cost reduction.

2.1. Revenues, Costs, the Role of Price and the Bidding Process

Appropriate functions are needed to map possible task outcomes onto revenue values and to map
possible schemes for performing the task onto cost values. As a team, the goal is to execute some plan such
that the overall profit, the excess of revenue over cost, is maximized. Furthermore, these functions must
provide a means for distributing the revenue and assessed costs among the individual robots.

Thus, robots receive revenue and incur costs for accomplishing a specific team task, but the team's
revenue function is not the only source of income. A robot can also receive revenue from another robot in
exchange for goods or services. The price dictates the payment amount for the good or service. A common
approach is to bid for a good or service in order to arrive at a mutually acceptable price.

2.2. Cooperation, Competition, Learning and Adaptation

Two robots are cooperative if they have complementary roles, that is, if both robots can make
more profit by working together than by working individually. Conversely, two robots are competitive if
they have the same role; that is, if the amount of profit that one robot can make is negatively affected by the
presence of the other robot. The flexibility of the market-model allows the robots to cooperate and compete
as necessary to accomplish a task.

Moreover, the robot economy is amenable to learning new behaviors and strategies as it executes
its complex global task. One of the greatest strengths of the market economy is its ability to deal
opportunistically with dynamic environments.

2.3. Self Organization

Conspicuously absent from the market is a rigid, top-down hierarchy. Instead, the robots organize
themselves in a way that is mutually beneficial. Since the aggregate profit amassed by the individuals is
directly tied to the success of the task, this self-organization yields the best results.

Consider a group often robots. An eleventh robot, A, offers its services as their leader. It does not
become their leader by coercion or decree, but by convincing the group that they will make more money by
following its advice than by acting individually or in subgroups. A does this by investigating "plans" for
utilizing all ten robots. If A comes up with a truly good plan, it will maximize profit across the whole
group. The prospective leader (A) can use this large profit to bid for the services of the group members, and
of course, retain a portion of the profit for itself. Note that all relevant robots will have to commit to the
plan before it can be sold. The leader may be bidding not only against the individuals' plans, but also
against group plans produced by other prospective leaders. Note that the leader acts both as a benevolent
and a self-interested agent—it receives personal compensation for efforts benefiting the entire group.



But there is a limit to this organization. As the group becomes larger, the combinatorics become
intractable and the process of gathering all of the relevant information to produce a good plan becomes
increasingly difficult. A leader will realize this when it can no longer convince its subjects (via bidding for
their services) to follow its plans.

2.4. Limitations Of Prior Work

One of the key limitations of the implementation of this approach to date is the restriction of
negotiations to two-party, single-task deals. In many cases, this restriction limits the global cost reduction,
since the robots do not have the negotiation tools to reason their way out of shallow, local cost minima. The
work presented here extends these tools to permit multi-party and multi-task deals with better global cost
reduction potential. Work to date also does not explicitly deal with robots with heterogeneous capabilities
in bid formulation. The presented work explores this heterogeneity and the possibility of enhancing such
systems by using leaders.

3. Contribution
The work presented in this paper explores the effects of enriching the negotiation capabilities of

the robots such that multi-party and multi-task deals are possible, and also the effects of enabling
opportunistic optimization with leaders in market-based multirobot coordination.

4. Exploring the Space of Negotiations
The work presented here enhances the negotiation capabilities of the robots in the economy by

introducing clustering to enable multi-task deals, and a combinatorial exchange to handle multi-party deals.

4.1 Clustering for Multi-Task Processing

The capability to negotiate multi-task deals greatly enhances the market approach because it
allows a robot to escape some local minima in task allocation solutions. However, if the robots bid on
every possible combination of tasks, the number of bids submitted will grow exponentially with the number
of tasks. Consequently, processing these bids will be impossible for more than a few tasks. Hence, some
form of clustering algorithm is necessary to determine the clusters of tasks to bid on. The possibilities for
such clustering algorithms are numerous [10].

Golfarelli and Rizzi [8] presented a clustering algorithm for their task-swap negotiation protocol in
which tasks are clustered over spatial and temporal dimensions. The clusters are made by initially forming
single-task clusters, and then for each of these clusters, adding all neighbors within a threshold to the
cluster. Finally, all clusters fully contained within other clusters are removed. This clustering algorithm
has an appealing multi-dimensional capability. However, it subsumes smaller clusters within larger ones
and does not guarantee that clusters will be built across the entire task space. A spanning range of cluster
sizes (i.e. clusters ranging in size from single-task clusters to a wholly-inclusive cluster) and task
membership is important, because a robot cannot necessarily predict the interaction of the clusters it offers
with the tasks of other bidders. The chosen clustering algorithm preserves these properties — it operates as
follows:

1. Create a list of edges spanning all tasks on offer (N), where each edge joins two tasks and the cost
of the edge represents the distance in cost space between the two tasks. A low edge value implies,
but does not guarantee, that two tasks can be performed more cost effectively together than apart.

2. Sort the edge list from lowest to highest cost.
3. Form the first group of clusters by creating a single-task cluster for each task on offer.
4. For cluster sizes ranging from 2 to N, recursively form new clusters by adding the next best

available edge (an edge is unavailable if it is either already included in a previous cluster or if the
edge connects two tasks which are not included in any of the previous clusters) to a cluster in the
previous cluster list. (Note, when new clusters are formed, all previous clusters are preserved).
Thus, recursively form a forest of minimum spanning trees (MSTs) [1] ranging in size from 1 to
N.
This algorithm can be applied to determine cost-effective clusters of tasks, without computing

every possible cluster. Suitable variations of this algorithm (or others) can be chosen to enable multi-task



negotiations in different task domains. The presented work is verified on a multi-depot traveling salesman
problem (TSP), and hence, the MSTs are decomposed into sub-tours as follows. If a newly added edge
breaks the continuity of the sub-tour, the MST is adjusted by removing one of the edges connecting the tour
to the newly added edge and adding the necessary edge to preserve the continuity of the tour with the least
addition to the cost of the tour. Note that this change still preserves the bounds of the MST, which
guarantees that the cost of the tour does not exceed twice the optimal cost, in metric cost spaces where the
triangle inequality is preserved.

4.2 Combinatorial Exchange for Multi-Party Optimizations

A combinatorial exchange (a market where bidders can jointly buy and sell a combination of
goods and services within a single bid) is chosen to enable multi-party optimizations for a team. Allowing
robots to offload an owned cluster when bidding to accept a new cluster of tasks further enhances the
bidding capability of the robots. A combinatorial exchange also enables a leader to better optimize the task
assignments of a subgroup of robots and to potentially achieve a greater global cost reduction. Many
researchers including Sandholm and Suri [13] have presented valuable insight on how to efficiently
implement and clear combinatorial exchanges for E-commerce applications. However, many of these tools
are relatively complex and are not used in this work for simplicity. Instead, Sandholm's [12] basic
recommendation of searching a binary bid tree is applied. The chosen implementation for clearing the
combinatorial exchange in this work is a depth first search on a binary tree where each node of the tree
represents a bid and the binary aspect of the tree represents accepting or rejecting that bid. The tree is
pruned to disallow accepting multiple bids from any single bidder, and to disallow exchanging of any
single task more than once. Note that the pruning does not affect the solution except by improving the
runtime.

5. Optimizing with Leaders
An important contribution of this work is the preliminary investigation of a "leader" role that

allows a robot with the necessary resources to assess the current plans of a group of robots and to provide
more optimal plans for the group. Note that the "better plan" sometimes is simply a more cost-effective
assignment of execution responsibility for different parts of the existing plan. The leader can gain
knowledge of the groups' current situation through communication or some form of observation. A
prospective leader can use the profits generated by an optimized plan to bid for the services of the group
members, and retain a portion of the profit for itself. The leader may bid not only against the individuals'
plans, but also against group plans produced by other prospective leaders. Centralized and distributed
approaches are two extremes along a continuum. The introduction of leaders allows the market-based
approach to slide along this continuum in the direction of improved profitability in an opportunistic
manner.

The leader role in the market approach is implemented as follows. A leader queries surrounding
robots to discover what tasks they have to offer and their current states, and re-allocates tasks within the
group using the combinatorial exchange mechanism described above. The presented work only addresses
scenarios where leaders run exchanges to improve task allocation within a group of robots. Some leaders
are also capable of clustering tasks and hence can conduct combinatorial exchanges. It is also possible to
have combinatorial exchanges and leaders as distinct entities within the economy. For example, there could
be a leader that simply clusters tasks and sells these cluster plans to a combinatorial exchange. Note that
the leader is not selling the actual cluster of tasks—just a plan for which tasks to cluster. The exchange
could then buy all of the component tasks, sell off the resultant cluster, and pay a fee to the leader. The
presented results indicate that the benefit from the ability to cluster tasks and participate in multi-task
negotiations exceeds the benefit from the ability to perform multi-party negotiations. Leaders could also
use other approaches to generate plans for a subgroup of robots. Finally, a leader could simply act as a
means of enabling trade between subgroups of robots who are otherwise unable to communicate, thus
enriching the possible trades. Thus, leaders can enhance the market-based approach by several means
including optimizing task-allocation, generating plans, optimizing plans, and enabling better trade
opportunities between groups of traders.



6. Experimentation
The proposed multi-task and multi-party enhancements are developed and tested in a simulated

distributed sensing task. A group of robots, located at different starting positions in a known simulated
world, are assigned the task of visiting a set of pre-selected observation points. This problem is a variation
of the multi-depot traveling salesman problem, where the observation points are the cities to visit. The
costs are the lengths of the straight-line paths between locations, interpreted as money. Let cy be the cost
for the j t h robot to visit the i* city from the (i-l)* city in its tour (where the 0th city is the starting location).

The robot cost function for the j t h robot is computed as follows:

= t r C i j

Where iij is the number of cities in the tour for robot j .

The team cost function is:
m

tcost = ]ST rcost( j)

Where m is the number of robots in the team.

The team revenue and robot revenue functions are determined by the negotiated prices. Thus, the
robots are paid a fixed amount for visiting each city and can negotiate prices for subcontractors. All robots
(bidders) adopt the same simplistic strategy of bidding a fixed 10% markup above the cost of completing
the task. According to this strategy, if an announced task costs c to execute, a robot computes its bid b as
1.1 c, indicating it will take on the task for no less than 1.1c. Thus, the robots bid for each city based on
their estimated costs to visit that city. Similarly, if a robot offered up a task and bid to buy the services of
another robot to complete that task, the bid price b is set as 0.9 c. Thus, the robot announces that it is not
willing to pay more than 0.9c to offload the task(s).

Tasks and robot positions are randomly generated within a 100x100 world, and initial task
allocations are made by randomly distributing the tasks among the robots. Heterogeneous robot capabilities
are simulated by considering scenarios where some robots can only process single-task (ST) deals (that is,
they lack the capability to compute and reason about clusters of tasks), while other robots can process
multi-task (MT) deals. Robots capable of playing leader roles possess the additional capability of
performing multi-party optimizations via either a single-goods exchange or a combinatorial exchange,
depending on their capability. Sections 6.1 through 6.4 further describe the scenarios of robots negotiating
in the absence of a leader and the optimization scenarios with leaders. Section 6.5 describes the scenario
where robots have limited communication range and hence can only trade within subgroups.

6.1 Two-Party, Single-Task (TPST) Negotiations
Once the initial random task assignments are made, each of the robots, in turn, offers all its

assigned tasks to all the other robots. Thus, interactions are limited to two parties at any given time. Each
bidder then submits a bid for each task. In order to estimate the additional cost of inserting a task into its
queue, the bidder uses the cluster generation algorithm described above to generate an MST with its current
queue of tasks plus the offered task, and computes the cost difference between the resulting and original
queues. The offerer accepts the most profitable bid it receives. The cost of the offerer's resulting queue is
computed by removing from its queue the task that was transferred through the winning bid, clustering the
remaining tasks using the clustering algorithm, and computing the cost of the resulting queue. Hence, in the
TPST scenario, only single-task (ST) deals are considered, and pairs of robots continue to negotiate
amongst themselves in round-robin fashion until no new, mutually profitable deals are possible. Therefore,
negotiations cease once the system settles into a local minimum for the global cost function.

6.2 Two-Party, Multi-Task (TPMT) Negotiations
In this case, the previous case is repeated with clusters of tasks being the atomic unit of the

negotiations. That is, the initial assignments are followed by each of the robots, in turn, offering all of its
assigned tasks to all the other robots. The robots then bid for clusters of these tasks. Once again, costs are



computed by using the clustering algorithm to cluster all tasks under consideration and compute the cost of
the resulting queues. Negotiations are always restricted to occur between two robots in this scenario too.

6.3 Leaders Performing Multi-Party Single-Task (MPST) Optimizations
A leader whose capability is restricted to dealing in single-task deals, is introduced in this case.

The leader queries all the robots, and gathers all the tasks of all the robots along with each robot's state
information. The leader then sets up an exchange by formulating single-task bids for the robots in the sub-
group based on the gathered information. The exchange used in the MPST scenario is a single-task
exchange (i.e. a single bid can contain buying of a single task and selling of another single task). The
exchange is then cleared to maximize the leader's profit. This process is repeated until the exchange
cannot produce any further profit, and the corresponding task re-allocation is proposed to the sub-group of
robots. If the leader's plan reduces the global cost, the resulting excess profit can be distributed among the
entire subgroup (including the leader) such that the robots in the subgroup accept the leader's task re-
allocation.

6.4 Leaders Performing Multi-Party, Multi-Task (MPMT) Optimizations
Here, the previous case was repeated with the added capability of the leader to process MT bids.

That is, the leader sets up and clears a combinatorial exchange to determine the re-allocation of tasks. In a
combinatorial exchange, clusters of tasks can be bought and sold within a single bid. Note further that
clusters can be bought, re-grouped, and sold as different clusters.

6.5 Multiple Competing Local Groups
This set of experiments involves 8 robots divided into 3 non-disjoint groups of 4 robots each (with

the middle group overlapping the other two groups) and 10 tasks. Trading and optimization with leaders
are restricted to within the subgroups. This scenario simulates robots with limited range in communication
- that is, the robots can only communicate with other robots within their limited communication range. The
robots are evenly spread throughout a 2000x2000 world and the cities (tasks) are randomly generated.
Scenarios with and without leaders, and with ST-capable and MT-capable robots are considered.

7. Results and Discussion

Global Cost Reduction

ST
• - . __TPMT

MPST
* *** *MPMT

Figure 1: 4 robots and 10 tasks for a single run

The plot in Figure 1 shows the reduction in global cost with each deal for the four cases, TPST, TPMT,
MPST, and MPMT, described above, for a single run. While a single case does not provide statistical
information, this figure illustrates the point that global cost is reduced with each deal made.

In Table 1 below, the first row shows the global cost based on an initial random allocation of tasks between
the 2 robots, and the "Opt. Error" column indicates the percentage increase from the global cost of the
optimal task allocation. Note that on average (averaged over 100 runs) the random task allocation resulted



in a global cost that was 65.6% higher than that of the optimal task allocation. Results of the two cases
with no leader (that is, the TPST and TPMT cases) are shown in the next two rows, followed by the two
cases with leaders (that is, the MPST and MPMT cases), and the final row shows the results for the optimal
task allocation. The "Improved" column in all of these cases shows the percentage improvement in global
cost compared to the global cost incurred via the initial random task allocation. The "Itns" column
indicates the number of iterations required for the system to reach a solution - i.e. how many rounds of
bidding were necessary before a final solution was reached.

Random
No Leader (TP)

2 TPST
2 TPMT

MPST (ST Leader)
MPMT (MT Leader)
Optimal

Cost
351

256
231
245
227
212

Itns
-

2
1
2
1
-

Improved
0.0%

25.9%
33.0%
29.0%
34.4%
38.6%

Opt. Error
65.6%

21.4%
9.0%
16.2%
7.0%
0.0%

Table 1: Performance averaged over 100 randomly generated 2-robot, 10-task TSPs

Random
No Leader (TP)

4 TPST
2 TPST + 2 TPMT
1 TPST + 3 TPMT
4 TPMT

MPST (ST Leader)
MPMT (MT Leader)
Optimal

Cost
411

230
222
209
197
218
193
183

Itns
-

5
5
4
4
3
2
-

Improved
0.0%

42.7%
44.6%
47.8%
50.90%
45.8%
51.8%
-

Opt. Error
124.6%

27.7%
23.3%
16.2%
9.7%
21.1%
7.5%
0.0%

Table 2: Results averaged over 100 randomly generated 4-robot (heterogeneous), 10-task TSPs

In Table 2 and Table 3, the no-leader cases are broken into four different cases where the level of
heterogeneity of the robots in the group is altered. The first of theses cases is where all four robots can
only make ST deals. The next three cases add an increasing number of robots with the ability to reason
about MT deals. Note that at least two robots need to be able to handle MT deals in order for an MT deal
to take place. Hence, the 3 TPST + 1 MPST case is equivalent to the 4 TPST case, and hence has not been
shown.

As evident in Table 1, Table 2, and Table 3, on average, an MT-capable leader can improve the
profit of the group significantly. An ST-capable leader can only improve the profit of the group on average
for groups of robots where there are at most 50% MT-capable robots. This observation is consistent for the
2-robot and 4-robot cases, and also for the 10-task and 20-task cases.

Random
No Leader (TP)

4 TPST
2 TPST + 2 TPMT
1 TPST + 3 TPMT
4 TPMT

MPST (ST Leader)
MPMT (MT Leader)

Cost
725

400
388
359
336
373
322

Itns
-

10
9
7
5
6
3

Improved
0.0%

44.1%
45.7%
49.8%
53.0%
47.7%
54.9%

Table 3: Performance averaged over 100 randomly generated 4-robot (heterogeneous), 20-task TSPs



Figure 3, Figure 2 and Table 4 illustrate preliminary results for the competing subgroup scenario. The
scenario is illustrated in Figure 2, which depicts the results of a single run, and shows each subgroup
circled. Figure 3 shows the variation of the global cost, as well as the individual group costs, with each
deal made for the four specified cases.

Random Two-Party, Single-Task

Single-Task Leaders Multi-Task Leaders

Figure 2: Solution for TSP with 3 overlapping subgroups of 4 robots each and 10 tasks

Random
No Leader (TP)
4TPST
2 TPST + 2 TPMT

MPST (ST Leader)
MPMT (MT Leader)

Cost
9091

4598
4379
4312
3687

Iterations
-

8
9
6
6

Improved
0.0%

48.9%
51.2%
52.1%
58.9%

Table 4: Performance averaged over 100 randomly generated 8-robot (heterogeneous), 10-task TSPs
with 3 overlapping groups of 4 robots each

In the case of the competing sub-groups, optimization within a group always reduces intra-group task costs
and the global task cost as seen in Figure 3. (A group's cost is simply the sum of the task costs of the
robots within the group). Note that the subgroups exchange tasks sequentially. However, in the case of
overlapping groups, a group's, intra-group cost can rise while an overlapping group is optimizing because
new tasks can enter into the first group from the overlapping group's deals. (The profit of each group
however will always stay the same or rise, and never fall, because each robot will only make profitable
deals).
Table 4 reports the performance averaged over 100 randomly generated task distributions. Again, the
results show that on average the local optimization with leaders improves the global profit.
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Figure 3: Cost reduction for 8 robots and 30 tasks with 3 sub groups of 4 robots each

8. Conclusions and Future Work
Presented results show that enhanced negotiation capabilities improve the performance of market-

based task allocation, and that leaders can considerably reduce global costs in market-based multirobot



 



coordination. Initial experiments for optimizing within robot sub-groups with leaders also proved
promising. Future work includes implementing these capabilities on a robot team and further extensions of
the market approach. Proposed enhancements include more detailed analysis of optimizing with leaders,
dealing with time constraints, and experimentation with different task domains. The goal of this work is to
produce a robust and efficient market-based multirobot coordination architecture.
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