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Abstract . Numerical approximations of strongly degenerate variational problems of the form
J(it) = f1 F(u) 4- (u — f)2 are considered, where F is assumed convex but may have intervals where

F = 0. It is shown that, in spite of the degeneracy, natural numerical approximations still converge
in WltP. Rates in weaker norms and the connection with non-convex variational problems are also
considered.

1. Introduction. We consider a one dimensional variational problem of the form

J(u)= I' F{u) + {u-f)\
Jo

where F is convex but vanishes on a finite interval. In this situation minimizing
sequences need not converge strongly in WliP(0y 1). For example, if / = 0 and F is
the convexification of the double well potential shown in Figure la, then the oscillatory
sequence shown in Figure lb is minimizing. Clearly the limit is zero; however, the
derivatives only converge weakly to zero. While such undesirable behavior is possible
in general, we show that the minimizing sequence, {uh}h>Oj obtained by minimizing
over piecewise linear functions on a uniform mesh having N = 1/h nodes does converge
strongly, and obtain a rate in a weighted norm. The only other results we know of
concerning problems with such degeneracies are given in French [4]. The results in [4]
give strong convergence of the derivatives away from the degenerate set in a weighted
norm (cf. Section 3 below), and, provided F is non-zero on the degenerate set, it is
shown that sgn(uh) converges to sgn(u ) on the degenerate set.

The problem considered here is motivated from problems in materials science where the
bulk energies are not convex [1, 5, 6]. In this situation it is known that any minimizing
sequence will oscillate so that strong convergence is never achieved. However, such
sequences have associated Young measures and weak limits, and recently the authors
have proposed algorithms to compute these quantities without having to represent
highly oscillatory functions on discrete meshes. In one dimension the convergence of
these algorithms reduces to the analysis of the degenerate problem stated above. In
Section 4 we briefly review our algorithm and discuss the implications of the results
proved below.

The techniques used in our analysis are applicable to quite arbitrary functions F.
However, to reduce the technical detail we consider only the (convexification of the)
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inhomogeneous Young problem where F is the function shown in Figure la. The key
step required to establish strong convergence is a "regularity" result, Theorem 2.1,
which shows that the degenerate set is essentially an interval. In this situation, a
detailed analysis of the numerical solutions on the degenerate set is possible.

In the next section we introduce the discrete problem, and show that the discrete
solutions do converge strongly in the natural class of functions. In Section 3 we use
Ekeland's lemma to establish a rate of convergence of the derivatives in a weighted
norm, and finally in Section 4 the connection with algorithms to calculate Young mea-
sures is brought out. We conclude this section with some notation. T^m>p(0,1) denotes
the Sobolev space of functions whose mth derivative is p integrable, and W^'p(0,1)
will denote the subspace whose traces vanish. Discrete solutions will be constructed
on uniform meshes with N = 1/h nodes, h > 0, and the piecewise linear solutions con-
structed on such a mesh will be dented by t^, the continuous solution being denoted
by u. C and c will denote generic constants independent of h.
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Figure la. Double well energy.
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Figure lb. A minimizing sequence.

2. Strong Convergence of the Numerical Scheme.

2.1. Continuous Problem. The variational problem we consider is

(1) J(u) = I' F(u') + (i* - / ) 2 , ueU = W*'4(0,1),
Jo

where F is the convexification of F(p) = (p2 - I)2, i.e. F(p) = F(p) if \p\ > 1 and
F(p) = 0 for \p\ < 1. When / € £2(0,1), classical results from the calculus of variations
establish that J has a unique minimizer. The following theorem characterizes the
degenerate set where F(u) vanishes, and establishes regularity of the solution on this
set.

THEOREM 2.1 (REGULARITY). Let f £ -H'1(0,1), and assume there is an interval
[a, b] C [0,1] (a < b) such that

Then there is a sub-interval [a,/?] C [a,6] such that [a,/?] C E and \E \ [a,/3]| = 0,
where

- 1 < u\x) < 1}.



Moreover, u(x) = /(x) on [a,/?].

Proof. The Euler-Lagrange equation for the variational problem (1) is

- — F \ u ) + 2{u - / ) = 0, in iy~M(0,1),

implying F\u) € ^ ( 0 , 1 ) . Clearly F\u(x)) = Oforx € £ , so that (d/dx)F^(u\x)) =
0 for a.e. x € E. The Euler-Lagrange equation then shows u(x) = /(x), and hence
tt'(a?) = / ' (x), for a.e. x e E. Since |/ '(x)| > 1 on (0,1) \ [a, 6], it follows that
|JE\[a,6]| = 0. Define

a = inf{x € [a, 6] | /(x) = u(x)}, and /3 = sup{x € [a,b] \ f(x) = u(x)}.

Certainly |JE? \ [a,/?]| = 0, so it suffices to show that u(x) = /(x) for a.e. x € [a,/?].
This is easily deduced from the functional J itself. If u(x) does not equal /(x) on
[a,/?], one could lower the energy by making it so. D

2.2. Discrete Problem. We approximate the variational problem using a piece-
wise linear approximation to u on (0,1), and, for ease of exposition, assume that the
mesh points are equally spaced a distance h = 1/iV apart. Denote the associated
space of piecewise linear functions that vanish at x = 0 and x = 1 by J7&, and for any
continuous function / on [0,1] denote by jh the piecewise constant function that takes
on the values /,- = f(ih) at the nodes xt- = i/i, i — 0,.. .,iV. We then approximate J

by

(2) Jh(uh) =
./o
N

(Sr) |
(ttt- = Uh(ih) and /,- = f(ih)) and minimize J^ over £/"&. Analogous with the continuous
problem, Jh is strictly convex in the discrete L2 norm, so that minima of this discrete
variational problems exist and are unique. We begin by establishing that the sequence
{uh}h>o is a minimizing sequence for the original problem.

LEMMA 2.2.

• # / € C(0,1), then J(uh) -+ J(u).
• J//€l72(0,l), then

J(uh) - J(ti) < Ch2

Proo/. Let Vh be the best projection of u onto Uh CU. Then

J \uh - /)2 - (uh - jh? + (vh - A)2 - K ~ ff



< (\uh - ff - (uh - A)2 + (vh - h? - (vh - ff
Jo

+ f1 F"(O(v'h ~ u'f + (vh - u)\
Jo

where £(x) £ (u (a;), vh(x)) by Taylor's theorem, and the Euler-Lagrange equation was
used to derive the last line. The theorem now follows from the fact that integration of
the piecewise constant functions / etc. is equivalent to the trapezoid quadrature rule
which converges for any continuous function, and has quadrature errors of size Ch2

for both piecewise linear functions bounded in -ff1(0,1), and functions in J?2(0,1). D

LEMMA 2.3. Let Uh be the solution of the discrete problem and f G -ff2(0,1), then

\u -

Proof, Direct computation shows

J{uh)-J{u) =
o

Note that F > 0 since F is convex, and that the last line vanishes by the Euler-
Lagrange equation. •

2.3. Convergence of the Discrete Scheme. While strict convexity of J in
the £2(0,1) norm implies that a minimizing sequence will converge strongly in this
norm, a less trivial observation is that the derivatives will converge on the set where
F(u) is strictly convex, i.e. on (0,1) \ E. We show this using using recent results
of Kinderlehrer and Pedregal [7] who establish the existence of Young measures for
minimizing sequences bounded in W1* for finite p. The following theorem is a special
case of their result and is true in much greater generality than stated here.

THEOREM 2.4 (KINDERLEHRER AND PEDREGAL). Let {vk} be a weakly convergent
sequence in VTlt4(0,l) with limit v satisfying

fF{v).
Jo

Then, for a suitable sub-sequence, there is a corresponding Young measure v =
such that



in ^ ( 0 , 1 ) for any continuous function tj) satisfying |V>(5)I ^ CO- + \s\4)>

\j>(x) = (i>,vx) = / rl>(s)di/x(s).
Jn

LEMMA 2.5. Let {uh}h>o denote the solutions of the discrete problems (2)} then

f
J(0A

l
J(0A)\E

Proof We apply the above theorem to the minimizing sequence {uh} obtained in

Section 2.2. Since J is lower semi-continuous, we obtain

J(u) = lim J(uh)
h—>o

f'Fiu) = lim /* *K).
JO h->0 Jo

Putting i/> = F,it follows that F(u') = F. Next, Jensen's inequality gives

F(u(x)) = F (j^«^«W) < JiiF(s)dux(s) = F(x)9

and additionally, if F is strictly convex at u(x) (i.e. F" > 0) then F(u(x)) < F(x)

unless vx = &uuxy Since F(u) = F, it follows that vx — ̂ u'{x\
 a^ points where

\u(x)\ > l,i.e. on ( 0 , l ) \ £ .

We now choose tj;(s) = |5|4 to obtain

/ \uh(x)\Adx^ I (\.\A,vx)dx= I \u'(x)\4dx.
J(O,1)\E J(°A)\E J(O,1)\E

Since £4((0,1) \ E) is a uniformly convex space and uh converges weakly to u\ the
convergence of the norms implies strong convergence. D

THEOREM 2.6. Suppose the inhomogeneous term, f, in (1) is continuously differen-
tiate and there is a pair of real numbers a < b such that

(a, b) = {x € (0,1) | - 1< / '(*) < 1}, {x € [0,1] | | / ( x ) | = 1} C {a, b}.

Let {uh}h>o denote the solutions of the discrete problems (2), then

\u'h - u'\A -H. 0.

Proof Observe that it is sufficient to show that the derivatives converge on the set
[a,/3] given by Theorem 2.1. The proof proceeds in three steps. In the first step

5



we show that if F'(uh) = 0 on two elements (x t_i,z t) and (xk-i,Xk) in [a,/?], then
fj = Uj for all i < j < k - 1. We next show that for arbitrary e > 0, F'(uh) must
be zero on at least one element in each of the intervals [a, a + e] and [/? - e, /?], for /*
sufficiently small. Finally, we use Theorem 2.4 to show that errors on intervals of size
e are negligible.

We begin by considering the Euler-Lagrange equation for the discrete problem (2).

F'iu'i) - F ' (^ + 1 ) + 2h(ui - fi) = 0, 1 < i < N - 1,

where t^ = (ti,- — Ui-\)/h is the derivative on the it/l interval. Summing these equations

from i to j — 1 gives

Now suppose that F (ut) = F (uk) = 0 for elements i and k contained in [a,/?]. We
show that Uj = fj for i < j < k — 1. Suppose not. Then, without loss of generality,
assume that F\u'iJrl) / 0 and consider the situation where F ' ( ^ + 1 ) > 0. Then
itt+1 > 1, and the Euler-Lagrange equation gives

Let j be the first index in {i + 1, i + 2, • • •, k} where F (UJ) < 0. For each i + 1 < I < j,
u\ > 1, so that w/+i — //+i > ui — fi (recall | / ' | < 1), i.e

^j - fj > ̂ j-\ - fj-i > • - - > ̂  - U > 0.

Putting this into the summed Euler-Lagrange equation gives a sum of strictly positive
quantities being zero, a contradiction. A similar argument for i r"(^+1) < 0 excludes
this possibility too.

We next show that, for h sufficiently small, there are always elements near a and /?
where F vanishes.

Consider an arbitrary interval J = [x>x + e] C (#,/?)• Suppose that F (uh) does not
vanish in /. We then claim that it must change sign. If it did not, suppose that it was
positive (or negative), so that uh > 1 (or < —1). Since, for some 6 > 0, | / | < 1 — 6
on [x, x + e], it follows that Uh — / is monotone and

(3) / (uh-f)
2>e362/12 = c(e).

Jx

Since u = / on [a,/?], it follows that \\uh — |̂|jr,2(0 X) > c(6)> which can not persist for
small h since UH —> w in Z2(0,1).

We now show that the oscillations implied by the above argument are incompati-
ble with the discrete Euler-Lagrange equation. Again assume that F (uh) does not
vanish on [xyx + e] C (a,/?)? and assume that h is sufficiently small to guarantee
F'(U ) changes sign twice in this interval (repeating the above argument with e/2 if
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necessary). Note that at nodes where F'(u) changes from positive to negative, the
Euler-Lagrange equation gives Ui < / , and where it changes from negative to posi-
tive U{ > f{. This immediately leads to a contradiction if we consider what happens
between two consecutive sign changes in F'(u), say at nodes X{ and Xj. Suppose for
the sake of argument that F'(u) is positive for x < xt-, negative for x G (zt,£j), and
positive for x > Xj. Between xt- and Xj uh < - 1 while | / ' | < 1, implying Uh - / is
monotone decreasing. However, the Euler-Lagrange equation implies U{ — fi < 0 and
Uj — fj > 0, a contradiction.

The above two paragraphs establish that if e > 0, and [x, x + e] C (a, /?), then F (u ) =
0 on at least one element in [x, x + e] for h sufficiently small. Applying this to intervals
of the form [a + c, a + 2e] and [/? — 2c,/? — c], shows that, for h sufficiently small,
m = fi = -u(zt) for all nodes in [a + 2e,/3 — 2c], and hence uh —> u' on all such
intervals.

Finally, we establish that for any x € (0,1), f* \uh\4 ~~* 0 uniformly in h as e —• 0.
This follows directly from the fact that \uh\

4 converges weakly in i 1 ( 0 , l ) , a conse-
quence of Theorem 2.4. D

3. Ra tes of Convergence. While the proof above provides insight into the
behavior of the numerical scheme on the degenerate region, very little is known
about the behavior on the complement where the problem is "almost" degenerate,
i.e. when \u\ ~ 1. To accommodate this, we introduce the following weighted norm

||t,||2= / (u'2-l)v'2+ f v'2+ f\2

J(O,1)\E JE JO

(recall that E = {x : \u(x)\ < 1}). Let M denote the completion of WQA(0, 1) under
this norm, and extend the definition of J to all of M by

J(v) = { ° ., ° .
(̂  oo otherwise.

This extension by infinity guarantees that J : M —>IRU{oo}is lower semi-continuous
so that the following lemma, due to Ekeland, is applicable.

LEMMA 3.1 (EKELAND). Let M be a complete metric space with metric d} and let
J : M —• IRU {oo} be lower semi-continuous, bounded from below, and not identically
infinite. Then for any e, 6 > 0 and any u € M with

J(u)<infJ + €2,

there is an element v £ M strictly minimizing the functional

Moreover,

6
—d(v,w).

J(v)<J(u), d(u,v)<6.
7



A proof of this lemma may be found in [3]. Letting Uh denote solution of (2),
Lemma 2.3 gives

J{uh) < J(u) + c(h)2 = inf J + c(/*)2,
M

where c(h) < Ch if the minimizer u € W2'4(Q, 1). Application of Ekeland's lemma
with € = 6 = c(h) gives Vh £ M such that ||t*^ - v^|| < c(/i), and J(vh) < J{uh) < oo
implying v^ 6 WQ' (0,1). Also, since Vk is a minimizer of the modified problem, we
obtain

J(vh) < J(vh + w) + c(h) \\w\\, weM,

or replacing w by €it; for w G Wo'
4(0,1) and letting e —» 0 gives an Euler-Lagrange

inequality

F\v'h)w + 2(vh - f)w < c(h) \\w\\, w € Wt'\0,1).

Subtracting this from the Euler-Lagrange equation for the original problem gives,

||, w € Wo
ll4(0,1)./VV)o

In particular, putting w = u — Vh gives

(4) / V ( u ' ) - ^'K)](«' - v'h) + 2(u - W/l)
2 < c(fc) ||u - vh\\.

Jo
This estimate will yield a rate of convergence of Vh and hence Uh in the given norm
||.||. The following two inequalities pertaining to F will be required in the theorem
below. If \b\ > 1 and \a\ > 1

[F\b) - F'(a)](b - a) = 2[(6 + a)2 + (b2 + a2 - 2)](b - a)2,

> 2(62 - 1)(6 - a)2,

and if |6| > 1, \a\ < 1,

[F'(b)-F'(a)](b-a) = 4(62 - 1)6(6-a),

> 2(62-l)(6-a)2.

THEOREM 3.2. Xe< ||.|| be the norm defined above, and let E ~ [a,/3] denote the
degenerate set as in Theorem 2.1. If the inhomogeneous term f € H2(0,l) satisfies
f'(x) < 1 — 6 in neighborhoods of a and /3, then

Otherwise, if |/'(a)l = 1 and/or |/'(/?)| = 1 and 0 < c < f" or f" < -c < 0 in a
neighborhood of a and/or )3, then

\\u-uh\\<Cc{hfl\
8



where c{h)2 = J(uh) — J(u) < Ch2 + iniWh€uh \\wh — ̂ | |^.

Proof. We begin by first estimating the error on the indegenerate set (0,1) \ E where
\u\ > 1. The inequalities satisfied by F show that

/ [F'(u)-F'(vh)](u-vh)>2f (u'2-l)(u'-vhf.
[O,1]\E J[0,l]\E

We next estimate the error on the degenerate set E = [a,/?] where \u\ < 1. The
proof of Theorem 2.6 showed that there exists e(h) > 0 such that the discrete nodal
values of Uh exactly interpolated u on Et = [a + 2e(/i), /3 — 2e(/i)], and in this instance
standard approximation theory shows that

L'-u'J = ||/'-*'J <||/1 h<Ch.
II h\\l?(E€) \\J h\\L2(E) - \\J \\L2(E) ~HL2(EC) \r allL2(£<) " \r llL2(£;e)

The triangle inequality and Lemma 3.1 then give

<Ch + c(k).

The error on the intervals of size 2e is estimated by dividing them into two pieces, E+
where \vh\ > y/2 and E~~ where |v/J < \/2. Since \u \ < 1 it follows that

and

[F (u ) - F (vh)](u - vh) = J (vh - l)vh(vh - u ) > ||IA -vh

Combining the above estimates with equation (4) gives

' ' I I 2 II
W - Vh\\ + \\u -

^ I I L 2 ^ ) II [Ch + c(h)}2 + Cc(h)

< C[c(h)2 + h2 +

Finally we estimate e(h). Equation (3) gives

<?62<C\\u-uh\\
2
LHo<1)<Cc(h)2.

1£ | / ' | < 1 - 6 on neighborhoods of a and /?, this gives an estimate

€ < Cc(h)2'Z,

otherwise, if | / ' (a) | = 1 or |/(/?)| = 1 the proof of Theorem 1 shows that is is
necessary to estimate / ' on intervals of the form [a + 6, a + 2e] and [/3 - 2c, /? - c]. The
assumption on the second derivative of / will then show that | / ' | < 1 - ce on these
intervals, giving

€ < Cc{h)2l\

D



4. Application To Calculation of Young Measures. Recently the authors
have proposed an algorithm to calculate generalized solutions of non-convex varia-
tional problems. A generalized solution is a pair (u,v), where u is the weak limit
of a minimizing sequence and v is the associated Young measure. In general, u will
be a slowly varying function, and v characterizes the fine oscillations that develop in
the minimizing sequence. This motivates the development of algorithms to calculate
these quantities, since they can be well represented on finite meshes in contrast with
the minimizing sequences which develop infinitely many oscillations. Consider the
inhomogeneous Young problem given by

J(u) = f1 F(u')
Jo

where F is the double well potential shown in Figure la. If (u, v) is the generalized
solution, then u solves the convexified problem (1) and1

where X(x) = (1 + u(x))/2. Collins, Kinderlehrer, and Luskin [2] consider the nu-
merical approximations obtained by directly minimizing J, and show that infinitely
many oscillations will develop as the mesh is refined; moreover, if the oscillations are
suitably averaged, is is possible to estimate A.

For this particular problem, the algorithm proposed by the authors in [8] reduces
approximating minima of

J(u, A, b) = f XF[u - (1 - X)b] + (1 - X)F[u + Xb] + (u- / ) 2 ,
Jo

where u € W1A(O,1), b € X4(0,l) and A € X°°(0,1) is subject to the constraint
0 < A < 1. The corresponding discrete problem is to minimize

I(uh, A*, bh) = / XhF[uh - (1 - Xh)bh) + (1 - Xh)F[uh + Xhbh] + (uh - f h ) \
Jo

over the space of piecewise linear functions for Uk and piecewise constant functions for
Xh and 6/t, 6 < Afc < 1. It is elementary to show that by first minimizing over A and b
(resp. Afc and 6 )̂ that u (resp. Uh) must solve the convexified problem (1) (resp. (2)).
It then follows that the strong convergence and rates given by Theorems 2.6 and 3.2
for the convexified problem are enjoyed by {uh}h>Oi the solutions of the approximate
generalized problem.

The Young measure implied by this algorithm is

Note that the representation of this measure is not unique. Indeed, we can change the
sign of b if we interchange A with 1 — A, and with b = 0, A arbitrary, or A = 0 or 1 and

(.) is the Dirac measure concentrated at the indicated point.
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b arbitrary, the measure reduces to 6ui. These ambiguities are eliminated if we agree
to select b > 0 and 0 < A < 1, and consider A undefined when 6 = 0. In this situation
6(x), bh(x) € {0,2} so that

and

= -(1

where X(.) is the characteristic function of the indicated set. Since Uh converges
strongly in Wlf4(0,1) to w, it follows that Xh and bh converge almost everywhere
to A and 6 (for a suitable subsequence). Since they are also bounded in Z°°(0,1),
it follows that they converge strongly in £p(0,l), 1 < p < oo, and weakly star in
Z°°(0,1). Convergence of Â  and bh then imply {i//J converges weakly star to v.

REFERENCES

[1] M. Chipot and D. Kinderlehrer. Equilibrium configurations of crystals. Archive for Rational
Mechanics and Analysis, 103:237-277, 1988.

[2] C. Collins, D. Kinderlehrer, and M. Luskin. Numerical approximation of the solution of a varia-
tional problem with a double well potential. SI AM Journal on Numerical Analysis, 28(2) :321-
332, 1991.

[3] I. Ekeland. Convexity Methods in Hamiltonian Mechanics. Springer Verlag, 1980.
[4] D. French. On the convergence of finite element approximations of a relaxed variational problem.

SIAM Journal on Numerical Analysis, 27(2):419-436, 1990.
[5] R. D. James. Finite deformation by mechanical twinning. Archive for Rational Mechanics and

Analysis, 77:143-176, 1981.
[6] R. D. James and D. Kinderlehrer. Frustration in ferromagnetic materials. Continuum Mechanics

and Thermodynamics, 2:215-239, 1990.
[7] D. Kinderlehrer and P. Pedregal. Weak convergence of integrands and the young measure repre-

sentation. SIAM Journal on Mathematicl Analysis, 23(1):1-19, Jan. 1992.
[8] R. A. Nicolaides and N. J. Walkington. Computation of microstructure utilizing youn measure

representations. In C. A. Rogers and R. A. Rogers, editors, Recent Advances in Adaptive and
Sensory Materials and their Applications, pages 131-141. Technomic Publishing Co., 1992.

11



MOV 2 a 2003

3 fl4fl2 013S1


