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Abstract

We investigate the behavior of a continuum model designed to provide insight into

the dynamical development of microstructures observed during displacive phase trans-

formations in certain materials. The model is presented within the framework of nonlin-

ear viscoelasticity and is also of interest as an example of a strongly dissipative infinite-

dimensional dynamical system whose forward orbits need not lie on a finite-dimensional

attracting set, and which can display a subtle dependence on initial conditions quite

different from that of classical finite dimensional "chaos".

We study the problem of dynamical (two-dimensional) anti-plane shear with linear

viscoelastic damping. Within the framework of nonlinear hyperelasticity, we consider

both isotropic and anisotropic constitutive laws which can allow different phases and we

characterize their ability to deliver minimizers and minimizing sequences of the stored

elastic energy (Theorem 2.3) Using a transformation due to RYBKA, the problem is

recast as a semilinear degenerate parabolic system, thereby allowing the application of

semigroup theory to establish existence, uniqueness and regularity of solutions in IP

spaces (Theorem 3.1). We also discuss the issues of energy minimization and propa-

gation of strain discontinuities. We comment on the difficulties encountered in trying

to exploit the geometrical properties of specific constitutive laws. In particular we are

unable to obtain analogues of the failure to minimize and non-propagation of strain

discontinuity results obtained by BALL, HOLMES, JAMES, PEGO &; SWART [1991] for

a one-dimensional model problem.

Pit .*



Several numerical experiments are presented, which prompt the following conclu-

sions. It appears that the absence of an absolute minimizer may prevent energy min-

imization, thereby providing a dynamical mechanism to limit the fineness of observed

microstructure, as has been proven in the one-dimensional case. Similarly, viscoelas-

tic damping appears to prevent the propagation of strain discontinuities. During the

extremely slow development of fine structure, solutions are observed to display local

refinement in an effort to overcome incompatibility at the boundary and with initial

conditions, with the distribution and shape of the resulting finer scales displaying a

subtle dependence on initial conditions.
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1 Introduction

For many dissipative physical processes it is assumed that observable equilibrium states

correspond to the minima of some underlying energy function. The first clear enunciation

of such a principle is perhaps that of GIBBS [1876]:

For the equilibrium of any isolated system it is necessary and sufficient that in

all possible variations of the state of the system which do not alter its entropy,

the variation of its energy shall either vanish or be positive.

In interpreting such statements physically, the question of how a system approaches an

equilibrium from an arbitrary initial state is of great importance. It is, for example, of

concern to know how rapidly such states are achieved, and if they are achieved by all

solutions, merely a subset, or possibly none at all.

For physical models based on ordinary differential equations possessing Liapunov func-

tions, the theory is well-developed (cf. LASALLE & LEFSCHETZ [1961]) — all solutions

converge to critical points of the underlying energy and almost all solutions converge to lo-

cal minima. However, for models such as those provided by the partial differential equations



of continuum mechanics, including those under consideration in this paper, the situation can

be much more complex (cf. BALL [1990], HALE [1988]). Nonetheless, the dogma of energy

minimization exemplified by GIBB'S statement has dominated thinking to the extent that

much of the analysis of continuum problems amounts to a search for equilibrium solutions

which are minimizers of some type.

The past two decades have witnessed the development of various physical theories based

on variational formulations that require the minimization of an "energy" which suffers a

severe loss in convexity. The most outstanding example, and the one of concern in this

work, is the use of nonconvex stored energy functions to model displacive phase transfor-

mations — solid-solid phase transformations which are accompanied by a change of shape

— in certain ionic solids, shape memory alloys and ferro-electrics. Within the elasticity

literature, this approach has its origins in the work of ERICKSEN [1975], [1980], KNOWLES

& STERNBERG [1975], [1977], [1978], and JAMES [1979], [1980]. Not only has it yielded

significant new insights and accurate quantitative descriptions of experimentally observed

phenomena, but it has also been responsible for a resurgence of interest and subsequent

research in variational methods and their applications to partial differential equations.

Against this background, BALL, HOLMES, JAMES, PEGO & SWART [1991] studied some

one-dimensional model problems from a dynamical perspective, the most relevant to the

present paper representing a non-convex viscoelastic continuum bonded by linear "glue" to

a rigid substrate. We briefly review their results at the end of §2.1. The remainder of this

work is devoted to the dynamical anti-plane shear problem with viscoelastic damping. We

discuss both the isotropic and anisotropic cases, with the emphasis on anisotropic consti-

tutive laws which allow several different phases. This problem is defined in §2, where the

issues of existence, uniqueness and stability of solutions are also discussed. Theorem 2.3

characterizes the ability of constitutive laws to deliver minimizing sequences and classical

minimizers. Theorem 3.1 gives global existence and uniqueness, albeit under physically



restrictive assumptions, and the difficulties of relaxing these assumptions are discussed. We

are, unfortunately, unable to obtain analogues of the nonminimization and strain discon-

tinuity persistence results of the one-dimensional models of BALL et al. [1991], and in §4

we discuss some reasons for this. In §5 we describe a finite difference scheme and in §6 we

present the results of numerical experiments. We display the dynamical evolution of mi-

crostructure and show numerical evidence for the persistence of strain discontinuities and

subtle dependence on initial conditions, as well as an example of apparent non-minimization

of the energy. Conclusions and suggestions for possible extensions are contained in §7.

Throughout, ft will denote an open and bounded set in Rn with a Lipschitz smooth

boundary <?ft. For 1 < p < oo, Z/p(ft,Rm) is the Banach space of measurable functions

u : ft - • Rm for which

IMIIP = ( / l«(x)lp dx)p < oo;

we write Z/P(ft) if m = 1 and Lp if the domain and the range are understood. We use a bold

font to indicate that a variable or operator is vector- or tensor-valued. We let ||u|| = ||u||L2

and (u,v) = JQ u • v dx denote the L2 norm and inner product of the (complex valued)

functions u,v £ L2 (overbars denote complex conjugates). For p = oo, Z/°°(ft,Rm) is the

space of measurable and essentially bounded functions u equipped with the norm

IMIoo = IIU1IL~ = ess suP |u(x) | .
x€fl

For k = 0 ,1 ,2 , . . . and 1 < p < oo, the Sobolev space VF*'p(ft, Rm) is the space of functions

u in £p(ft,Rm) whose distributional derivatives of order < k are in £p(ft); this is a Banach

space with norm

For p = 2 we will write Hk(Sl) = W^itt) with ||u||fc = | |u||H* (n ) and (u, v)fc = j:M<k{D
au, Dav).

is the space of infinitely smooth test functions having compact support and WQV{SI)



denotes the completion of Co°(fi) with respect to the WktP norm. Any u G Wk>p(Q) is deter-

mined only up to a set of measure zero and we will call such a u continuous, bounded, etc. if

there is a function ii with these properties and u = u a.e. For a function u : S -» X mapping

an open subset S of a Banach space to another Banach space X, we write u G L(S, X) if u is

a linear and bounded operator, and write u G Ck>Q(S, X) (for k = 0 ,1 ,2 , . . . and 0 < a < 1)

if u G Ck and if all the k-th order derivatives of u are Holder continuous with Holder ex-

ponent a. The norm is

ll*-y|li
The last term is omitted if a = 0 and we will write Ck = Cky0 and C = C°. For more

details see for example ADAMS [1975].

2 A Dynamical Anti-Plane Shear Problem

2.1 Continuum Modeling of Displacive Phase Transformations

Consider a homogeneous solid body occupying a region fl C Rn in the reference configu-

ration (with unit density) and subject to a deformation u : ft —• Rn. We are interested in

modeling solid-solid phase transformations that lead to the coexistence of several different

phases, and do so by supposing that, for energetic reasons, the body prefers to be (locally)

deformed in one of a possibly finite number of different phases, each specified by a constant

deformation gradient F = Vu. In the spirit of GlBBS, we can therefore view an equilibrium

state of the body as a minimizer of the bulk energy

J(u)= / W(Vu)dx (2.1)
Jn

on some admissible set of functions determined by boundary conditions, body forces, etc.

Here W is the Gibbs free energy per unit reference volume, and we will assume henceforth



that it depends only on the deformation gradient, and that thermal effects, chemical com-

position and other determinants of material behavior can be neglected or controlled. This

approach fits into the framework of nonlinear hyperelasticity, in which W is referred to as

the stored elastic energy function (or strain energy density function) and the functional / is

known as the total (stored) elastic energy or the total strain energy. The first Piola-Kirchoff

stress tensor a is then given by <r(F) = dW /#F; the Fr6chet derivative of the local stored

energy function (cf. TRUESDELL & NOLL [1965], CIARLET [1988]). What distinguishes the

models discussed here from those of conventional hyperelasticity, is that the stored energy

function W is allowed to have several potential wells, thereby permitting minimizers and

hence equilibrium states containing a mixture of phases with boundaries across which strain

Vu may be discontinuous.

For a sufficiently smooth stored energy function W, any smooth admissible minimizer

must satisfy the associated Euler-Lagrange equation

diva(Vu) = 0 in ft, (2.2)

due to the vanishing of the first variation of / . In our case W(-) is not rank-1 convex and

(2.2), augmented by suitable boundary conditions, typically admits a multitude of mini-

mizers corresponding to complicated phase mixtures. This severe nonuniqueness is to some

extent due to ignoring the dynamical process responsible for selecting a particular steady

state dependent on initial data (cf. JAMES [1980]). To examine this, we will approach

the minimization problem from a dynamical systems viewpoint, which also provides a (rea-

sonably) well-developed and intuitively appealing framework for analyzing the important

question of stability of equilibria (cf. HENRY [1981]).

We incorporate inertial effects by adding the kinetic energy to (2.1) to give the total

energy

E[u, u«] = \ I | ut |
2 dx + / W{Vu) dx, (2.3)/



and the corresponding equation of motion

utt = divo-(Vu) in ft, (2.4)

together with appropriate boundary conditions.

The loss of ellipticity in the stationary problem (2.2) associated with nonconvex W now

corresponds to a failure of hyperbolicity in the dynamical problem (2.4). The dynamical

instability associated with non-hyperbolic "phases" in problems of mixed type has excluded

establishing even short-time existence of solutions to (2.4). (For W strongly elliptic, i.e.

ruling out phase changes, HUGHES, KATO & MARSDEN [1977] showed the short-time ex-

istence of classical solutions in W2|P(Rn,Rn), for all p > 1 + n/2 — note that this result

does not allow for strain discontinuities.) Moreover, the hyperbolic nature of the dynamical

problem (2.4) allows discontinuities to form in finite time, necessitating the study of weak

solutions that allow shock-like spatial discontinuities in the deformation gradients as well

as the stress. The lack of uniqueness for these weak solutions indicates a deficiency in the

constitutive modeling of moving interfaces of discontinuity. We now describe two important

ways to overcome this problem, although we subsequently consider only the second.

The first approach involves constructing more detailed constitutive models that can

describe the nonequilibrium thermodynamics of multi-phase materials and the evolution

of the interfaces of discontinuity that they allow (cf. ABEYARATNE & KNOWLES [1990],

GURTIN & STRUTHERS [1990], and the references therein). For non-convex stored energy

functions W, the second law of thermodynamics in the form of the Clausius-Duhem inequal-

ity (cf. TRUESDELL & NOLL [1965]) is no longer sufficient to select a unique weak solution,

necessitating additional constitutive assumptions governing the rate of entropy production.

In the context of isothermal one-dimensionai bars that allow phase-changes, ABEYARATNE

and KNOWLES (cf. ABEYARATNE & KNOWLES [1989] and references therein to their pre-

vious work) introduced the concept of a shock-driving traction as the "force on a defect"
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to account for the rate of entropy production due to a moving strain discontinuity. They

then proceeded to show that a single relation controlling the kinetics of the phase transfor-

mation together with an initiation criterion is sufficient to uniquely select a weak solution

for the Riemann problem. This approach was generalized to the three-dimensional theory

(ABEYARATNE & KNOWLES [1990]) but at this stage still seems to preclude application to

specific three-dimensional boundary value problems.

We follow a second route, namely that of regularization. The addition of linear vis-

coelastic damping to (2.4) to yield the quasilinear equation

utt = div(a(Vu) + /iVu t), (2.5)

is sufficient to ensure the existence and uniqueness of strong solutions (RYBKA [1992]). This

allows one to study the problem within the framework of dynamical systems theory and to

analyze conditions for long-time existence, stability of equilibria, structure of the u>-limit

set, etc. Another motivation for studying the regularized problem is the philosophy that a

weak solution of (2.4) is admissible only if it can be obtained as a solution to the regular-

ized equation in the limit of vanishing viscosity (and possibly also other vanishing "higher

order" quantities such as capillarity, thermal conductivity, etc.) (cf. DAFERMOS [1973],

SLEMROD [1989], and additional references therein). Since viscosity forces the energy to

decrease, this is a physically natural method for finding (local) minima of the elastic energy

(2.3). Although we expect to observe the same stationary states as may be obtained by

numerical relaxation (e.g. COLLINS & LUSKIN [1989]), our approach attempts to model

the dynamical process of attaining these stationary states. Thus, for a given ensemble of

initial states, we expect to observe a statistically more representative picture of the material

behavior. Moreover, this approach should provide insight into possible metastable states,

and also allow us to study the evolution of phase boundaries.

As a first step in this direction, BALL et al. [1991] considered several one-dimensional



dynamical model problems with energies lacking absolute minimizers. In particular they

were able to prove that the initial boundary value problem (BVP)

u« = (ul - ux + (iuxt)x -au\ /*, a >0 ,

ti(0,t) = «(M) = 0, (2.6)

u(*,0) = uo(x) 6 W*>°°, «i(^0) = m{x) e L\

possesses globally unique strong solutions. They also showed that the continuum of equi-

librium solutions satisfying

(ul - ux)x - au = 0,

fi(0) = fi(l) = 0 (2.7)

and 3u2 - 1 > o$ > 0 a.e. are exponentially asymptotically stable to perturbations which

do not move or introduce strain discontinuities. Such solutions are weak relative minimizers

(JAMES [1981]) of the total energy

JEM = | f\2
tdx+ [l[\(ul-l)2 + %u2)dx. (2.8)

Jo Jo L

PEGO [1987, Theorem 5.4] showed that an equation similar to (2.6) but with

a = 0, exhibited convergence to equilibria having discontinuous strain; moreover, he showed

that, if the (smooth) initial strain data uo,x(x) has "near discontinuities" at Xi,X2,... then

these "sharpen up" and do not move much (PEGO [1987, Theorem 6.1]). When a ^ 0 one

naturally asks if the additional term in E can promote the creation of new discontinuities

not present in the initial data. In particular, do "typical" solutions realize global minimizing

sequences? The latter behavior is excluded by the following:

Theorem 2.1 ( BALL et al. [1991], Theorem 4.1) There is no solution of (2.6) which

minimizes energy absolutely as t —• oo; i.e. there is no solution such that E(t) -+ 0 as

t —• o o .
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Figure 1: Numerical solution of (2.6), representing u(x,t) for 0 < x < 1; \i = 0.1, a = 500,

and initial data uo(z) = 0.2sech2((x - 0.3)/20)sin7rx, u^x) = 0.

This result (proved by contradiction) is partially illuminated by the following, which

shows that strain discontinuities cannot move, or form, or dissipate in finite time:

Theorem 2.2 (BALL et ai. [1991], Theorem 4.10) Let {u,ut} be a strong solution to (2.6).

Then, if for any to > 0, xo is a point of continuity ofux(to), it will remain so for all t > to-

Likewise, if xo is a point of discontinuity of ux(to), it will remain so for all t > to.

Since we work with u G W^'00, by a point of continuity we mean that ux € L°° has a

bounded representative continuous at xo, and by a point of discontinuity, that it does not.

We note that this result is not expected to hold if, for example, capillarity terms are added,

since they will permit (slow) phase rearrangement.

These results suggest that typical initial data with "smooth" phase boundaries will
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Figure 2: Energy decay for the solution of (2.6) shown in Figure 1 (a = 500).

sharpen up towards "frozen" strain discontinuities and that the creation of new boundaries

will be inhibited, leading to a range of finite scales strongly dependent on the initial data.

The resulting lack of energy minimization is nicely illustrated in Figures 1 and 2, which

displays the results of numerical simulation using a one-dimensional version of the finite

difference algorithm described in §5. For the computation we used a spatial mesh with

6x = 10"3 and a timestep of St = 10~6.

The present paper represents an attempt to extend these results to multidimensional

and more mechanically realistic models. We study a special class of time-dependent dis-

placement boundary value problems associated with anti-plane shear deformations of a

homogeneous, incompressible but not necessarily isotropic hyperelastic solid. Restricting

attention to these simple deformations has the advantage of reducing the number of spa-

tial dimensions while still allowing for interesting two-dimensional geometric effects. For

this reason anti-plane shear has served as an important pilot problem in several fields

(cf. KNOWLES [1976], [1977], KNOWLES & STERNBERG [1980], GURTIN & TEMAM [1981],

12



SILLING [1988a], [1988b], ROSAKIS [1992], FRIED [1991]).

2.2 Anti-Plane Shear

Suppose a homogeneous and incompressible hyperelastic body occupies the three-dimensional

region fl x R C R3 in the unstressed state. The two-dimensional cross-section Q of the

region $1 x R is assumed to be a simply connected and bounded open domain in the (x,y)-

plane, normal to the 2-axis and with a boundary dil that is at least Lipschitz smooth.

For ease of presentation, we will assume the boundary to be sufficiently smooth where so

required. (However, we do remark that, with some additional effort, most of our results can

be shown to require only that dfi possesses no re-entrant corners.) With x = (x,t/,z), a

deformation of the form

u : ( i , y , z ) K ( i , y , z + u(i,y)) (2.9)

is called an anti-plane shear with an uout-of-plane" displacement field u : Q —• R. The

corresponding deformation gradient F = Vu has the simple form

1 0 0

0 1 0F=

UX Uy 1

(2.10)

so that detT = 1, thereby automatically satisfying the constraint of incompressibility.

We recall the equations of nonlinear elastodynamics in the absence of body forces (2.4)

and with additional linear viscoelastic damping of Kelvin-Voigt type:

utt = divr = div(a(Vu) (2.11)

Here fi is a positive constant specifying the size of the viscoelastic damping and we have

taken the material to have unit density. We define the out-of-plane shear stress response

function a : R2 -+ R2 by

= <r((ur,uy)) = (a3i(F),<r32(F)), (2.12)

13



where the deformation gradient F is given by (2.10) and a^i (i = 1,2) are the out-of-plane

components of the Piola-Kirchoff stress a. The z-component of (2.11) then delivers the

two-dimensional equation of motion for the out-of-plane displacement field u for anti-plane

shear :

utt = diva(Vu) + /iAut in ft. (2.13)

In this work we consider the Dirichlet initial-boundary value problem with

u = 0 on 0ft, (2.14)

and with initial data

tti(x,y). (2.15)

Note that (2.14) is (in principle) not a restriction, since nonzero displacement boundary

conditions can be incorporated into the stress-strain response a.

We remark that the question of whether a specific three-dimensional constitutive law

can sustain anti-plane shear is not trivial (cf. KNOWLES [1976] for a discussion of the

isotropic case) and would require a careful derivation of anti-plane shear from the full

three-dimensional theory, as in KNOWLES [1977].

For isotropic incompressible materials the shear stress response cr can be shown to

depend only on \Vu\ = (u2 + v2)* (cf. KNOWLES [1976]); in this case W = W(|Vu|) and

the stress-strain relationship simplifies to cr(Vtt) = g(\Vu\2)Vu, with g(j2) = W(i)/i.

This implies that, in the absence of body forces or boundary effects, there is no preferred

orientation of phase boundaries separating different phases. However, as the numerical

examples in §6.2 and §6.3 indicate, for the dynamical problem under consideration, the

boundary conditions, together with the initial conditions, can play an important role in

selecting a few prominent phases.

Most studies of isotropic incompressible anti-plane shear have been concerned only

with equilibrium solutions (see the references given above). A notable exception is the work

14



of ENGLER [1989] who showed the existence of mild as well as classical solutions to the

dynamical anti-plane shear problem (2.13)-(2.15).

Following ROSAKIS [1992], we also introduce a class of idealized constitutive models

for an anisotropic material possessing cubic symmetry, namely those having a shear stress

response function of the form

a(ViO = (*i(ti.WiH,)) (2.16)

(here the coordinate axes provide the axes of cubic symmetry). Alternatively, we can define

the stored energy functions W,-(7) = $Ci(s)ds for i = 1,2, so that W(Vu) = W\(ux) +

W2(uy) defines a stored energy density function with Frechet derivative DW(Vu) = <T(VU).

We henceforth study the initial BVP (2.13)-(2.15), starting with a discussion and charac-

terization of some equilibrium solutions, followed by existence and uniqueness results for the

full problem in §3. We also attempt to generalize some of the results on the one-dimensional

•models due to BALL et ai. [1991], and comment in §4 on the difficulties encountered.

2.3 Minimizing Sequences and Microstructures

For anti-plane shear the deformation gradient is completely described by the two-dimensional

vector field Vu : Q —• R2, ensuring that any two homogeneous deformations can be rank-

1 connected. Phenomena such as the wedge-like microstructures commonly observed in

martensites (BALL & JAMES [1987], [1990], BHATTACHARYA [1991]), that are due to the

incompatibility between phases not having a rank-1 connection (see (2.19) below), are there-

fore not expected to be observed in this model — in the absence of boundaries or strain

discontinuities in the initial data there are no effects which promote the creation of such mi-

crostructure. However, unlike the one-dimensional models discussed in BALL et al. [1991],

boundaries can produce non-trivial effects: there is no need for additional "displacement

penalties" such as the final term in (2.6). We now consider the effect of zero displacement

15



boundary conditions on the creation of microstructure in the dynamic anti-plane shear

problem.

As discussed in §2.1, we are primarily interested in stored energy functions W(Vu) with

multiple wells, which fail even to be rank-1 convex. Given a minimizing sequence {u*} of

I[u] = / W(Vu) dx (2.17)

in the admissible set

A = {u € Whj>(Q): u = 0 on 0fi}, (2.18)

typical coercivity conditions on W, implying that ||ttjfc||jyi,p is bounded, ensure the existence

of a weakly convergent subsequence in the case p < oo, and a weakly * convergent subse-

quence in the case p = oo (cf. EVANS [1990]). The key questions are whether the limits of

such subsequences are infima of I[u] in the appropriate spaces, whether strongly convergent

subsequences can be found, and, if the latter are ruled out, whether one can characterize

the resulting microstructure (e.g. oscillations or singularities) and its effect on macroscopic

physical quantities such as the energy, average strain, etc. The term "minimizer" has been

used in various contexts and so, before stating our result, we define the notion of interest

to us.

Definition 2.1 A function u G A which realizes the infimum o/(2.17)-(2.18) will be called

an absolute minimizer.

We note that, where it is sufficiently smooth, such a minimizer must satisfy the Euler-

Lagrange equation at all interior points of phase domains and the Hadamard jump condition

on the remainder of SI:

(Vu)+ - (Vu)" = a ® n (2.19)

for some vector a, where n is the normal to the interface. This rank-1 connection implies

that interfaces between two distinct phases must be planar. For the scalar fields of anti-

16



plane shear (2.19) reduces to

(Vu)+ - (Vu)- = an (2.20)

for a scalar a, and the interfaces are straight line segments.

Theorem 2.3 Let W :Vu*-> W(Vu) : R2 -> [0,oo) be a local stored energy function with

N distinct and nonzero potential wells at Vu = A i , . . . , AN, at which W(Aj) = 0 for all j.

• Case N = 2: For two distinct wells at A\ and A2, with A\ and A2 parallel and

of opposite direction (implying that the origin lies in the open straight line segment

connecting A\ and A2 j, there exist piecewise affine minimizing sequences consisting

of successively finer and finer alternating bands of the two phases. In this case, no

absolute minimizer exists.

• Case N > 3: // the triangle describing the open convex hull of any three distinct

nonzero potential wells Ai , A2 and A3 has positive area and contains the origin, then

minimizing sequences can be constructed which converge strongly to an absolute min-

imizer in WQ'P(Q) (p < 00) and weakly* in WQ'°°(Q), and for which infinitesimally

small structures are restricted to accumulate at the boundary. The smallest structures

on any open set fti C ft can be chosen to have size > \ dist(fti,#ft).

Proof:

(Case N = 2) Assume Ai || A2 and of opposite direction. We first construct u0 by

sequentially alternating bands of thickness | Ai j " 1 consisting of the Ai phase with bands

of thickness | A2 I"1 consisting of the A2 phase. The Hadamard jump condition (2.19)

implies parallel interfaces normal to both Ai and A2. Let n = A i / | Ai | and define

= uo( k(x • n)n + (x - (x • n)n)) (2.21)

for & = 1 ,2 , . . . and x G ft. This is clearly a minimizing sequence for the energy /, i.e.

/[tt*]~>0 and Uk satisfies the boundary condition in the (weak) limit (see Figure 3).
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Figure 3: Two terms of a minimizing "twinning" sequence containing two phases.

Secondly, suppose that an absolute minimizer exists. Such a function u would necessarily

realize the infimum I[u] = 0, implying that Vtx = Ai or Vu = A2 a.e. Hence, from u G

Wo'p(ft) (for some p > 1) it follows that u G W^°°(Q) C C(?2). Since Ai and A2 are anti-

parallel, there exists a unique linear, invertible change of coordinates (x,y) = /(£,*?), for

which Ai = /(l ,0)and A2 = /(-A, 0) for some A > 0. In the new variables, uof G C(/(O)),

and it therefore follows from (u 0 f)^ = 0 a.e. that u o f is constant along lines parallel to

the 77-axis. Together with the boundary condition u 0 / = 0 on #/($)), this implies that

u o / = 0 on /(ft), and hence u = 0 on ft. This contradicts the assumption that Vu / 0

a.e.

(Case N > 3) Let Ai, A2 and A3 be three distinct nonzero phases satisfying the

requirements of the claim and define the unit vectors n,j normal to each (ij)-interface

separating phases A; and Aj (cf. Figure 4): i.e. n,j = (A\- - A',-)/ | A't- - A'j |, where

A',- = At/| At- |
2 is the reciprocal vector parallel to A t.

The two ways in which all three phases can meet in a point are shown in Figure 5(a).

Choosing any of the constant u contours, we obtain a family of similar three-sided pyramids

with identical orientations having negative (respectively positive) vertices whose (flat) bases

correspond to triangles in ft.
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(13)-interface

/ (12)-interface

"21

(23)-interface

Figure 4: Orientation of the phase boundaries for three phases in strain space (ux,uy).

Choosing UQ = 0 as our starting point, we can build up a piecewise affine deformation

by successively adding one of the two triangles, scaled to an appropriate size, in any region

of ft where u = 0. Avoiding overlap, we can try to completely tile the domain and thereby

obtain a piecewise affine u for which Vtt € {Ai,A2, A3} a.e. Except for special domains

this will not be possible in a finite number of steps: we will require smaller and smaller

tiles to fill in the gaps. We now show how to do this for a general domain, while limiting

refinement to a layer adjacent to the boundary and having measure zero.

We first note that we can combine two triangles, one the reflection of the other, so as

to obtain parallelograms of any size (cf. Figure 5(b)).

Choose Po to be such a parallelogram with diameter = 1 and let MQ be the two-

dimensional lattice generated by the translates of Po. We define Mk = 2~kMo, and will

write Pk to denote any (closed) smallest parallelogram of Mk (i.e. diamP* = 2~*). The

domain SI can be partitioned into the layers Qk = {x G ft : 2""**1 < dist(z,#ft) < 2~*+2}

— since £2 is bounded we have il = U^l.^ ft* for some finite K > 0.
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(a) (b)

(c)

Figure 5: The proof of Theorem 2.3, N > 3. (a) Three phases meeting in a point; (b)

Forming a parallelogram from two pyramids; (c) Construction of the minimizing sequence.

As our initial choice of tiles we take

= Uk{Pk eMk:Pknilk^ 0}. (2.22)

For any P € Vo, this ensures

diamP < dist(P,dft) < 4 diamP. (2.23)

To see this, note that (2.22) implies the existence of some x 6 P U £lk (for some k).

Therefore dist(P,#£2) < dist(z,dfi) < 2~k+2 = 4diamP and similarly we have dist(P,dfi) >

2~*+1 — diamP = 2~k = diamP. This ensures that the parallelograms in Vo are all disjoint
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from R2\fl and that (2 =

However, the cover Vo does not exclude overlapping. To remove excessive tiles we

observe that if any two parallelograms in Vo have overlapping interiors then one of the two

must be contained in the other. From (2.22) and (2.23) it follows that each parallelogram

has a unique maximal element in Vo which contains it, and that all maximal parallelograms

will be disjoint. Taking V to be the collection of all maximal parallelograms in Vo> we

therefore obtain a partition of Jl that also satisfies (2.23).

For the nested sequence Vk = Vn(Ui<kMi) we have lim sup^^^ Vk = ft and therefore

Urn*—•oomeas('Pfc) == meas(ft) = meas(ft), provided that the boundary has zero measure,

which is the case for Lipschitz domains. (This construction is therefore also possible for

certain domains with fractal boundaries.)

A minimizing sequence is constructed by taking Uk to be piecewise affine on Vk and

Uk = 0 on Sl\Vk- Let Uoo(x) = linu—oo Uk(x) for x E ft. Since meas{x E ft : Uk(x) = 0} —• 0

as k —• oo it follows that Uk -^ Uoo in WQiOO(Q). Finally, since Uk is uniformly bounded in

Wl'°° it also follows that u^u^ in Wo
liP(£2) for p < oo. D

Remarks:

1. There are many other ways of constructing such tilings and the above minimizing

sequences are clearly not necessarily the ones selected by the dynamics. They were never-

theless constructed so as to reflect the numerical observation that larger structures appear

to "lock in" first with successively finer structures subsequently forming around the larger

ones (see §6). That this is also a physically realizable scenario is suggested by the micro-

graphs in VAN TENDELOO, VAN LANDUYT & AMELINCKX [1976] (especially Figure 8);

see also Figure 6 in BALL & JAMES [1987]. Obviously more than three phases can be

used in this process. An example is provided by the 4-well material which can construct

ridges consisting of stacked pyramids, thereby achieving compatibility with the boundary,

see Figure 20 below.
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2. A different proof for the case N = 2 is given in CHIPOT [1991], where it is also shown

that any minimizing sequence will define the Young measure (cf. TARTAR [1983]):

where Sj^. denotes the Dirac mass at A t.

3. The requirement, in the case of three or more wells, that the convex hull of the wells

should have positive area and include the origin, is a constructive version of the following

result on weak* convergence (cf. TARTAR [1983]): if Vuk -^ V t ^ in Z°°(£2,R2) and

Vujt G K a.e., then VtXoo € closed convex hull of K. In order to satisfy the zero boundary

conditions in this case it is therefore required that 0 be in the convex hull of the given finite

number of wells.

4. Theorem 2.3 is clearly also valid if ft is a domain which can be expressed as a finite

union of simply connected domains, each with a Lipschitz-smooth boundary. Thus the

result also applies to some non simply connected domains.

5. For the isotropic problem with at least one nontrivial potential well (cf. §6.2 and

§6.3) at | Vw|= 7 > 0, the last case of this theorem implies the existence of uncountably

many minimizing sequences (compare also with the nonexistence results in BAUMANN &

PHILLIPS [1990], who consider a much more restricted class of stored energy functions).

In §4 we discuss the question of whether the nonexistence of absolute minimizers can

actually prevent solutions from minimizing the energy.

3 The Dynamical Problem

3.1 The Transformed Problem

RYBKA [1992] established global existence and uniqueness of solutions to the general n-

dimensional problem

utt = divr = div(<r(Vu) + Vut), (3.1)

22



which allows phase changes, and we will apply his approach to the dynamical anti-plane

shear problem (2.13)-(2.15). Although the emphasis in RYBKA [1992] is on the traction-free

boundary value problem, he indicates that his methods also apply to the Dirichlet boundary

value problem. We now present the general ip-extension of RYBKA'S results and establish

the existence, uniqueness and regularity of solutions for the Dirichlet problem.

The crucial step in RYBKA'S work was his n-dimensional generalization of the one-

dimensional transformation first used by ANDREWS [1980] and subsequently in ANDREWS

& BALL [1982], in PEGO [1987] and (in a slightly modified form) in BALL et al. [1991].

Using this transformation (which depends on the boundary conditions), the equations of

elastodynamics with viscoelastic damping (3.1) can be shown to be equivalent to a semi-

linear degenerate parabolic system which can be analyzed by standard methods of semi-

group theory and the theory of dissipative dynamical systems (as presented for example in

HENRY [1981]). For the anti-plane shear problem (2.13)-(2.15), RYBKA'S transformation

involves finding the irrotational vector fields P ,Q : fi—»R2 satisfying

divP = ut and P + Q = //Vu, (3.2)

curlP = curlQ = 0. (3.3)

The Dirichlet boundary condition ut = 0 on Oil becomes divP = 0 on dfi, and (2.13)-(2.15)

can be shown to be equivalent to the system

(3.4)

~ irD<r((P

with the projection *£> = VA^div , where A ^ 1 / is the solution to the Poisson problem

At; = / with v = 0 on dQ, (see Lemma 3.3 below). The initial conditions for the transformed

problem are given by

P(x,0)==Po with divPo = it*|t=o, (3.5)
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Q(x, 0) = Qo = iiVu\t=0 - Po. (3.6)

Before we make this equivalence more precise, we first collect some results about the pro-

jection 7T£> = VApldiv for future reference.

Lemma 3.1 Properties of the projection

7T£> is a projection on LP(Q, R2) for 1 < p < oo, i.e. *D G Z ( L P ( Q , R2)) and K2
D = irD, with

*DLp(n,R2) = {V<£ : 0 6 VFo'p(ft,R)} a c/osed sufespace o / i^ . Hence, each P €

can be uniquely identified with the gradient of some potential <f> £ WQ'P.

for f 6 l p , g 6 I p ' , l /p+ 1/p' = 1; i.e. irD \LP is the adjoint of-nD \LP>

Lp = 7T£)//P © (I - TTD)LV for 1 < p < oo, tuftA orthogonality in the sense of the duality

pairing between Lp and Lp . For p = 2, 7T£> provides an L2-orthogonal decomposition of

L2.

Proof:

Although the above properties can be established directly, they also follow from the relation-

ship between TT£> and the Helmholtz projection for vector fields in Lp as developed in FUJI-

WARA & MORIMOTO [1977], see RYBKA [1992, Appendix]. Since the map V : WQyP-*7rDLp

is an isomorphism, each P G 7T£>ZP can be uniquely identified with the gradient of a potential

<(> in W%'p. •

We next show that irr> acts as a Helmholtz-type projection by removing the rotational

component from a vector field.

Lemma 3.2 The map div : irDLp(Q,R2) fl WliP(Q,R2)-^Lp(Q,R2) is an isomorphism of

Banach spaces, i.e. we have the following equivalence of norms:

forPe*DVnW**. (3.7)
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Proof:

From Lemma 3.1 we have the characterization

T T D I P n Wl* = {V<f>: <f> G W£* n

and we therefore only need to show that ||A<£||LP = | |V^||^i l P . Since <j> € WQ'P we obtain

IIV<£|IL* - IMIjyi.p from Poincare's inequality (ZIEMER [1989]), and since A : WQ* D

W2*-*LV is an isomorphism of Banach spaces for all p G (l,oo) (GRISVARD [1985]) (this

requires only that SI is bounded and that #£1 is C l f l or piecewise smooth without any

re-entrant corners), we have ||A<£||LP = ||<^||T^2,P — HW||wi,p> proving the lemma. •

As in the one-dimensional case, transforming the problem into the P , Q variables also

makes the role of the viscoelastic dissipation more apparent. This dissipation is represented

by the linear operator fiVdiv in (3.4) and has a limited smoothing effect on the P compo-

nent, while the absence of a similar term for the Q component in (3.4) indicates that initial

discontinuities in Q — which via (3.2) correspond to initial discontinuities in the displace-

ment gradient Vw — need not be smoothed out by the dynamics (although we do not rule

out the possibility that the nonlinearity can also cause some smoothing of singularities).

We now summarize the important properties of Ap = -Vdiv, where p G (1, oo) indicates

that its domain D(AP) is chosen to lie in the base space 7rjpip(Q, R2). The following Lemma

extends the results in RYBKA [1992] to the case p ^ 2.

Lemma 3.3 Properties of the operator Vdiv

The linear operator Ap = —Vdiv with domain

D(AP) = -KDLV n { P £ W2*(tt,R2): divP = 0 on

provides an isomorphism from D(AP) to

Ap is a sectorial operator with D(AP) = ITDW1IP. Ifp = 2, A2 is self adjoint and positive

definite.
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Proof:

Av is the composition of the two isomorphisms, div : D(AP)—>WQ%P and V : W^iP—•7T£>£P,

and is therefore an isomorphism from D(AP) to TT£>£P. The proof that Ap is sectorial follows

exactly as in the proof (RYBKA [1992, Theorem 3.1]) that the associated linear operator

with Neumann boundary condition is sectorial. The only difference is that here we appeal

to Lemma 3.2 instead of RYBKA [1992, Lemma 2.3].

We now show that D(A$) = XDW1*. For p = 2 the selfadjointness of A2 (Lemma 3.3)

gives the associated bilinear form ( J 4 2 P , P ) = ||didP||2. By Lemma 3.2 this provides an

inner product on the space TT^W1'2 and it therefore follows (KATO [1966, Theorem VI.2.23])

that A\ is selfadjoint with domain D(A%) = 7T£>W1'2. For general p G (2,oo) we have

from TRIEBEL [1978, Theorem 1.15.3/1] that D(A$) = [nDLp,D(Ap)]i; where the square

brackets indicate complex interpolation. The above characterization of D(AP), together

with TRIEBEL [1978, Theorem 1.17.1/1], gives

[TTDIP , D(AP)]I = [*DLP H Ip,7TDLp H {P G W2* : divV = 0}] L

= irDLp n [lp , {P G W2>p : div? = 0}] 1 .

The boundary condition does not survive the process of interpolation (TRIEBEL [1978,

Theorem 4.3.3/1]), and it therefore follows from TRIEBEL [1978, Theorem 4.3.2/2] that

D{A\) = TTDIP n [ip, VF2'P]I = TTDIP n vrljP = irDwl*.

That A2 is self-adjoint and positive definite (and therefore also sectorial) is shown in

RYBKA [1992, Theorem 3.7 and Proposition 3.8]. D

We now show that a solution to the transformed system (3.4) delivers a unique solution

to the original problem (2.13)-(2.15).

Lemma 3.4 J/(P,Q) is a weak solution of the transformed system (3.4) that satisfies, for
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some p,q G (l,oo),

P G C([0, T), *DL*> n W1*), Q G C([0, T), *DL»), (3.8)

P ( 6 C([0,T),7rDL* nW1 ' ' ) , Qt G C ( ( O , T ) , X D L « ) , (3.9)

FtD(Aq) forte (0,T), (3.10)

tfeen t/iere exists a unique weak solution u to the original anti-plane shear problem (2.13)-

(2.15), which satisfies

uuVue C([0,T),Lp), ut = 0 on 0ft, (3.11)

/iVttt + 7TDa(Vu) G C((0, T), TTDI9 n W1^), (3.12)

and is related to the transformed system (3.4) via (3.2).

Proof:

We can set /x = 1 without any loss of generality. With ut = divP and F = P + Q, Lemma 3.2

implies that

P G C([0,r),iri)2;*n W1*) and Q G C([0,T),irz>Ip)

if and only if

ut G C([0,T),Xp) and F G C ( [ 0 , T ) , T T D I P ) .

To see that F = Vu, we note that (3.4) implies Ft = Pt + Qt = VdivP = Vwt; this also

gives Vut G C((0,r),7T£)I9). The boundary condition ut = 0 follows from P G i?(Ag) for

t > 0 and the characterization of D(Aq) in Lemma 3.3. Finally, from the P equation in

(3.4) we have irD(r G C((0,T) ,TTDZ,P fl VF1'9) and therefore

utt = div(VdivP + ir^cr) = dtv(Vnt +cr) G C((0,T),X9),

which shows that u is a solution to the original problem. D

The projection TTD is closely related to the Helmholtz decomposition of a vectorfield

into its divergence-free and curl-free (irrotational) components. For example, let TT// be
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the Helmholtz projection which maps a vectorfield f : fi—>R2 uniquely to a divergence free

vector field that vanishes on the boundary, i.e. 7r//f = 0 on dQ. In the framework of fluid

dynamics, 7r//f often represents the velocity field of an incompressible fluid contained in the

domain fi, with no penetration or slip on the boundary. Then TT// = I - TT£> - TT0, with TT£>

as above and TTof = V<£, where <f> is the harmonic solution to the Poisson problem A<£ = 0

in ft, d<t>/dn = (I - 7rD)f • n on dtt.

The relevance of the Helmholtz decomposition I = 7r# -f TT£> + TTO for the equations of

elastodynamics Uu = ditrr, where r represents the total stress, follows from the observation

that the dynamical evolution of the material is fully determined by the divergence of T, and

is unaffected by the addition of an arbitrary irrotational vector field (or, more generally, a

tensor field) to r.

We do not know whether this projection is merely a technical device or has a "natural"

physical significance. However, we remark that general constitutive laws, e.g.

r : (Vti, Vut) H+ a(Vu) + /xVut, (3.13)

with nonlinear a can destroy the gradient form of the vector fields Vtt and Vut. The pro-

jection ir£)T = 7T£><7 effectively selects the part of the total stress which, via the divergence,

drives the dynamics. This is a nonlocal operation.

Alternatively, one can view (3.4) as a dynamical attempt at minimizing the potential

energy / = JQ W(F) dx under the constraint that F must correspond to the gradient of

some scalar function u with it = 0 on dSl. Since <r(F) = dW(F)/d(F), -<r(F) represents

the "direction of steepest descent" for the unconstrained problem. However, adding the

constraint severely limits the allowable directions along which F can relax in an effort to

decrease the total stored elastic energy / . Writing Vu = F, the Q-component of (3.4) can

be written as

liFt = -<xD<r(F) + P t , (3.14)
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and in the presence of a large viscoelastic damping \i » 1, and a corresponding rapid

decay of the energy / , we can change to the "fast" time r = <//z, giving

FT = - -PT « -ir£><r(F) (3.15)

(Pt can be shown to decay to zero as t—KX>). This justifies interpreting — 7T£><7(F) as the

direction of steepest descent along the constraint curves.

The appropriate choice of such a change of variables, which transforms the problem of

interest into a more accessible semilinear parabolic system of PDEs, underlies much of the

analysis of ANDREWS [1980], ANDREWS & BALL [1980], PEGO [1987], BALL et al. [1991]

and RYBKA [1992]. This raises the question of whether similar transformations can be

derived in a more systematic fashion and for a larger class of problems. We now generalize

and consider the class of problems given by

utt = Aut + divT (3.16)

where A is a general invertible linear operator, T contains the nonlinear terms and u can

be scalar, vector or tensor. We will show that the transformations employed, in (3.2)-(3.4)

and the above references, can all be viewed as derived from a formal diagonalization of the

linear part of (3.16).

By setting v = ut we obtain the semilinear "first order" system

(3.17)

whose linear part can be diagonalized by means of a linear change of variables. Elementary

=
0 /

0 A

u

V

0

divT

matrix algebra gives this diagonalization as

B - l

A -I

0 /

0 A

A-1

I

A-1

0
B =

B~xAl

0

1 0

0
(3.18)
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with B an arbitrary invertible linear operator which need not commute with A. The asso-

ciated transformation to the new variables p and q is given by

(3.19)

or, equivalently, ut = v = Bp and p + q = B~lAu. This transforms the original problem

(3.16) into the form

p

9

0 /

A -I

u

V

Pt B~lAB 0

0 0

P

9

(3.20)

which shows that a further simplification in the nonlinear term is possible by choosing

B = div. It is in this choice that the boundary conditions will play a crucial role. We

therefore see that the "algebraic" relations ut = div p and p + q = Vu — which are

encountered, in one form of another, in all of the above works — result directly from the

diagonalization, whilst the particular choice of spaces and projection operators onto these

spaces are necessary for the transformed problem to be well-posed as a semilinear parabolic

PDE.

Remark: Regularization methods involving capillarity or second order strain gradients

result in the addition of a term AAu to the evolution equations (2.11) and (2.13). Trans-

forming as above, this leads to the same nonlinearity, but with a strictly dissipative linear

operator in (3.20).

3.2 Existence, Uniqueness and Regularity of Solutions

The global existence of unique strong solutions to the anti-plane shear problem in its

transformed form and with a globally Lipschitz continuous stress-strain response follows as

in RYBKA [1992, Theorem 3.7] (although he only sketches the proof for the case p = 2). We

present a slightly sharper version which is valid for all p € [2, oo).
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Theorem 3.1 Global existence and uniqueness.

For a globally Lipschitz continuous stress-strain response a and initial data Po € 7T

and Qo 6 *DLP, there exists a unique global solution to the transformed boundary value

problem (3.2)-(3.7) with

P G C ([o, oo), *Dw1*) n c1 ((o, oo), cy) n c ((o, oo), D(AP)) ,

for all 0 < v < 2(1 - 1/p), (3.21)

QeC ([0, oo), *DLP) fl C1 ((0, oo), *DU>). (3.22)

We write z = {P,Q}, -0* = {/iApP,0} and /(z) = nDa((P + Q)//i) {1,-1} and treat

(3.2)-(3.6) as the abstract parabolic equation

zt + Bz = /(«) (3.23)

on the Banach space X = ITDLP X ITDLP. That J5 is a sectorial operator follows from the

diagonal structure of B and the sectoriality of Ap (Lemma 3.3). As in the one-dimensional

problem we therefore have that D(BQ) = D(A°) x TC^L9 (i.e. the resulting linear semigroup

causes no smoothing in the Q-component). We choose a = ^ and use the fact from

Lemma 3.3 that D(A$) = KDW1*.

As in the case with Neumann boundary conditions (RYBKA [1992, Theorem 3.1]), it

follows from the assumption that a is globally Lipschitz continuous and the fact that ICQ

is a projection operator on Lp (Lemma 3.1), that

/ : D(B2) = ICDW1* x nDLp-+*DLp x *DV (3.24)

is a globally Lipschitz continuous map. Theorems 3.3.3 and 3.5.2 of HENRY [1981] (together

with the modification in MIKLAVCIC [1985]) therefore yields a local solution

z € c([o, T), x*) n ̂ ((o, r), x^) n c((o, r), D(B)) (3.25)
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for all 7 < 1 and some T > 0. Here X"* = D(B"|f) (see HENRY [1981]) and from HENRY [1981,

Theorem 1.6.1] we have that D{A}) C C for 0 < v < 2(7 - i ) . In terms of {P,Q}, this

implies that, for all 0 < v < 2(1 - -),

FeC ([0, T), nDW^) n C1 ((0, T), T D C ) n C ((0, T), Z?(AP)), (3.26)

Q e c ([0, T),*DV) n c1 ((o, r) , iroi"). (3.27)

The assumption that / is globally Lipschitz continuous allows us to estimate

||/(x)||x SifCl + IMI^) (3.28)

and therefore appeal to HENRY [1981, Corollary 3.3.5] to establish global existence of solu-

tions. Uniqueness follows in a standard fashion by subtracting two solutions and using the

global Lipschitz continuity of a together with Gronwall's inequality. D

Note that, by Lemmas 3.2 and 3.4, we have therefore shown the existence of global

solutions to the original anti-plane shear problem (2.13)-(2.15) with

ut e C([o,oo),^)nc1((o,oc),y)nc((o,oo),iy0
1'p), (3.29)

Vu € C([0,oo)JirDLp)DC1((0ioo),icDLp), (3.30)

where Y = Lq for any q < oo if p = 2, and Y = Cc for any € < 1 - 2/p if p > 2.

We observe that this proof requires very little of the nonlinear term /, and hence of the

constitutive law o, other than it be globally Lipschitz. However, as we discuss in §4.1, this

restriction excludes many realistic material models. Nor does the proof give any information

regarding boundedness of solutions. A priori bounds may be obtained by considering the

evolution of total energy:

E = \\\ut\\
2 + / W(Vu) dx (3.31)

x. (3.32)
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As in the one-dimensional example, a direct calculation shows that

^ 2 (3-33)

on solutions, and hence that E is nonincreasing. If W(Vu) satisfies a reasonable growth

condition such as (4.1) below, then the bounds on E and (3.33) imply that ||ut|| = ||dtvP||

and ||Vu||LP = ||(P + Q)/A*IIZ^> (for some p < oo) are bounded above for all time. This does

not, of course, rule out the possibility of stress concentrations in which || Vu||L, for some

q > p or even || Vujl^ become unbounded (perhaps in finite time), but it gives some global

stability information. Also see §4.1 below.

Linear stability results of the type discussed in BALL et al. [1991] for one-dimensional

problems may also be obtained. For the problem with traction-free boundary conditions

RYBKA [1992, Theorem 5.7] proves a restricted version of stability for certain smooth stored

local elastic potentials W possessing two isolated but rank-1 connected local minima. As

in the results for the one-dimensional models, this holds only for continuous perturbations,

under which discontinuities do not move. However, it is unclear if such results are relevant

in the case of anti-plane shear, since it is unlikely that this restricted class of motions is

itself stable within the larger space of three-dimensional perturbations.

4 Some Open Problems

4.1 On Growth Conditions and Alternative Strategies

RYBKA's results and their generalization in Theorem 3.1 above, are the first for general

constitutive laws a, permitting phase changes of the type of interest in this work. However,

the above existence proof and the results of RYBKA on which it is based, is restricted in

that it only applies to constitutive laws for which a is globally Lipschitz. In the case of

anti-plane shear it can be argued that this constitutive constraint, and the upper bound

on wave speeds that it implies, is no less realistic than the assumption of incompressibility.
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Nevertheless, more general coercivity and growth conditions of the form

c + d\F\p < W(F) <C + D\F\P , with d, C, D > 0 (4.1)

have played an essential role in the analysis of specific boundary value problems of nonlinear

elasticity (cf. ANTMAN [1983] and the references therein), and it is therefore natural to try

and extend the above results and those of RYBKA to this case. However, even in the special

case of anti-plane shear one encounters serious problems in such an attempt.

The assumption that a is globally Lipschitz continuous is essential in the proof of Theo-

rem 3.1, as in RYBKA [1992], for both local and global existence. Local existence relies here

on a contraction mapping principle which requires a to be at least locally Lipschitz con-

tinuous (HENRY [1981, Theorem 3.3.3]), whilst global existence follows from GronwalTs in-

equality (HENRY [1981, Theorem 3.3.5]), which in this case merely ensures that the solution

do not blow up in finite time. For a more general stress-strain relationship a corresponding

to (4.1) this method therefore fails at the outset.

In an attempt to overcome problems associated with the polynomial-type growth of the

more general W in (4.1), one can try using a Faedo-Galerkin approach. However, this line of

attack fails in a different manner: the nonconvexity of W (due to multiple potential wells)

prevents passing the weak limit of the resulting Faedo-Galerkin approximating sequence

(in successively higher but always finite dimensional spaces) through the nonlinearity. This

problem is made more severe by the fact that we only have an ODE in Q, which results in

rather weak a priori estimates for the Faedo-Galerkin approximation of the Q component.

An alternative approach would be to show that, for certain constitutive laws, the so-

lution avoids the formation of stress concentrations, and that the displacement gradient

never explores the regions of the constitutive laws corresponding to arbitrarily large strains.

This was possible in one dimension, and L°° estimates were obtained by using geometric

contraction arguments on the (/-equation (see PEGO [1987] and BALL et al. [1991]). The
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aggressively nonlocal nature of the projection TTD = VAj^div in n-dimensions makes the

exploitation of geometric information very problematic, even for simple choices of a , as

in the cases chosen for numerical work. However, the local properties of projections such

as 7T£> have received very little attention and progress may be possible here, at least for

suitably chosen boundary conditions, constitutive laws and geometries.

4.2 Strain Discontinuities and Energy Minimization

In the one-dimensional case, the transformation to the variables p, q made it possible to

show that strain discontinuities (i.e. jumps in ux) cannot be created or destroyed in finite

time, and therefore cannot migrate into regions of continuity in ux (Theorem 2.2 above).

It is interesting to note that this property also holds in higher dimensions, at least for the

strongly damped linear wave equation

utt + aAut + An = 0 on ft, (4.2)

u = 0 on an, (4.3)

where A is a self-adjoint, positive definite, lineaT elliptic paTtial differential operator (PDO)

of second order with smooth coefficients, and a is a fixed constant (LARSSON, THOMEE &

WAHLBIN [1991]). Under slightly more restrictive assumptions, this result can even be

extended to the general linear problem

utt + Aut + Bu = 0 on ft, (4.4)

u = 0 on dfi, (4.5)

where B is an at most second order linear PDO with sufficiently smooth coefficients and

provided that one restricts attention to an interior subdomain of il which does not touch

the boundary dQ (WAHLBIN [1991]). This, together with the numerical evidence presented

in §6, is strongly suggestive that the viscoelastic damping prevents the propagation of strain
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discontinuities in the (nonlinear) anti-plane shear problem. However, when attempting to

generalize the one-dimensional result to the (two-dimensional) anti-plane shear problem,

one is faced with the fundamental problem of choosing an appropriate function space in

which to study the propagation of discontinuities (for the above linear problems this is

avoided due to the existence of an explicit representation of the solution). Although L°°

suffices for the one-dimensional case, it fails here since irpL^fcL00 (this follows from the

fact that A51IOO£VF2'00 in two and higher dimensions). The Sobolev spaces VF1^, with

p > 2, do not allow jump discontinuities in Q and hence in Vtt (by standard imbedding

theorems) and are therefore also inappropriate. Possible alternative choices are the spaces

of functions having bounded variation (BV) (cf. ZlEMER [1989]), bounded mean oscillation

(BMO) and the appropriate Besov spaces (cf. BENNET & SHARPLEY [1988]), but in these

cases either the physical interpretation is unclear or the semigroup theory underdeveloped,

or both. We also remark that this problem of choosing a function space which generalizes the

class of piecewise smooth functions, is a basic problem in hyperbolic systems of conservation

laws (cf. DAFERMOS [1983]).

In addition, we remark that the proof of the persistence of strain discontinuities in the

one-dimensional models of BALL et al. [1991] relies to a large extent on the fact that the

projection merely removes a smooth component (here the average) and therefore cannot

directly influence the evolution of strain discontinuities. In higher dimensions this is no

longer true, as the projection 1 — TT£> acts nonlocally and without any apparent smoothing.

It was shown in BALL et al. [1991] (Theorem 2.1 above) that the related one-dimensional

model (2.6) cannot possess any solutions which minimize the energy. The proof of this result

involved showing that in this case minimization implies pointwise stabilization, and therefore

the existence of an absolute minimizer, contradicting the fact that no such minimizer exists

for this problem. This motivates the following question: can a solution to the anti-plane

shear problem (or the general n-dimensional problem) minimize energy if the associated
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total stored energy functional does not possess an absolute minimizer? Proceeding as in

the proof for the one-dimensional case, we first note that minimization implies that P + Q

must converge in measure to the potential wells of W as t—•oo. For smooth stored energy

functions W which satisfy the growth condition

d + c|F|2 < W(T) <D + C|F|2, c, C, D > 0 (4.6)

it follows as in RYBKA [1992, Theorem 4.6] that P->0 in W2'2 as t-+0, and we can therefore

deduce that Q converges in measure to the potential wells (we note that (4.6) is the natural

growth condition if a is globally Lipschitz continuous). For smooth W possessing locally

convex potential wells we therefore have that Q converges in measure to the potential

wells of W and therefore also to the (isolated) zeroes of a. However, contrary to the one-

dimensional case, this is not sufficient to show that (1 — TT£))CT—•O in any space which will

allow us to conclude (as in the one-dimensional case) that the Q component of (3.4) satisfies

the asymptotically autonomous ODE Qt = —cr(Q) as t—KX, which in turn would imply

pointwise convergence of Q and thereby give the required contradiction. Clearly, the lack

of knowledge about the pointwise action of the projection TT£> makes the question of energy

minimization much more subtle than in the one-dimensional case.

In §6 we present numerical simulations of dynamical problems both with and without

absolute minimizers, as characterised in Definition 2.1 and Theorem 2.3. The evidence is

suggestive of failure to minimize in the latter case (two-well potential) and of minimization

in the former (potentials with three or more wells surrounding the origin, and isotropic

potentials). We discuss this further in §7.

5 A Numerical Algorithm

In this section we describe a finite difference approach to the numerical solution of the

above dynamical anti-plane shear problem. We utilize a finite difference spatial discretiza-
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tion together with an adaptive timestepping scheme. Here the viscoelastic damping is

incorporated in an implicit fashion and the nonlinear stress response in an explicit fashion.

At each time step the resulting linear system is iteratively solved using a preconditioned

conjugate gradient method.

We were unable to find any theoretical results that establish the accuracy or even the

convergence of numerical solutions to the general problem (2.13)-(2.15), derived from a

non-convex stored energy function. The isotropic problem is considered in FRENCH &

WAHLBIN [1991], who establish optimal order error estimates for spatial finite element

discretization (sub-optimal in the case of piecewise linear finite elements). In their study

time discretization is handled by an "energy-preserving" scheme.

In establishing the specific form of the methods presented here, we were guided by classi-

cal approaches to the linearized problem (CANUTO, HUSSAINI, QUARTERONI & ZANG [1988],

MEIS & MARCOWITZ [1981]), the practical experience gained with related nonlinear prob-

lems in the engineering literature (SACHDEV [1987], WOOD [1990]) and by numerically ex-

perimenting with various schemes for the linearized as well as the fully nonlinear equations.

We first describe discretization in time and then, seperately, discretization in space.

Let 6t > 0 be the time step and define

u"(x, y) = ti(s, i/, uSt), v = 0 ,1 , . . . (5.1)

to be the value of the solution at each time step. Solutions to (2.13)-(2.15) are smooth in

time (see Theorem 3.1) and it therefore makes sense to use a finite difference approximation

for the velocity ut which is first order in time. The acceleration utt is approximated by the

central difference scheme

utt « K + 1 - 2uv + w ^ 1 ) / ^ 2 , (5.2)

and the viscoelastic damping is approximated by the implicit Euler method (cf. WOOD [1990])

fiAut * ^{Au^1 - AIL")/St. (5.3)
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This choice was motivated by the following observation. Numerical experiments with the

anti-plane shear problem as well as with other one-dimensional models of BALL et al. [1991]

reveal an initial stage of rapid pattern selection during which the larger structures set in

and the finer structures, present in the initial data, seem to disappear (provided they are

smooth). The latter information is not lost, however, as it plays an important role in

the long term evolution and creation of microstructure. A simple and striking example of

this numerical manifestation of sensitive dependence on initial conditions was presented in

HOLMES & SWART [1991]. It implies that care should be taken to accurately capture the

dynamical evolution of the high modes. In this respect, the implicit Euler method seems to

be an appropriate choice.

The nonlinear stress response diva(Vu) is incorporated in an explicit fashion. This

results in the one-stage two-step implicit algorithm

(u"+1 - 2v? + uy'l)/6t2 = divo{Vuv) + /x(A^+1 - Au")/6t (5.4)

or

(/ - /x6tAK+1 = (2/ - ii6t&)u" - v?-1 + ft2dtwr(V^), (5.5)

requiring at each time step the full solution at the previous two time steps. Although u° is

easily obtainable from the given initial data u(x,y,0), an additional approximation to the

initial velocity itt(z,j/,O) is required, so as to be able to start the algorithm. In an effort

to preserve the first order (in time) accuracy of the approximation to ut, we introduce the

fictitious term if"1, representing the solution at t = -£t, and employ the centered-difference

approximation

t % . o « ( l ' 1 - | r l ) / 2 « t (5.6)

to give

l 1
m O . (5.7)
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Together with (5.5) at v = 0 this provides an expression for ti1, namely

(2/ - fiSt A)ul = (21 - pit A)u \ts0 + 26t ut |t=o (5.8)

which we use to start marching in time.

By assumption each uv satisfies the boundary conditions, so that at each time step t =

u6t we can obtain it"*1 by solving a well-posed elliptic boundary value problem containing

uv and u1""1 as data. This motivates the following spatial discretization.

For some mesh size ft > 0 we define the regular two-dimensional grid on the lattice

{(x, y) = (ift,jft),0 < i, j < j^} (we restrict ourselves to the square domain for the sake of

simplicity). We use ujj to denote the finite difference approximation of the solution u at

x = ift,y = jh and t = vbi. The Dirichlet boundary conditions are imposed by choosing

N = I/ft to be an integer and requiring that, for all v = 0 ,1 , . . . ,

u\- = 0 for z\j = 0or TV. (5.9)

The action of the Laplacian t\uv is approximated by the usual 5-point difference

molecule:

Att"(tfc,ifc)«^i?^<>j, (5.10)

where D\ denotes the finite difference operator

< _ w + < J + 1 + <,-_! - 4H&: (5.11)

As we mentioned in §2.2, in addition to isotropic constitutive laws we will also investigate

stress-strain response functions a which are of the form

^(Vit) = (cri(tix),a2(tty)), (5.12)

although more general constitutive laws can also easily be handled with the current ap-

proach. For the divergence term diva(Vu) = C\(ux)x + O2(uy)y we therefore use the
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conservation-form finite difference approximations

y=jh

The resulting fully discretized scheme can then be written as

j + (C4 + c s ^ X j 1 (5.15)

together with the boundary conditions

tig"1 = 0 fort,j = OorJV, (5.16)

where c\ = —fi6t/h2, C2 = 2, C3 = (6/ — /x)6^//i2, C4 = —1 and C5 = 0. Other choices of time

discretization lead to expressions of the same form in (5.15). For example, approximating

the viscoelastic damping by the Crank-Nicolson method (WOOD [1990]), instead of the

implicit Euler method (5.3), corresponds to

liAut « / i(A/+ 1 - Au"~l)/26t (5.17)

and a finite difference scheme of the form (5.15) with c\ = —n6t/(2h2), C2 = 2, C3 = (6t/h)2,

C4 = — 1 and C5 = —fi6t/(2h2). Similarly, the explicit forward Euler approximation

fxAut « rtAu" - Au'-^/St (5.18)

is given by C\ = 0, C2 = 2, C3 = (St + fi)6t/h2, C4 = - 1 and C5 = fi6t/h2.

The fully discretized version of the first time step (5.8) has a similar form. The ttmestep-

ping was implemented in the following adaptive fashion. We started with a small time step

(6t = 10~6 for the 200 X 200 mesh used in §6) to accurately capture the initial rapid se-

lection of large scale structures, and then slowly increased the time step as the evolution
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process slows down. More precisely, after each 100 time steps the maximum wavespeed c

of the associated (locally) linearized undamped problem was estimated, and the time step

then doubled provided that an overly conservative CFL-condition was satisfied (we used

the criterium h/6t < 50c for the numerical examples in §6). This continued until some

preset maximum time step was reached (chosen as 10""3 for the examples presented below).

Solving the linear system at each time step is equivalent to inverting a highly struc-

tured, banded, symmetric (N - I)2 x (N - I)2 matrix. This sparseness and symmetry was

exploited by storing the matrix in an upper packed band storage mode. At each time step

i/, solution of the linear system (to obtain u^1) was accomplished in an iterative fashion,

using a vectorized conjugate gradient method with incomplete Cholesky factorization as the

preconditioner (the relative residual error tolerance was chosen as 10~12) as implemented

in the subroutine DSDCG from the Engineering and Scientific Subroutine Library (ESSL

Release 5, IBM).

The algorithm was implemented in vectorized form on the IBM 3090-600 J of the Cornell

National Supercomputer Facility. The results of several numerical experiments are presented

and discussed in §6. To the best of our knowledge these constitute the first numerical

simulations of an anisotropic time-dependent anti-plane shear problem that can undergo

phase changes.

6 Numerical Results

6.1 Introduction

We now present some numerical simulations of the dynamical evolution of patterns and

microstructure in both the isotropic and anisotropic anti-plane shear problems described

in §2, using the finite difference algorithm described in §5.

The dynamical creation of microstructure raises some interesting numerical issues. The
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results of any numerical model (of a continuum phenomenon) which may eventually display

structures on the scale of the mesh have to be interpreted with great care. As in the

numerical examples presented below, this numerical manifestation of complicated equilibria

(or asymptotic solutions) also rears its head in the related investigations in SILLING [1988a],

COLLINS & LUSKIN [1989], BALL et al. [1991] and HOLMES & SWART [1991], as well as in

numerical problems of engineering concern in, for example, viscoplasticity, turbulence and

optimal design. Even when regularizing terms, such as those corresponding to viscosity,

capillarity or temperature effects, are included in the corresponding analytical models —

thereby forcing all solutions to converge to one of a finite (but possibly large) number

of equilibrium solutions — such equilibrium solutions can still contain sufficiently small

structures so as to render the full numerical resolution of the smaller scales impractical.

One possible solution to this dilemma is to interpret the numerical and analytical models

as different but related dynamical systems in order to determine the conditions which will

imply a gradual numerical refinement and to estimate the rate of this refinement. This

would motivate the current belief that, over sufficiently short periods of time and before the

finite dimensional barrier has had a severe effect, the numerical solution of the "truncated

system" will provide an accurate description of the real solution. A motivating example is

provided by the remarkable accuracy with which the asymptotics of a "nonlocal" model of

BALL et al. [1991] are followed, for finite times, by a numerical solution based on a finite

number of Fourier modes (see §5—§6 of BALL et al. [1991]). The modal asymptotics allow

one to predict a "crossover" time beyond which the numerical solution and the true solution

seperate. Unfortunately, such detailed estimates are not available for the anti-plane shear

problement problem.

For all the simulations described here we used a 200 x 200 mesh on the square domain

ft = (0,1) x (0,1). This resolution quickly became insufficient as fine structure appeared

(especially at the boundary) and generally runs were terminated at the stage when spatial
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wavelengths of the order of three times the mesh size started to appear. After starting

with a time step of 10~6, adaptive timestepping was implemented, as described in §5, so

as to allow the gradual increase (when permitted) to a maximum time step of 10~3. In

the numerical examples shown below, the specific form of the stress-strain response a was

chosen to display interesting and revealing behavior of the anti-plane shear problem, and

an appropriate value for \i was then experimentally determined so as to ensure that all the

examples evolve at roughly the same rate. In this respect, note that the equation of interest

(2.13) is invariant under the transformation

i,ra,r/i), (6.1)

which provides a basis for comparing different choices of /z.

It should be noted that the particular stress-strain response functions a chosen in the

numerical examples all fail to be globally Lipschitz continuous (see Theorem 3.1). However,

in the context of the numerical solutions, we observe that Vw and ut are uniformly bounded

(in L°°) over the period of numerical integration, and that there is no numerical evidence of

the development of singularities in Vu. This implies that we can consider a to be modified

outside a region of compact support so as to be globally Lipschitz.

The figures in this section were generated by draping a lower resolution (100 x 100)

wireframe over the data set (without smoothing). This low resolution obviously causes

some aliasing effects, thereby limiting the interpretation of some of the finer patterns. This

is particularly severe in the top view of Figure 16. A more revealing visualization of some

of these results was achieved by using the Wavefront animation package, and resulted in a

rather insightful video animation (SWART & HOLMES [1991]).

6.2 An Isotropic One-Valley Material

As our first example we consider the constitutive law a : Vu—>g(\Vu\2)Vu for the isotropic

anti-plane shear problem (2.13)-(2.15). The associated local elastic energy function W =
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W(|Vit|) is chosen with a strict local minimum (in the variable |Vtx|) at \Vu\ = 70 > 0;

i.e. convexity of W fails rather severely due to the continuum of minima lying along a

circular valley (at a distance 70 from the undeformed state) in strain space. Minimization

of fQ W(\X?u\) dx (which requires |Vu| = 70 a.e.) under the constraint of the boundary

condition u = 0 on dQ, can be achieved by any member of the large class of absolute

minimizers constructed as in Theorem 2.3 (cf. Remark 5 following the theorem). An

interesting question is whether the dynamical route to minimization will be achieved by a

relatively uniform mixture of a continuum of phases, or whether only a few of the minima

of W will be explored.

To illustrate this phenomenon, we chose a viscoelastic damping of \x = 0.25 and 70 = 1

with W(|Vu|) = | ( |Vu| 2 - I)2 , giving a(Vu) = (\Vu\2 - l)Vu. The anti-plane shear

problem (2.13)-(2.15) was then solved with initial displacement u(x, j/,0) = x2(x-l)y(y-l)

and zero initial velocity ut(x, y, 0) = 0. Figures 6-9 respectively show the solution (displayed

at a 100 x 100 resolution) at times t = 0.0, 0.5, 1.0 and 2.75. The decay in energy is shown

in Figure 10. We point out its similarity with the energy decay presented in FRENCH &

WAHLBIN [1991, Figure 4.2] for a different but related isotropic problem.

The asymmetrical initial data leads to formation of an off-center (in x) displacement

ridge. This forces the creation of further ridges, as the displacement field adjusts itself in

an attempt to satisfy |Vu| = 1. The "large scale" structure visible at t = 0.5 (Figure 7),

which is strongly influenced by initial data, forms during the early rapid energy decay and is

essentially complete once the kinetic energy begins its monotonic decay (Figure 10). Once

the gross structure is established, it undergoes little change: in particular, the "ridges" —

regions of rapid change in \Vu\ — do not move. The peak ridge buckles around t = 1.0

(Figure 8) and a limited amount of fine structure appears to grow from the diagonal ridges

(visible at t = 2.75, Figure 9). Note that all of this fine structure appears after the kinetic

energy has begun its monotonic decay (t > 0.7), and, indeed, only after the kinetic energy
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O.O

Figure 6: Numerical solution at t = 0.0 (initial data) for the first isotropic anti-plane shear

example, as described in §6,2.

O.O

Figure 7: Solution at t = 0.5 for the first isotropic problem, as described in §6.2.
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O.O

Figure 8: Solution at t = 1.0 for the first isotropic problem, as described in §6.2.

o.o

Figure 9: Solution at t = 2.75 for the first isotropic problem, as described in §6.2.
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Figure 10: Energy decay for the first isotropic problem, as described in §6.2.

is practically zero. Relatively few "large" phase domains form, and, aside from the fine

structure, only 5 or 6 points on the circle |Vu| = 1 are represented at t = 2.75. By

this time the total energy has essentially decayed to zero, suggesting that minimization

is almost achieved. Once sharp phase boundaries — near discontinuities in |Vu| - have

formed (Figure 8) they seem unable to propagate transversely. We note that the reflectional

symmetry of the initial data about y = 0.5 is preserved, although the graphical visualization

of Figure 9 obscures this fact. The "fine structure" valleys branching from the nearest

diagonal ridge are not visible from the view shown: rotation of the image reveals the

symmetry. Many of these general features will reappear in the computations described

below, including those with anisotropic constitutive laws. We summarize the key features:

(1) Rapid initial energy decay and "set in" of gross large scale features.

(2) Formation of sharp boundaries between phases and apparent inability of these bound-

aries to propagate transverse to their orientation.

(3) Slow growth of fine structure in regions where Vu is not in equilibrium.
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6.3 An Isotropic One-Well One-Valley Material

In this example we again use an isotropic constitutive law (as in §6.2), but with a local

elastic potential function W = W(|Vu|) which possesses two separated local minima at

|Vw| = 0 and |Vu| = 70. In particular, we chose ^ ( 7 ) = 472(7 - 70)2, which gives

cr(Vu) = 16(|Vu| - 7o)((|Vti| - 70/2)Vu. Here we used 70 = 1. We solved the dynamical

anti-plane shear problem with /x = 0.5, and initial data u(x,y,0) = .05sin57rx sin37ry and

ut(x, j/,0) = 0. Figures 11 and 12 respectively show the solution (displayed at a 100 X 100

resolution) at t = 0.0 and 1.4. The decay in energy is similar to that of the previous example

in §6.2, and is not shown here.

The initial dynamical selection of a few "large" phase domains is similar to (although

more rapid than) that of the first isotropic example (described above in §6.3). In this case

the additional freedom made possible by a larger number of accessible phases allows the

basic discrete symmetry of the initial conditions to be preserved. There is no evidence of

fine structure.

As in the previous isotropic example, highly curved phase boundaries appear to be

dynamically unstable. Although it is not readily apparent from the visualization of the

solution at t = 1.4 (Figure 12), a high resolution view reveals piecewise almost-constant

gradients at this stage.

In both this and the previous isotropic problem energy appears to approach its absolute

minimum. We observe that classical minimizers involving only finitely many domains can

be easily constructed in these cases: one need merely pick piecewise constant Vu to form

large pyramids or "rooftops".

6.4 An Anisotropic Two-Well Material

We henceforth concentrate on solutions of the anti-plane shear problem (2.13)-(2.15) with

the anisotropic constitutive law a(Vu) = (<7i(ux), 02(1^)), introduced in §2.2 and associated

49



0.0

Figure 11: Numerical solution at.i = 0.0 (initial data) for the second isotropic anti-plane

shear problem, as described in §6.3.

0.0

Figure 12: Solution at t = 1.4 for the second isotropic problem, as described in §6.3.

50



Figure 13: Numerical solution at t = 0.0 (initial data) for the two-well anisotropic problem

described in §6.4.

Figure 14: Solution at t = 0.5 for the two-well anisotropic problem, as described in §6.4.
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Figure 15: Solution at t = 1.0 for the two-well anisotropic problem, as described in §6.4.

Figure 16: Solution at t = 4.0 for the two-well anisotropic problem: top view, uy « +1,

white; uy « - 1 , black. Jaggedness of phase boundaries largely due to visualization process.
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Figure 17: Energy decay for the two-well anisotropic problem, as described in §6.4.

with cubic symmetry, and its effect on the dynamical evolution of solutions. As our first

example, we take <?\(ux) = ux and ^(^y) = Uy — uy and numerically solve the resulting

anti-plane shear problem with /z = 0.05:

= uxx + (ul - uy)y + 0.05Aut on (0,1) x (0,1). (6.2)

Note that the corresponding local stored elastic energy W(Vu) = \u\ + \{u2
y - I)2 has two

isolated wells at (uXJuy) = (0 ,± l ) and therefore, by Theorem 2.3, possesses no absolute

minimizer of the energy. Here the boundary conditions interact with the constitutive law

to force candidates for absolute minimizers to exhibit refinement throughout the domain.

We used as initial displacement

«(*.». 0) = sin nx sm 7rj/, (6.3)

which corresponds to a smooth bump in the center of the unit square, and the initial velocity

was again taken to be zero. Figures 13-16 show how increasingly finer ridges develop parallel
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to the x-axis in an effort to minimize the total energy. However, the refinement process

slows down and relatively large single phase domains survive for long times. The resulting

energy decay is shown in Figure 17. Note that the energy does not appear to be decaying

to zero (the global minimum).

In Figures 13-16 one initially observes an essentially "linear" wave propagation forming

large ridges in the x direction, together with an associated rapid rise and fall of kinetic

energy, which is shown in Figure 17. This continues until the ends of the ridges reach

the boundary at x = 0,1. The incompatibility at the boundary manifests itself in large,

local concentrations in the potential energy — chiefly along the boundary and between the

now well-established ridges, thereby initiating the slow inward growth of parallel whiskers.

Note that, once formed, the ridges do not move (although the video animation of this

numerical run shows a slow but steadily decaying global vertical oscillation) and that the

discontinuities in uy do not propagate in the transverse direction.

The pattern achieved at t = 4.0, with increasingly fine whiskers invading the interior

region of large ridges from the boundaries x = 0,1, is strongly reminiscent of the sketch

provided in Figure 23 of BASINSKI & CHRISTIAN [1954], showing a cross section of a cubic

(austenite) to tetragonal (martensite) interface observed in indium-thallium alloys. They

remark that "fine scale twinning is necessary to prevent large strain energy at the interface,

but is obviously unfavourable energetically in the more remote regions of the tetragonal

phase". There are at least two important differences in the situations. BASINSKI and

CHRISTIAN evidently assumes an energy penalty associated with strain jumps, whereas

our effects are dynamical. Moreover, they are dealing with an internal phase boundary

in a three-dimensional geometry, on which the rank-1 condition (2.19) is not met (BALL

& JAMES [1987]); this is replaced in our two-dimensional calculation by incompatibility

at the boundary. Nonetheless, we feel that the dynamical origin of the whiskers, as the

system either fails to minimize or does so extremely slowly, provides another mechanism
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for interface accomodation in addition to explicit surface energy penalties. We comment

further in §7.

We also note that KOHN & MULLER [1992] construct a two-dimensional scalar field ex-

hibiting self similar twin refinement much like that of Figure 16 near a martensite/austenite

boundary. Their analysis involves minimization of an elastic energy similar to the two-well

potential of this system, augmented by the term nuyy which penalizes large strain gradients.

The growth of fine structure is very slow, occuring after t = 1.0, when the kinetic energy

is essentially zero (Figure 17) and leads to only modest reduction in potential energy. This

is in sharp contrast to the computations described earlier and below, for problems in which

absolute minimizers do exist; it suggests that in problems with no such minimizers the

dynamics may not minimize energy. In this respect Figure 17 should be compared with

the corresponding Figure 2 for a one-dimensional problem which is known not to minimize

energy. Noting that Figure 17 only includes the first 13% of the comparable time range

shown on Figure 2, it is plausible that the solution is approaching a non-minimizing state.

We finally remark that the initial burst observed in kinetic energy — during which the

larger ridges set in — followed by the period of slow decay of energy — during which we

observe the growth of microstructure — is a common feature in all the anisotropic examples

presented here, as it was for the first of the isotropic examples above.

6*5 An Anisotropic Four-Well Material

As in §6.4, we consider the anisotropic constitutive law a(Vu) = (<T\(ux),a2(uy)). We now

choose oi(ux) = a{ux + 0.4) and o2{uy) = a(uy), with a(j) = 73 - 7 and /1 = 0.025,

resulting in the equation:

utt = a(ux + 0.4)x + a(uy)y + 0.025Au* on (0 , l )x (0 , l ) . (6.4)

The corresponding local stored elastic energy is given by W(Vu) = \{{ux + 0.4)2 - I)2 +

J(u2-l)2and has four isolated potential wells at (ux,uy) = (-1.4, ±1) and (0.6, ±1), where
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Figure 18: Numerical solution at t = 0.0 (initial data) for the four-well anisotropic problem

described in §6.5.

Figure 19: Solution at t = 0.5 for the four-well anisotropic problem, as described in §6.5.
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Figure 20: Solution at t = 3.3 for the four-well anisotropic problem, as described in §6.5.
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Figure 21: Energy decay for the four-well anisotropic problem, as described in §6.5.
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<f> = 0. As initial data we used the smooth bump displacement of equation (6.3) together

with zero initial velocity. Although there are enough wells to form classical minimizers

(Theorem 2.3), for piecewise homogeneous displacements the four phases corresponding to

the four isolated potential wells can also meet together in, for example, skewed pyramids.

As such structures cannot tile the square, we expect to observe refinement at the boundary.

This process is illustrated in Figures 18-20 which respectively show the numerical solutions

at t = 0.0, 0.5 and 3.3. The energy decay is shown in Figure 21, but note that here, in

contrast to the previous two-well material, energy appears to be approaching its minimum.

Initially, the solution is characterized by the rapid "setting in" of the large pyramid (see

Figure 19) — whose central peak is derived from the initial state — with subsequent struc-

tures attempting to fit around this pyramid. The shape of this pyramid, which is uniquely

determined by the location of the four potential wells in this example, is incompatible with

the domain, with the result that the pyramid's back is bent at t = 0.5 and broken at t = 1.0.

Ridges are also observed to form initially near y = 0 and 1, but are rapidly broken into

chains of pyramids. The higher resolution achieved in the associated video animation of

this refinement process indicates that the asymptotic state also contains fine structure in

the interior, which, if true, is probably due to the inability of the chains of pyramids to

completely "tile" around the large pyramid. This raises the possibility that, even when

absolute minimizers of the type constructed in Theorem 2.3 are available, they may not

be accessible for all initial data. However, in contrast to the two-well case, at t = 4.0 the

energy is essentially zero (Figure 21), indicating that a minimum may be achieved.

6.6 An Anisotropic Nine-Well Material

As in §6.4 and §6.5 above, we consider the anisotropic constitutive law <J(VU) = (<Ti(ux), <72(u

Here we choose cri(ux) = cr(ux + 0.7) and <r2(uy) = a(uy + 0.7) , with a(j) = j(i2 - 4)(72 -
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Figure 22: Numerical solution at t = 0.0 (initial data) for the nine-well anisotropic problem

described in §6.6.

0*1

Figure 23: Solution at t = 0.5 for the nine-well anisotropic problem, as described in §6.6.
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Figure 24: Solution
ion at t = 3.2 for the nine-well anisotropic problem, as described in §6.6.

Figure 25: Numerical solution at t = 3.2 for the nine-well anisotropic problem with slightly

perturbed initial data as described in §6.6.
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4/3) and ft = 0.25, resulting in the equation:

utt = 0(ux + 0.7)x + c(uy + 0.7)y + 0.25Aut on (0 , l )x (0 , l ) . (6.5)

The corresponding local stored elastic energy is given by

W(V«) = Ul(ux - 2)2(t2I + 2)2 + Ul(uy - 2)2(«v + 2)2, (6.6)

o o

with (ux = ux + 0.7, iiy = Uy + 0.7), and has nine isolated wells where W = 0. As initial

data we used

u(z, y, 0) = - — tanh (40(x + y - 0.8) + 1 - 2y) sin irx sin Try, (6.7)

ut = 0,

which forms an asymmetric ridge (shown in Figure 22) at t = 0. Figures 22-24 respectively

show the numeria! solutions (using a 100 x 100 resolution) at t = 0.0, 0.5 and 3.2. The

energy decay is not shown but is similar to that of the four-well material of §6.5, with the

energy apparently decaying to its minimum.

The presence of more potential wells (nine in this case) implies more freedom in acco-

modating incompatibility at the boundary than in the previous example, with the result

that fine structure is only seen "near" the boundary. In this example, part of the ini-

tial condition (the steep part of the ridge in Figure 22) lies in the high strain well at

(ux,uy) = (-2.7, —2.7), and appears to be ttpulled out" of this well by the dynamics, as we

do not observe any regions in this phase at t = 3.2.

We conclude with an example displaying the subtle dependence of the solution on initial

conditions. This property is even more striking in the two-dimensional anti-plane shear

problem than in the one-dimensional models of BALL et al. [1991]. In Figure 25 we show

the solution at t = 3.2 of the above nine-well problem with a slightly perturbed initial con-

dition. We solved (6.5) with identical numerical procedures, but added the small sinusoidal
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perturbation given by 0.0001 sin IOTTX sin 107ry to the initial data (6.7). The inital selection

of large scale features as well as the manner in which energy decays are almost identical

to that of the unperturbed problem. However, when comparing Figure 25 with Figure 24,

we notice a markedly different distribution of the smaller scales. The construction in the

proof of Theorem 2.3 shows that this problem, like the one-dimensional model (2.6), pos-

sesses a continuum of equilibria, which are now, unlike that case, all absolute minimizers.

It is thus reasonable to expect solutions started on an arbitrary arc of initial data to all

approach distinct equilibria in which the fine phases are packed in different fashions near

the boundaries. This is what we appear to see in Figures 24-25.

7 Conclusions

The models described and analyzed in this paper were designed to provide insight into

the dynamical formation of microstructure in elastic crystals. Our contributions are in

four areas: (1) characterization of non-convex stored energy functions for anti-plane shear

problems in terms of their failure or ability to admit absolute minimizers; (2) proof of

existence-uniqueness theorems for certain two dimensional mathematical models of non-

linear viscoelasticity, and partial results characterizing the ability or lack thereof of such

models to minimize energy and the manner in which this occurs; (3) development of algo-

rithms for the numerical solution of the model problems; (4) numerical simulation of several

specific models and assessment of these results in the light of the (incomplete) theory.

The choice and study in BALL et al. [1991] of three one-dimensional models displaying

the eventual creation of fine structure, provided several new insights and also motivated

and guided our subsequent study of the two-dimensional anti-plane shear problem. Noting

the inability of one-dimensional models to describe the complicated microstructure and

geometric patterns observed in certain crystals, but not wishing to tackle the formidable

62



three-dimensional problem directly, we formulated and studied the two-dimensional prob-

lem of dynamical anti-plane shear with linear viscoelastic dissipation. Both isotropic and

anisotropic constitutive laws, which can allow multiple phases, were considered. The ability

of such laws to deliver minimizing sequences and minimizers for the anti-plane shear prob-

lem is described by Theorem 2.3. By employing the change of variables due to RYBKA, the

anti-plane shear problem can be transformed into a semilinear degenerate parabolic sys-

tem, allowing one to establish the existence and uniqueness of solutions (Theorem 3.1) in a

similar fashion to that for the one-dimensional problems of BALL et al. [1991]. This never-

theless requires the restrictive assumption that the stress-strain response a : Vu »-• a(Vu)

be globally Lipschitz continuous, thereby ruling out constitutive laws possessing more nat-

ural growth conditions. Relaxing this restriction requires a more direct exploitation of the

geometric properties of a, which in two and more dimensions proves to be rather difficult,

and we discuss some of the complicating but interesting issues surrounding this obstacle, to

which we return below. We also discuss the relationship of RYBKA'S transformation to the

Helmholtz projection and present a more general framework for its derivation.

In §5 we present a finite difference algorithm for the dynamical anti-plane shear problem.

The numerical analysis of problems which develop microstructure raises some delicate issues

which we discuss in §6.1. The rest of §6 is devoted to numerical simulations of several

examples designed to display various aspects of the rich dynamical behavior possible in the

anti-plane shear problem and to provide insight into the creation of microstructure for the

constitutive laws under consideration.

Our numerical results, together with the analyses of §2 and §3, and the insight gained

from the one-dimensional models of BALL et al. [1991] raise the following central issues.

(a) The existence of absolute minimizers as a precondition for energy minimization

Our numerical experiments suggest the following conjecture: In the absence of an

absolute minimizer, there is no solution of the associated dynamical anti-plane shear
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problem whose energy achieves the infimum as t—>oo.

In this respect it is insightful to compare the energy decay (Figure 17) of the two-well

anisotropic example (which does not possess an absolute minimizer) with the energy

decay (Figure 21) of the four-well anisotropic example (which does possess an absolute

minimizer). Note that if the above conjecture were true, as in the one-dimensional

case (cf. BALL et al. [1991, Theorem 4.1], Theorem 2.1, above), it would provide an

additional mechanism to limit fineness, besides the effects of higher strain gradients

or interfacial energy penalties. However, see (e) below.

(6) Persistence of strain discontinuities

The numerical experiments of §6 indicate that, as in the one-dimensional case, strain

discontinuities can persist without moving into adjacent regions of smooth deformation

gradient. Although solutions display slow global oscillations while refining, motion is

observed only along and not transverse to interfaces. We do emphasize, however, that

this property is special to the linear viscoelastic damping employed in the models of

this paper. Other regularization strategies — such as the addition of capillarity effects

— may well allow the propagation and (slow) rearrangement of phases.

(c) Sensitive dependence on initial conditions

This property is even more prominent in the two-dimensional anti-plane shear prob-

lem than in the one-dimensional case (see Figures 24 and 25, and the discussion at the

end of §6.6). A small change in the initial conditions or constitutive model delivers

almost indistinguishable solutions and decay of energy in the short term. However,

the distribution of the resulting smaller scales can differ quite significantly. Similarly,

small adjustments to the constitutive law deliver markedly different final states.

(d) Refinement at the boundary

If the phases corresponding to the minimum local stored elastic energy are geometri-
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cally incompatible with either the boundary condition and geometry or with the orien-

tation of strain discontinuities present in the initial conditions, then Theorem 2.3 and

the second observation above lead one to expect the solution to undergo refinement at

these locations in an effort to achieve compatibility in some average microscopic sense.

The examples of §6.4, §6.5 and §6.6 provide numerical evidence of this process. Note

that internal microstructure due to the incompatibility of different phases is ruled out

in the two dimensional anti-plane shear problem, since all phases are automatically

rank-1 connected (cf. BALL & JAMES [1987]). However, in certain cases, initial data,

geometry, the constitutive law and the apparent persistence of strain discontinuities

may conspire to create internal microstructure (Figures 16 and 20).

(e) Extremely slow evolution of fine structure

It is only after an initial "burst" in kinetic energy (associated with a rapid selection

of patterns) and after the kinetic energy has begun its monotonic decay, that mi-

crostructure starts to appear. Especially for problems without absolute minimizers,

this appears to be an extremely slow process. We remark that this, rather than failure

to minimize, may be responsible for the apparent energy plateau reached in Figure 17.

We conclude by remarking on two of the more interesting analytical difficulties en-

countered in our attempt to exploit the geometrical information inherent in a nonlinear

constitutive law. These difficulties deprived this work of what we hoped might lie at its

center: a sufficiently strong existence-uniqueness theory for nonlinear constitutive laws and

a characterization of the ability or failure of the dynamical anti-plane shear problem to

minimize energy.

The first obstacle was the apparent lack of a suitable function space that contains the

class of piecewise smooth vector fields and can provide a natural framework within which

to analyze the propagation and evolution of strain discontinuities. In retrospect we realized

65



that this is a problem basic to the study of conservation laws in higher dimensions.

Our second observation is that much of the complexity of the solutions to the trans-

formed problem is due to the presence of the projection operator TT£>, which acts by removing

the rotational part of the stress-strain response a. In the language of mechanics, this is

merely the somewhat obvious observation that, for a conservation law in divergence form,

e.g.

utt = diva(Vu) = dii>7T£X7(Vu), (7.1)

the dynamics is driven by only a "part" of the nonlinearity <r. In two and higher dimensions,

the part of the stress-strain response that is annihilated by the div operator, and therefore

has no effect in the dynamics, contains all irrotational vector fields (or, in general, tensor

fields) — a subspace well-known for its rich behavior (solenoidal vector fields have received

the attention of fluid dynamicists for more than a century). An improved understanding of

the transformed system, and especially of the behavior of evolution equations of the form

Qt = - * D < T ( Q ) , (7.2)

will hopefully provide insight into this mechanism for complexity.
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