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Abstract

We present a method of enhanced convergence for the approximation of
analytic functions. This method introduces conformal transformations in the
approximation problems in order to help extract the values of a given analytic
function from its Taylor expansion. We show that conformal transformations
can extend the radius of convergence of a power series far into infinity, en-
hance substantially its convergence rates inside the circle of convergence, and
can produce a rather dramatic improvement in the conditioning of Pade ap-
proximation. This improvement, which we discuss theoretically for Stieltjes
type functions, is most notorious in cases of very poorly conditioned Pade
problems. In some instances, an application of enhanced convergence leads
to results which are many orders of magnitude more accurate than those ob-
tained by classical approximants.
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1 Introduction

Perturbation methods and series expansions lie at the heart of most mathematical
discussions of problems in science and engineering. Linear partial and ordinary
differential equations amount, in many cases, to first order perturbation theory
applied to basic principles of physics. Perturbation theory of higher order, on the
other hand, has lead to an understanding of phenomena that cannot be accounted
for accurately by low order expansions [18, 12, 1, 13, 4, 17, 7]). Yet, high order
perturbation series are often regarded critically. Convergence results for the classical
approximation methods are not always available, and numerical ill-conditioning is
always a concern. Thus, new summation methods and further understanding of
classical methods is necessary.

In this paper we deal with a method of enhanced convergence for the approxima-
tion of analytic functions. This method, a version of which was presented recently in
the context of a problem of wave scattering ([7], see also [6]), introduces conformal
transformations in the approximation problems in order to help extract the values
of a given analytic function from its Taylor expansion. The purpose of this paper
is to study the numerical properties of the method of enhanced convergence from
both a theoretical and an experimental point of view. In particular, we shall show
that conformal transformations can extend the radius of convergence of a power
series far into infinity, enhance substantially its convergence rates inside the circle
of convergence, and can produce a rather dramatic improvement in the conditioning
of Pade approximation.

Complex variable theory is the natural framework for studying approximation
via perturbation series. The most straightforward approach to evaluating a given
analytic function / from its series representation about a point is, simply, given
by summation of the truncated series. However, the shortcomings of this type of
approximation are evident: the series will diverge as soon as the point z, at which
the value of the given function is sought, lies outside the circle of convergence. And,
even inside the circle of convergence, bad approximations are to be expected unless
z is close enough to the expansion point.

Clearly, poor convergence and lack of convergence are related to the relative
arrangement of the singularities of / and the point z. The method of enhanced
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convergence uses conformal maps to manipulate the complex z plane, so as to pro-
duce an arrangement of the singularities of / and the point z which is favorable
for either the summation of the series or the calculation of its Pade approximants.
(A Pade approximant to an analytic function / is simply a rational function whose
Taylor series matches that of the function / up to a finite order). The beneficial
effect of our method in the summation of a power series has already been mentioned
above: it greatly enlarges the region of convergence. Even enhanced series of very
low orders can produce results which are accurate up to and including z = oo (see
section 2.2), and enhanced series of high orders can produce valuable results (section
4). In addition, Pade approximants of the enhanced function with denominators of
low degree can be used at any point at which the conformal transformation has pro-
duced a convergent enhanced series, and can yield better approximations than the
enhanced series itself with a negligible additional computational cost.

A different phenomenon occurs in connection with Pade approximation with de-
nominators of high degree: the conditioning of the Pade problem of the function / in
the new variables improves very substantially. In other words, enhanced convergence
acts as a preconditioner for Pade approximation. Of the three methods proposed
in this paper, summation of the truncated enhanced series, enhanced Pade with
denominators of low degree and diagonal enhanced Pade, it is diagonal enhanced
Pade the one that generally yields best results for high order approximations. For
example, a Fortran double precision calculation of the function f(z) = log(l + 2) via
regular Pade approximation, of any order, will not yield, at z = 20, more than the
first four correct digits of log(21). After composition with an appropriate conformal
map 13 correct digits can be obtained. In fact, diagonal enhanced approximants of
orders 50 already yield 9 correct digits, while the number of correct decimals is 13 for
approximations of orders 120 to 180. For z = 200, an enhanced Pade approximation
can produce up to 6 correct figures, while only one correct digit can be obtained
through direct Pade calculation.

A comment is in order with regards to the calculation of the coefficients of the
power series of a function / in the new variables. These coefficients can be produced
either 1) by certain linear operations on the coefficients of the series of/(z), or 2) by
some alternative direct calculation of the coefficients of the composite function. The
information contained in the enhanced coefficients calculated the first method will



be limited by that contained in the coefficients of the series of f(z), even though
the Taylor coefficients of the true enhanced series encode more information than
those of the regular series. Therefore, the second approach is to be preferred, if the
corresponding accurate calculation is possible.

2 Enhanced Series

Let tt be a connected domain in the complex plane, 0 € £2, let f(z) be an analytic
function defined in ft and let D denote the circle of convergence of / about z = 0.
The divergence of the Taylor series of / at a point ZQ outside D is related to the
presence of singularities of / on the boundary of D. We shall show that such
singularities are also the cause of numerical ill-conditioning in Pade approximation;
see section 3. We argue, then, that it should be useful to deform the domain Q
conformally, keeping z = 0 fixed, in such a way that the image of the point z0 is
closer to the origin than the image of any of the singularities. This simple observation
is the basis of the method under investigation.

The implementation of this procedure relies on some a-priori knowledge of the
domain of analyticity of the function / . In applications such information can usually
be obtained from physical considerations, Pade approximation ([3, §2.2]) or even by
studying the convergence of several enhanced series ([7]). Once this information is
available, the rearrangement of the singularities can be performed in many ways; in
the following section we discuss some natural choices of conformal transformations
that have proved to perform well. A few simple examples follow in section 2.2. Fur-
ther examples and applications, together with a discussion of the numerical aspects
of the method in high order applications will be given in sections 3 and 4.

We begin our study by considering conformal maps which extend the radius of
convergence of the Taylor series of an analytic function.

2.1 Geometrical considerations

Let / be an analytic function defined in Q. We seek a conformal map f = g(z)
defined in 17 with #(0) = 0 and such that the image fo = 9(zo) of & given point z0

lies inside the circle of convergence of the Taylor series of fog"1 about £ = 0. If such



a function g is available, the value f(z0) can then be approximated by summing the
truncated power series of / o g"1^) at f = fo-

Motivated by their geometrical properties as well as by their simplicity, rational
fractions of the form

appear as natural choices. Powers of combinations of these transformations and
translations can also be useful (see [7]). Our intuition here is that, if / is conformal,
then clearly, an enhancer g that eliminates the singularities of / completely is the
function / itself

<? = / •

It therefore seems reasonable to allow for g to mimic part of the singular behavior
of the function / . In this way, some of the singularities of / are mapped away to
infinity.

The performance of the method depends in a critical way on the parameters A{
and B{ in (1). If we are interested in the computation of f(z0) by composition with
p"1, the optimal choice of parameters is the one for which the convergence of the
series of fog"1 is fastest. In other words, the parameters A{ and i?t should be taken
in such a way as to minimize the quotient

R
R = radius of convergence of / o gx

 l about £ = 0 , (2)

since the error in a truncated expansion of degree n is of order ^ . Note that the
parameters can be selected numerically by optimizing the convergence rates even if
no information is known about the singularities of the function / .

To illustrate these ideas let / be an arbitrary function and assume we know its
singularities lie in the interval [—I/a,—1/6]. For example, we can take / to be a



Stieltjes or Hamburger function of the form ([3, Chap. 5])

£ (3)

with <f> > 0. For the conformal map we shall first use g = pi, where

(4)

The parameters A and B should be chosen so as to enhance the convergence in an
optimal fashion. The singularities of /ogfl are delimited by gi(—l/a) and g\(—1/6),
and, therefore, the radius of convergence of the composite map is the smallest of the
absolute values of these two numbers. It follows from (2) that an optimal choice of
parameters minimizes

max (5)

It is easily seen from (5) that the optimal B does not depend on z and that it is
given by

(6)
a + b

The parameter A cancels in formula (5) and can be normalized to 1.

The next simplest example of conformal maps of the type (1) is

z) = (7)

Motivated by (3) and in order to ensure the invertibility of g-i we assume

AuA2,BuB2>0.



The (relevant branch of the) function g2 is then given by

Bx A2Bi) + \/A

where

A =

2{A1+A2-Q

- B2)(AXB2 - (AXB2

Again, the optimal choice of parameters minimizes the quotient

, R = radius of convergence of / o g2 about f = 0

In this case it is not possible to derive a simple formula such as (6) for the parameters
A{ and J5t. Here we need to deal not only with the singularities of / but also with
those introduced by g^1. It is not difficult to check however, that the optimal
situation is the one in which the parameters minimize the expression

max
52(20)

ft(-l/tt)
02(20)

92(-l/P) (8)

where r^ denotes the absolute value of the (complex conjugate) roots of A as a
function of £

__ A2Bi+ AiB2

B2 - B\

As in (5), we can take one of the parameters A{ in (8), say A\, to equal 1.

It is reasonable in some cases to take zo = oo in (8) so as to optimize the
performance of the approximator in the positive real axis (see section 2.2). With
this provision (and taking A\ = 1) the parameters A2, B\ and B2 must be chosen so
as to minimize

max
A2 (9)



Geometrical insight can be gained by inspection of the effect of the conformal
maps described above on circles in the {-plane. In Fig. l(a) (resp. l(b)) we have
plotted the images Cr (resp. DT) in the 2-plane of the circles |£| = r under the
transformation { = gi(z) (resp. £ = 92(2))- We have chosen the singularity region
to be the interval [-2, -1/2], i.e. a = 1/2, 6 = 2, which corresponds to the function
/ in (10) below. From (6) it follows that the parameter B in g\ is, in this case,
equal to 0.8 while a numerical minimization of (9) yields the values A2 = 0.560,
£1 = 0.692 and B2 = 1.234 (cf. (12)) for the conformal map g2.

Take, for example, the curve C1.25 in Fig. l(a). This circle is the image under
the map f = gi(z) of the circle |£| = 1.25. The region |f| < 1.25 is mapped onto the
exterior of C1.25, i.e. onto the connected component containing z = 0. Thus, since
this region does not intersect the interval [—2,-1/2], we see that, for all points z
outside C1.25, the value of f(z) can be obtained by adding the Taylor series of fog±l

at £ = g\ (z). Similar considerations hold for all other curves in Figs. l(a) and l(b).
The radius of convergence of / 0 g^1 is r = 5/3 while that of / o g^1 is r = 3. We
see that the enhanced series will in fact converge to f(z) for all z outside the critical
curves C5/3 and JD3.

In the following section we illustrate the ideas above with a few low order ap-
proximation problems. Higher order approximation will be dealt with in sections 3
and 4.

2.2 Some simple examples

Let us first consider the function

A second order approximation problem for this function is used in [3] to demon-
strate some of the outstanding properties of Pade approximants. (The [L/M]-Pade
approximant of a function

z o o = f ; Cnz
n

n=0



Images Cr of circles l£l = r
under the conformal transformation

z - plane

Figure l(a).

is defined (see [3]) as a rational function

Images D r of circles l£l = r
under the conformal transformation
= %2{Z) = ^+0 .692 ) + 0.560 z/(z+1.234)

z - plane

Figure l(b).

whose Taylor series agrees with that of / up to order L + M. A particular [L/M]

approximant may fail to exist but, generically, [L/M] Pade approximants exist and
are uniquely determined by X, M and the first L + M + 1 coefficients of the Taylor
series of / . For convergence studies and numerical calculation of Pade approximants
see [3, 5, 8, 11]).

The [1/1] Pade approximant of the function / in (10) is given by

I±il (11)

Certainly, the information we have used to construct (11) (namely the first three
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terms in the Taylor series of / ) would permit us to compute the [2/0] and [0/2] ap-

proximants also. The choice of the [1/1] approximant may be seen as incorporating

certain additional structural information one has about the function / .

Let us now find enhanced series of order 2 for (10). Consider first the conformal

map pi defined in (4). In this case (6) yields

B = 0.8,

and taking A = 1, we obtain

9l{z) = ITbT
Therefore, our approximation reads

0.6z 0.18z2 29z2 + 56z
~ +

z + 0.8 (2 + 0.8)' 2(5z + 4Y

Another enhanced series can be obtained by using the conformal map g<i in (7). The

expression in (9) can be (numerically) minimized, and the optimal parameters turn

out to be

^2 = 0.560, Bi = 0.692, B2 = 1.234, (12)

so that
, x z 0.560^

^ v ' z + 0.692 2 + 1.234
Our second enhanced series approximation is then given by

0.3952 _ 0.2212 / 2 0.560,
2 + 0.692 2 + 1.234 \z + 0.692 z +1.234

In Fig. 2 we show the graph of the function / together with those of its three

approximations. The three of them lie close to the function / , with errors at z = oo

of 8%, 16% and 10% for Pade, ^-enhanced and p2-enhanced, respectively. The Pade

approximation is slightly more accurate than the other two; this need not be the

case, however, as we illustrate with the following example.

Let



t Comparison between a three term enhanced series
and the [1/1]-Pade approximant for the function

• p > - JBnhJStties

* - il/Jl-Pade

+
100 ISO 0

Figure 2(a). The conformal map for the enhanced
series is gx(z) = z/(z+0.8).

Comparison between a three term enhanced series
and the [1/1]-Pade approximant for the function

Enh. Scries

f(z) [1/1)-Pade

Figure 2(b). The conformal map for the enhanced
series is g2(z) = z/te+0.692H0.560 z/(z+1.234).

The [1/1] Pade approximant to / is given by

To compute the enhanced series corresponding to the map g\, we find from (6) that

and we take A —I. Thus, the enhanced series is given by

1 +
25z2 96

8(z 24(^

Analogously, it is found that the parameters corresponding to the conformal map

02 are, in this case, given by

A2 = 0.578, £i = 1.732, B2 = 3.000,
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so that the enhanced series is

0.108z 0.578A2

Plots of the function and its three approximations are given in Fig. 3. Again we
see that the three approximations are fairly accurate, taking into account the fact
that they have been obtained by using only the first three coefficients of the Taylor
expansion. In this case we do observe that either of the two enhanced series is a
better approximation to the function / than the [1/1] Pade approximant (the errors
at z = oo are of 9.5%, 4.2% and 4.5% for Pade, pi-enhanced and ^-enhanced,
respectively).

[1/1]-Pade

Comparison between a three term enhanced series
and the [1/1]-Pade approximant for the function

[1/13-Pade

Enh. Series

/m Comparison between a three term enhanced series
and the [1/1]-Pade approximant for the function

f(z)=[W(a+2)(z+3))]1/2

Enh. Series

Figure 3(a). The conformal map for the enhanced
series is gx(z) = z/(z+2).

Figure 3(b). The conformal map for the enhanced
series is g2(z) = z/(z+1.732)+0.578 z/(z+3).

3 High order approximations

It is often the case in applications that a high number of terms in the power se-
ries representing the relevant physical quantities are required in order to reach a
reasonable approximation (see e.g. [18, 12, 1, 13, 4, 17, 7]). In these cases, errors
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in the computed Taylor coefficients play an important role in the approximation
procedure. In this section we discuss the effect of these errors in the values of high
order enhanced series and its Pade approximants, which we refer to as enhanced
Pade approximants. To do this we introduce appropriate norms and corresponding
condition numbers. In §3.1 we find the condition number for the calculation of the
enhanced series via linear operations on the coefficients of the given series. We con-
clude that this approach leads to ill-conditioned numerics which should be avoided
whenever a direct calculation of the coefficients of the enhanced series is possible.

In §3.2 we treat the conditioning of the value problem for the Pade denominator
of both direct and enhanced series. The conditioning of the value problem for the full
Pade approximants, on the other hand, is not well understood. Luke [16] has shown
through some numerical experiments, that the relative error of a given [L/M] Pade
approximant evaluated at a given value of z is related to the corresponding errors of
the numerator and denominator in a very subtle way. Luke's calculations show, and
our own experiments confirm, that the relative error in the Pade fraction at a given
value of z is always much smaller than the relative error in either the numerator or
the denominator. Luke does not study the relative error in the denominator itself,
and, indeed, our simple discussion in this regard appears to be the first one in the
literature. Our estimation of the conditioning for the denominator problem together
with numerous numerical examples such as those of §4 provide strong evidence for
the generalized belief that better conditioning in the value problem for the Pade
denominator is closely correlated to better conditioning for the value problem of the
complete Pade fraction.

3.1 Enhanced series from direct series

As in the previous section, let / : ft —> C be an analytic function

, (13)
n=0

12



and let g be a conformal map defined in f) such that g(0) = 0. Denoting the Taylor

series of g"1 by

\i) = E A.r,
m=l

we have

n=0

n=0 E« m

\m=l /

171=1

where j n is a linear combination of c\, • • •, cn with coefficients depending on (5\, • • •, f3n.

If we write

GrW = E flmnr,

then the truncated power series expansion of order N for /(£) (i.e. the enhanced

series) takes the form

N / N
Y,Cn [J2
n=l \m=n

N ( m

m = l \n=l

so that the coefficients j n of the composition satisfy

' 7i "
72

= A N

C2
(14)
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where AN is the lower triangular N x N matrix

(AN)mn = <W n< m. (15)

The numerical stability of the problem of computing the coefficients 7n via (14)

is governed by the (e.g. Z°°-) condition number of the matrices Ax in (15), i.e by

K{AN) = U»UUSXU> (16)

In other words, errors (<5cn) in the coefficients of (13) are amplified in the calculation

of the product (14), and result in relative errors of the coefficients of 7n which can

be estimated by

" { N)

Here, J|(o:T1)||0O denotes the /°°-norm of the vector (an)

Our main problem, however, is that of calculating the values of the enhanced series,

and the condition number (16) does not provide a measure of the error in these

values. In fact, the natural measure for this error is

£ \hn\\iT (17)
n=l

For convenience we shall use a norm closely related to but different from (17), namely

These two norms are related by

N

max |^7n||C|n ^ 5Z l^7n||f|n < N max
Kn<N ^~*. Kn<N
— — n = l — —
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As we shall see below, the condition numbers for the value problem grow exponen-
tially with N so that the constant N in (18) is not significant. Thus, a norm for a
vector 7 = [71, • • •, 7^] in the range of the matrix A that is appropriate to deal with
the value problem is

n | | e | n , (19)

and we must consider the corresponding matrix norms

and

H^lfss sup

With these notations, we see that relative errors in the coefficients of (13) are am-
plified in the calculation of the values of the truncated series of / o g"1 by a factor
which can be roughly estimated by

Notice that this condition number is unchanged if the problem is transformed via

£-*A£ (A€R),

as expected from dimensional considerations. This is not true, however, of the
condition number (16) for the coefficient problem, that is, the number K(A#) does

change if the variable f is transformed homothetically.

Let us consider the example of the conformal map g\ in (4). In this case we
can compute the conditions numbers K(A^) and K$(AX) explicitly. Indeed, it is not
hard to check that the transformation matrices Al

N and (A^)'1 are given by

Bn ( m — 1 \= ̂  n_1 J (20)
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and

The condition numbers can be easily found from (20) and (21). For £ = ^ ~ we
obtain

Kt(A\j) = max [ (IJ5I + I)™*"1!———t—r 1 max ( 7--—r(l + -—:—;—h™"1 ]
^V "' l<m<N yVI ' ' \z + B\m"1) l<m<N \^ |B | m - l V \z\ J

(22)
and

The condition number K measures the amplification of relative errors in the problem
of determining the coefficients of the enhanced series from those of the direct series,
while K$ is the corresponding amplification factor for the value to be obtained for
f(z) via the enhanced series. These condition numbers depend on the constants
that determine the conformal map g\. The constant B in (4) is to be chosen, as we
pointed out in section 2.1, in such a way as to obtain optimal convergence rates.
This determines the condition number K>Z(A1

N) which, as expected from dimensional
considerations, is independent of the constant A. The condition number ^(A]^) of
the coefficient problem, however, does depend on A. It is easily seen that, for given
i?, a choice of A that minimizes the condition number K is

A = B + 1; (23)

with the parameters as in (6), (23), the condition number becomes

This last remark is, however, not significant in the problem of calculating the values
of the function / by summing its enhanced power series.
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Having calculated the condition number of the value problem, we note from (22)
that /C( grows exponentially with N. Therefore, calculation of the coefficients of
an enhanced series via (14) leads to approximations with relative errors that may
be much larger than those present in the coefficients of the Taylor series of / . It
is reasonable to expect, however, that, in a given problem, a direct and accurate
calculation of the coefficients of the enhanced series is possible. If this is the case, as
it is in the examples of section 4, the direct calculation is to be preferred. Neverthe-
less, enhanced series obtained by the methods of this section can still yield valuable
results; see [7].

3.2 Conditioning of the denominator value problem of Pade
and enhanced Pade approximants

The coefficients of the denominator of the [L/M] Pade approximant of the function

n=0

are given by the solution of the linear system of equations

Cl-M+2
CL-M+2 CL-M+3

cL

CL+M-1 .

r bM

CL+M .

(24)

To gain insight on the effect that a rearrangement of the singularities of the func-
tion / can have on the conditioning of the denominator problem, assume that the
singularity of / that lies closest to the origin is a simple pole 20 with \ZQ\ = r. Then,
for large n we have \cn\ = const. r~n + o(r"n), and therefore, for large values of M,
the dominating contribution in the last rows of (24) is the one related to the closest
singularity zQ. Thus, these rows are nearly linearly dependent which explains the ill
conditioning of the matrix for large values of M. A conformal change of variables
which equilibrates the influence of the closest singularities is therefore expected to

17



have a beneficial effect on the conditioning of the denominator problem. In this sec-
tion we provide a quantitative measure of the improvement under the assumption
that / is a Stieltjes function with a positive radius of convergence.

While theoretical studies of the conditioning of the value problem for Pade ap-
proximants are not available at present, the generalized belief is that the condition-
ing of the denominator problem determines the conditioning of the whole fraction
(see [3]). It must not be understood, however, that the amplification of errors ob-
served in the values of the Pade denominator is to be expected in the whole fraction.
Indeed, and most remarkably, the conditioning of the Pade fraction is observed to
be very substantially better than that of the Pade denominator. The numerical
experiments of Luke [16] shed some light on this astonishing property of Pade ap-
proximants, which remains, otherwise, not understood. At any rate, our present
study of the conditioning of the Pade denominator in both the direct and enhanced
variables (which includes the introduction of appropriate condition numbers) to-
gether with the numerical experiments of §4 do demonstrate that there is a close
correlation between the conditioning of the denominator problem and that of the
whole fraction; or, in other words, that improvement in the denominator condi-
tioning leads to improvement in the conditioning of the fraction, even though a
quantitative measure of the former is not necessarily a good quantitative measure
of the latter.

A typical example of a Pade problem which is very ill conditioned is that of the
function

log(l+ *) /* .

The matrix corresponding to the denominator problem for the [L/M] Pade approxi-
mant of this function is closely related to (and as poorly conditioned as) the Hilbert
segment

L+2

1 1 1
L+l £+2 "" L+M

(25)

which is a classical example of ill-conditioning in numerical linear algebra [10]. Tay-
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lor [20] estimated the condition number of Gram matrices and, in particular, he

showed that for the (n + 1) x (n + 1) Hilbert matrix

l
n+l

1 1
n+l n+2

n+2

2n+l

(26)

the estimate

K2(H
n) > 16n/7rn

holds («2 denotes the Z2-condition number). In this particular case one can in fact

find an explicit formula for the inverse of the matrix (see e.g. [10]):

K '

replacing i cz An and j zz Xn in (27) and maximizing the expressions

for 0 < A < 1 (which results in taking A = l/%/2) we find that the conditioning of

this coefficient problem is even poorer:

n{Hn) si O(5.832n) = O(34n).

We begin our discussion of the conditioning of the denominator value problem

for Stieltjes functions with the following lemma, which follows readily from a change

of variables.

Lemma 1 Let
_ fb 4>{u)du

19
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Then, for any A and B we have

*& u + 1)/B)du

where
Az

* z + B-
In other words, calling

( 2 9 )

we have

zf(z) = MO n

We continue with two lemmas about certain quadratic forms for the vector x =

(xo ,a: i ," • ,£„) € Rn + 1 . These quadratic forms are closely related to the Pade

approximants of Stieltjes functions, and they are given by integrals such as

r
= /

Ja

•=o j=o

where o and b are real numbers, a < b and c* are the Taylor coefficients of / in (28),

i.e. h

ck = (-if [ uk<t>(u)du.
Ja

Also, we shall denote

We see that the matrices An'm are positive definite provided either 0 < a < b or m

is even; in the latter case we shall write

EnJ = An'm, ifm = 2/. (30)
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Clearly, then

x%E**x = f\xou
l + X!u'+1 + • • • + xnu'+n)2du.

Lemma 2 Let m = 21. Then, we have

where y is related to x via

y = DTaXx. . (31)

Here, D = D^-a) is the (n + l+ 1) x (n + l + 1) diagonal matrix

T is the (n + l + l) x (n + l + l) matrix

and X is the matrix of the inclusion o /R n + 1 into ]R /+n+1

Proof: By a change of variables, we obtain

v + a)' + zx(i; + a) '+ 1 + h xn(t; + a)l+n)2dv =

where x = (xo, • • • ,x/+ n) is given by

T = TaXx

with the matrices Ta and X defined by (33) and (34) respectively. A further change

of variables yields

(6 - a)du = (6 - a)

with y = (j/o, • • •, ?//-fn) = Dx, and P given by (32) D
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Lemma 3 Assume the function <f> is positive and bounded

0 < Ci < <f> < C2 < oo.

Then, the following inequalities hold :

(35)

• a > 0 and m an arbitrary non-negative integer: then

KrflTy < x'A^x < K2y
tHny

for certain constants K\ and K2. Here, x and y are related through the equa-

tion

y = Db-aTax

where Db-a and Ta are the (n + l ) x ( n + l ) matrices whose entries are given

by equations (32) and (33) (with I = 0) respectively.

• a € R arbitrary and m = 21 non-negative even integer: then

KuflT+ty < x'A^x < K2y
tHn^y.

Here, x and y are related through equation (31).

Proof: Follows easily from the previous lemma D

To treat the value problem for the Pade denominator, we observe that its coef-

ficients satisfy the following system of equations

L

L+l

L+l y L + M - l

CL+2Z

L+l 1

L+2

L+M

(36)

as it follows from equations (24).

The condition number KV(Z) of the matrix

L-A/+1 L-M+2

L+l

L

L+l

yL+Af-l

(37)
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permits us to bound the error

by the error

_ | | « c
£e t = -n—r

(see (19)) i.e., roughly

«&,* < Kv(z)€CtX.

The estimation of the condition number for the value problem in Pade approxi-
mation is now a simple matter, which we present in the following theorem.

Theorem 1 Let f and e be defined as in lemma 1. Let

m = L-(M-l) = 2l and n = M - l ,

and define Dz e R n + l x n + 1 by

(D r) = z i + ' - 1 .

Then the condition numbers KV(Z) and KV(£) for the (denominator) value problem

of the [L/M] Pade approximants for the functions f(z) and e(£) satisfy

KV(Z) ~ K ((Db-aTalDzyHn+l(Db_aTaID2j) (40)

and

~ K ( (D 7 2 r 7 1 I^) ' / f"+ ' (D 7 2T 7 l I^)) (41)

where
Ba-l , B(b- a)

7i = — and 72 = —- .
A A

Ifa>0, then the estimate (40) sharpens to

KV(Z) ~ K
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Proof: We shall only show how to obtain (40) since, using lemma 1, (41) can

be established in a similar way. Let S and 5(2:) denote the matrices in (24) and

(37) respectively, and let J be the (n + l ) x ( n + l) diagonal matrix with entries

Ji{ = (-l) '+«-i. Since

K(S(Z)) = K(JS(Z)J)

it suffices to estimate the condition number of the matrix R = JS(z)J. Now, from

the equation

(0 < i, j < n)

and (30) we deduce that

R = DzA
n^mbz.

Since for a positive definite and symmetric matrix F we have

IIFII = maxz'Fz and11 " ll*ni

we conclude, from lemma 3, that

K(R) = K(DzA;>mDz) ~ K

The right hand sides of (40) and (41) can be evaluated using the equation (27)

for the inverse of the Hilbert matrix and the fact that T~} = TL5. In Fig. 4 we show

the dependence of the right hand side of (41) on the parameter B in (4) in the case

m = 0, a = 0 and 6 = 1 (which yields, in particular, numbers that apply to the

function f(z) = log(l + z)/z). In the figure A was normalized to 1 so that

* z + B

and we have plotted

for z = 20.

In Fig. 5 we plot the errors in the [20/21] enhanced Pade approximants at z = 20

for f(z) = log(l + z)/z as a function of B. We observe that, as claimed at the
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Figure 4. Condition number as a function of B,
): 0=0, b=l, m=0, z=20.

beginning of this section, the condition number in figure 4 as well as the errors in

figure 5 are smallest for the value of B in (6).

Finally, in Fig. 6 we present a plot of the condition numbers for / ("z-variable")

and e ("£-variable") (cf. (29)) again in the case m = 0, a = 0 and 6 = 1 . Here

the parameters for the conformal map are A = 1 and B = 2, and we see that the

conditioning is in fact improved by the change of variables.

4 Examples

In this section we apply the methods and ideas presented in this paper to a number of
elementary analytic functions. These functions have been chosen so as to illustrate
the quality of the approximations that can be obtained -by means of a simple
change of variables- in problems in which classical approximants have had limited
success. As we have said, the key to the most successful approximations is an
accurate calculation of the coefficients of the enhanced series. We noted in section 3.1
that calculation of these coefficients by direct composition of power series produces
enhanced coefficients of poor quality. In most of the examples that follow, we
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B

Iog10(£)

Figure 5. Error E=llog(l +z)/z - [«/n+l]Enh. Padel as a

function of B (t=z/(z+B); z=20, n=20).

will therefore obtain the enhanced coefficients by alternative means. Because of
the simplicity of the elementary functions used below, such accurate calculations
do not represent a challenge, and will be described in each case. In more complex
applications, an accurate calculation of the enhanced coefficients may not be a simple
matter and must be regarded as an integral part of the problem. These questions
will, at any rate, be left for future work.

From numerous numerical experiments, among which the ones in this section
were chosen, a clear picture emerges: diagonal or close to diagonal enhanced Pade
fractions are probably never worse and can be very substantially better than clas-
sical Pade approximants or truncated enhanced series. The degree of improvement
of the enhanced Pade method over regular Pade approximants is most notorious in
cases of poorly conditioned Pade problems. Enhanced Pade fractions with denom-
inators of low degree can be as accurate or, if the number of coefficients is large
enough, slightly more accurate than enhanced diagonal Pade fractions. If a large
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Figure 6. Condition numbers in the £ and
z variables: a=0, b=l, m=0.

number of coefficients are available, this option may be attractive since it reduces
the ill-conditioning of the problem and, at the same time, it results in a lower com-
putational cost. Summation of the truncated enhanced series, on the other hand,
is an alternative to other approximants in low order problems (see section 2.2), but
any of the other proposed methods performs better in problems of higher order.

The computations that follow have been performed in Fortran, and double preci-
sion arithmetic has been used in all cases. Pade approximants have been calculated
by means of the approach recommended in [11, 3], that is, via solution of the de-
nominator equations by Gaussian elimination with partial pivoting and iterative
refinement [10]. Also, for simplicity, attention is restricted to conformal maps of
the type (4). The accuracy of the enhanced approximants is independent of the
parameter A in (4), and we have therefore taken A = 1. Other conformal maps can,
of course, be useful in these and other circumstances.

Our first example is a classical one in approximation theory.

• f(z) = log(l + z)

In table 1 we show the values of the [y/y] Pade and Enhanced Pade approx-
imants for the function f(z) = log(l + z). Since the singularities of log(l + z) lie
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on the interval [— oo,— 1], we see from (6) that the optimal constant B is B = 2.

The optimality of B = 2 is numerically illustrated in Fig. 7 where we have plot-

ted the decimal logarithm \og10(E) of the error E in the computation of enhanced

approximants as a function of the parameter B.

Iog10(£)

Figure 7. Error E=llog(l+z) - [n/n]Enh. Padel as a

function of B (£=z/(z+B); z=20, n=20).

Our last technical point here relates to the calculation of the coefficients of the

enhanced series. Because the composite function / o g^1 is given by

= log(l + 0 - log(l - 0

the enhanced series can simply be obtained as the difference of the series of log(l+f)

and log(l — f). A calculation of the enhanced coefficients by composition of the series

of / and pi results in enhanced approximants of comparable or worse quality than

the corresponding Pade fractions.
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Table 1: [y/y] approximants for log(l + z)

N
20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180

z log(l + z) Pade
20 3.044522437723 3.043989111079

3.044612164211
3.044477040660
3.044175772366
3.044463021924
3.044489520809
3.044496462919
3.044619592662
3.044362344599

200 5.30330 5.03582
5.32614
5.17831
5.08690
5.16939
5.18899
5.19792
5.70660
5.13885

Enh. Pade
3.043988784141
3.044522360574
3.044522437596
3.044522437727
3.044522437722
3.044522437724
3.044522437723
3.044522437723
3.044522437723

5.03577
5.28588
5.30093
5.30276
5.30305
5.30324
5.30328
5.30329
5.30330

Table 1 shows that, as noted in the introduction, close to diagonal enhanced
Pade approximants produce up to 13 correct digits of log(21) while ordinary Pade
fractions do not produce more than the first four digits. It is very remarkable, in
any case, that the Pade approximation is so stable, and that it produces these four
digits for N up to at least N = 180, in spite of the tremendous ill-conditioning of
the denominator problem. A scaled version of this remark applies also to enhanced
approximants. Also, table 1 shows the values of both approximants at z = 200;
again an improvement is observed.

Another point of interest here relates to the fact that, for approximants with
denominator and numerator of the same degree, in exact arithmetic, and for the
conformal map (4) which is being used, the Pade and enhanced Pade calculations
coincide. This is a well known and simple fact, sometimes called the theorem of
Baker, Gammel and Wills [2], see also Edrei [9]. We conclude that the improvement
in the approximation is solely due to a better conditioning for the value problem of
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enhanced approximants. Indeed, Pade approximants for the function log(l + z) can
be computed exactly (see e.g [14, 15]). One easy approach to doing this is to use
the algorithm of Cabay and Choi [8] which has been implemented in the symbolic
manipulator Maple. Because the Taylor coefficients of log(l + z) are quotients of
small integers, Maple is able to produce (exact) high order approximants within a
few seconds. This experiment reveals a residual ill-conditioning in enhanced Pade
approximation which leads for example, when N = 100, to an agreement in the
first 12 and 4 decimal places with the true approximants at z = 20 and z = 200,
respectively. It should be mentioned, however, that if the coefficients of the series
are first evaluated to floating point, the Maple computation of the approximants
becomes impracticable due to the heavy computational cost of the exact arithmetic
that is required in Cabay and Choi's algorithm.

• f(z) = y/YTTTzTTO? = ^(1 + z){l + lOz)

In table 2 we show some values of the [y + 1/y] Pade and Enhanced Pade
approximants. The particular choice of the degrees of numerator and denominator
reflects the fact that / grows linearly at z = oo. Other choices will not affect the
enhanced approximants, since z = oo corresponds to the finite value f = —0.2,
but they will substantially deteriorate the direct Pade approximants. With these
choices of approximants, we observe a qualitative picture that is similar to those of
the previous examples. In this case the set of singularities of the function consists
of the interval [—1, —1/10] and z = oo, and therefore we must choose B = 0.2. The
composite map / o pfl equals

Accurate values for the enhanced coefficients were obtained by multiplication of the

series of the functions

and
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Table 2: [y + 1/f] approximants for ^(1 + z)(l + lOz)

N z
20 0.5
40
60
80
100
20 2.0
40
60
80
100
20 20.0
40
60
80
100
20 200.0
40
60
80
100

y/1 + llz + 10z2 Pade
3.000000000000000 3.000000000191161

3.000000000054656
3.000000000082875
3.000000000091835
3.000000000035938

7.937253933193772 7.937254332064001
7.937254058190112
7.937254061840008
7.937254081724105
7.937254002610010

64.969223483123145 64.969274407050378
64.969241195626026
64.969240709896781
64.969242844255120
64.969233358919439

634.193188232103239 634.193864933881173
634.193426947070634
634.193419429349660
634.193447207852955
634.193321691795518

Enh. Pade
2.999999999840064
3.000000000000012
3.000000000000000
3.000000000000000
3.000000000000000
7.937252500684555
7.937253933190430
7.937253933193773
7.937253933193778
7.937253933193769

64.967419717272691
64.969223451000317
64.969223483029751
64.969223483120771
64.969223483123088
633.954302438057653
634.193182915836246
634.193188213653002
634.193188231637009
634.193188232415196

• /(*) =

We include this function which, as mentioned in section 2.2, was used in [3] to
illustrate some properties of the Pade approximants. The singularities here lie in
the interval [-2, —1/2], and, consequently, we set B = 0.8. In table 3 we show some
values of the [y /y] Pade and enhanced Pade approximants.
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Table 3: [ f / f ] approximants for

N
20
60
100
20
60
100
20
60
100
20
60
100
20
60
100

z
1.0

2.0

20.0

200.0

2000.0

/l+z/2
VT+2T

0.707106781186547

0.632455532033676

0.517969770282812

0.501866839101296

0.500187418011205

Pade
0.707106781186552
0.707106781186522
0.707106781186551
0.632455532034468
0.632455532034382
0.632455532033877
0.517969770718025
0.517969770369511
0.517969770352077
0.501866840057933
0.501866839282608
0.501866839251020
0.500187419048587
0.500187418207021
0.500187418173372

Enh. Pade
0.707106781186548
0.707106781186547
0.707106781186547
0.632455532033708
0.632455532033676
0.632455532033676
0.517969770318570
0.517969770282812
0.517969770282812
0.501866839187716
0.501866839101296
0.501866839101294
0.500187418105841
0.500187418011204
0.500187418011203

• Enhanced series and low degree denominator Enhanced Pade for f(z) = log(l +

Our first motivation to introduce conformal transformations in the approxima-
tion problems was the fact that they enlarge the convergence region for the series
and can therefore be used to obtain the values of the functions. Since the series in
the enhanced variables converges, its Pade approximants with denominators of low
degree usually converge also. This high-order low-denominator-<iegree enhanced
Pade approximants can produce very good results, as we illustrate in tables 4 and 5.
This alternative may be of interest, since it results in a reduction in the computa-
tional costs. In any case, it is an interesting fact that a Pade with a denominator of
degree as low as 5 can produce such a substantial improvement of the convergence
rate of the enhanced series.

In table 4 we show the sum of the truncated enhanced series and the Pade
approximants of order N + 1 with denominators of degree 5 for the function f(z) =
log(l + z)/z at z = 20 where

log(21)/20 = 0.1522261218861712.
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The left hand table was constructed by using enhanced coefficients obtained by

composition of series (see section 3.1), the right hand one uses accurate enhanced

coefficients obtained otherwise. The loss of significant digits in the left hand table

is well explained by our analysis in section 3.1. Indeed, expression (22) predicts a

loss of, 14 and 18 decimals of accuracy for N = 30 and N = 40 respectively, in the

calculation of the enhanced series via composition, which is, roughly, observed. The

right hand table does not suffer, of course, of this deficiency. We must not conclude,

however, that the approach of § 3.1 is useless; see [7].

Table 4: Enhanced series and low denominator degree enhanced Pade

approximants for log(l + z)/z

N Enh. Series Enh. Pade
10 0.14360068
20 0.15009266
30 0.15159762
40 0.06910705

0.15430450
0.15228496
0.15227847
0.15232884

N Enh. Series Enh. Pade
10 0.14360068
20 0.15009265
30 0.15161534
40 0.15203828

0.15430450
0.15228495
0.15223062
0.15222664

Table 5 contains higher order approximations computed from accurate enhanced

coefficients. Besides the regular Pade approximants and enhanced series we include

enhanced Pade approximants with denominators of degree 5 (low) and of degree

N/2 + 1 (high). Note that, for very large N, approximants of low denominator

degree perform better than diagonal ones. In both tables 4 and 5 we observe a slow

convergence of the enhanced series, and a greatly improved convergence as a result

of incorporating enhanced approximants with denominators of low degree.

Table 5: High order approximants for log(l + z)/z

N Pade Enh. Series Enh. Pade (low) Enh. Pade (high)
60 0.15222278964875

100 0.15222383792081
160 0.15222522532903
180 0.15220153083826

0.15224926415545
0.15222642286095
0.15222612249452
0.15222612196628

0.15222613236258
0.15222612190656
0.15222612188617
0.15222612188617

0.15222612189111
0.15222612188430
0.15222612188623
0.15222612188614
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Finally, we present an example of a function whose singularities are not real.
Even the simple conformal transformation (4) can provide excellent approximations
in such cases.

• /co =
In this case, as in our second and third examples, the coefficients of the enhanced

series were calculated as products of series whose coefficients are given by simple
formulae. It is easy to check that the optimal value for the parameter is B = 0.1.
The computer produced NaN ("Not a Number"), an overflow indicator, in the case
of the [90/90] direct approximant for z = 500.

In table 6 we show some values of several [y /y] Pade and enhanced Pade frac-
tions. The qualitative picture remains unchanged.

Table 6: [y /y] approximants for J

N
20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180

z f(z) Pade
50 0.100903995976172 0.101690956502194

0.100851941698109
0.100829704353523
0.100862678889198
0.100859381474982
0.100978541936147
0.100961431193080
0.101015279273425
0.101038687309100

500 0.100090040445593 0.100925225656255
0.100032942757639
0.100008791942675
0.100044809049461
0.100041047921743
0.100170377177106
0.100152070923988
0.100209795827462

NaN

Enh. Pade
0.101690955078874
0.100907485427384
0.100904026370804
0.100903996274708
0.100903996124993
0.100903995972737
0.100903995978357
0.100903995976236
0.100903995976198
0.100925224160906
0.100093996177684
0.100090077056242
0.100090040827442
0.100090040634719
0.100090040440984
0.100090040448810
0.100090040445689
0.100090040445629
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