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Introduction

In this note we shall discuss some multiplicity results for a class of inhomogeneous

Neumann problem involving the critical Sobolev exponent.

We will place particular emphasis on the existence of changing sign solutions which for
N

constant data, will yield non constant solutions. More precisely, let X > 0 and let ft C IR ,

N > 3 be a bounded domain with smooth boundary 5ft. For a given function f we seek

solutions for the following problem:

2 —2
-AU + Jlu = |u| u + f in ft

Is = ° in dQ

* 2Nwith n the outward pointing normal on dQ and 2 = jq^y *^e ^ e s t exponent in the

Sobolev embedding.

Even though our discussion extends to include f 6 H~~ (the dual of H (ft)), we prefer

• ,. 2N

to simplify the techniqualities and assume f € L (ft).

The homogeneous case, i.e. f = 0, has been treated by several authors (cf [A—M],

[G-K], {W]). They have established the existence of a positive solution for (l)f=o for all

X > 0. It must be noticed however that when f = 0, problem (l)f_Q always admits the
1 _ • " , : . - . ' ' ! -

2 —2constant positive solution u = X . The above mentioned results can guarantee a

non—constant positive solution only when X is large.

The problem of finding non constant solutions for (l)f=Q has been examined in [C—T].

There the oddness of the problem has allowed to obtain changing sign solutions for all A > 0,

provided N > 5.

Here, we extend these results to include the case where f ^ 0. It should be noticed

that for f f 0 problem (l)j is no longer odd and the techniques used in [C—T] become

unsuitable. .However, extending an approach introduced in [Ta] for the corresponding Dirichlet

problem, we are able to construct "ad hoc" minimization problems which yield the desired



solutions.
N+2

More precisely, following [Ta] let c^ = ^^ (fl+"s) an(* define:
N+2

H = inf
w . =1

c N (II vu | | | + A|| ix f f u (1.1)

The role of p, vrill become clear from the discussion below. Our main result states the

following:

Theorem 1:

Let N > 5 and f $ 0. If fir > 0, then (l)j admits at least three (weak) solutions one of

which necessarily changes sign. Furthermore, if f > 0 then the other two solutions UQ and

u. satisfy: 0 < H Q < u... ' ! •

Obviously regular data f will yield classical solutions for (1)^. Also we have,

0 < UQ < u. in case f > 0 and f ^ 0. Furthermore, putting together the results of

[A-M] (see also [W] and [C-K]) and [C-T] we see that the given Theorem continues to hold

for f = 0; only that^ in this case, the "smallest" solution UQ reduces to the trivial one, i.e.,

UQ = 0. So, Theorem 1 can be viewed as a bifurcation type result. In fact, the condition ^

> 0 (to be compared with (*) in [Ta]), is essentially a "smallness" condition on f, since it

certainly holds when f satisfies:
N+2

2 N < CN

with

SN(A) = inf { || vu \\l + X\\ u \\l} (1.2)
IMI • = !

2

Incidentally, let us also mention that the minimization problem (1.2) attains its infinum at a

positive function in H 1 ^ ) (cf [A-M], [C-K] and [W]).

When f = constant > 0 (not too large), the claimed two positive solutions could



correspond to (suitable) constants. While it follows from our construction that this is not the

case for X large, our result asserts that, in any case, problem (1)£ admits nonconstant

solutions for all X > 0.

We also point out that our result holds in the subcritical case (where one replaces the

power 2 in (l)r with p 6 (2, 2 )) under both Neumann or Dirichlet boundary condition.

The proof is simpler in this situation and therefore left to the reader.

Finally, let us mention that our approach can be applied to handle the case X = 0 and

i f = 0. This is done via a dual variational principle as introduced by Clarke [Cl] and

discussed in [C-K] in this context.

In this situation one finds a "dual" correspondent for the value p^ as given by:
2-N

(1.3)

where >'

2N
E = { w € L 1 ^ (0) : f w = 0} (1.4)

and K : E —» E is the inverse of — A in E, that is:

Kf = g <=* -Ag = f in H^fi) and I g = 0. (1.5)

f 2"N

* = inf {cN ( I wKw)"7" + f wKw; w 6 E, || w || 2 N = 1 }
" ft N+T

f
We have:

Theorem 2: Let N > 5. If f # 0 satisfies f = 0 and /fj > 0, then the problem:f = 0 and /fj

(2),

*
- LU = | u | 2 ~ 2 u + f in

7E = ° in

admits at least Jam (weak) solutions.



Notice that, since f = 0, all solutions of (2), must change sign.
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THE EXISTENCE OF THE FIRST TWO SOLUTIONS:

This section will be devoted to prove the following:

Theorem 2.1: Let N > 5 and f ^ 0 satisfy fit > 0. Problem (1)£ admits at least imi

solutions UQ and My Furthermore, if f > 0 then 0 < uQ < ir.. ^

Such a result should be compared to the analogous one obtained in [Ta] for the

corresponding Dirichlet problem. In fact, the proof is essentially the same and we shall refer to

[Ta] for several of the details.

To start, let us observe that (#eak) solutions for (1)£ are the critical points for the

functional,

I(u) = l\ | v u |2 + A| u |2 - 4 f | u |2 - [ f u ; u € H 1 ^) .

Denote by (•, •) the scalar product in H (fi) corresponding to the norm:

| | u | | 2 = M v u | | | + A|| u ||2, n €

Easy computations show that I is bounded from below in the set,

A = { u € H



So, in the search for solution of (1)£, a first candidate would be the minimizer for the following

problem:

cQ = inf I (2.1)
A

On the other hand, to insure that cQ is indeed critical for I, we require that A admits no

boundary. This is guaranteed if the function:

<p(t) = I(tu), t > 0

admits a nonzero critical point for each direction u 6 H (fl), u # 0

Following [Ta], this corresponds to require that:

I'(to(u)u) > 0 V u i 0

with

to(u) =

2

2 -2
(2.2)

Equivalently,

2 - 1

7-2 1 —2
" - f fu > 0, Vu i 0

that is,
*

2 - 1

> 0 V u t 0

which is exactly the condition /*£ > 0.

A straightforward consequence of this observation is the following,



Lemma 2.1: Assume fir > 0.

For every u + 0 there exists unique t~~(u) < t (u) such that,

0) 0 < t"(u) < tQ(u) < t+(u) (tQ(u) given in (2.2))

(ii) t±(u)u 6 A

(iii) I(t (u)u) = min I (tu); I(t+(u)u) = maxl(tu).

tC[O.t+(»)] ' *>

Furthermore, t (u) > 0 when i f u > 0 :
The proof of Lemma 2.1 follows exactly as in Lemma 2.1 of [Ta].

Next, we derive some other useful consequences from the condition //r > 0.

Lemma 2.2: Set,

AQ = { U 6 A : | | V U | | 2 + A||u||2 - (2* - 1 ) || u ||2* = 0 } .

If /ij > 0 then,

AQ = { 0 }. (2.3)

Furthermore, for every u € A — { 0 } there exist e > 0 and a C — map:

t : B . —» R+



such that,

(i) t(w) (u + w) € A , V w € B£ = { w 6 H : || w || < c } ;

(ii) t(0) = 1 and (t'(0), f) =

€ HA(n).

| vu-vp + 2| Xup - 2 I |u | u <p

||vu||2 + X||u||2 - (2*-l) | | u | | \

Proof:

To obtain (2.3) let us argue by contradiction and assume that there exist u € A — { 0 }:

•- *
|| v u II + A|| u || = (2 -r 1} || u || *.

2 2

This implies that,

f * 9*
| | u | | > 7 for suitable 7 > O^and fu = (2 - 2 ) | | u l | *. :

i 2
But this is impossible since,

0< 7 A f < l | u | | * /if < (2 - 2 ) Up
1 2 x 2 - 1

• * ,

2 - 1
1 12^—2

0 0 1

lull? f - l 2 -2

— 2) || u = 0.

At this point we obtain the second part of our claim as a straightforward application of the

Implicit Function Theorem applied to the function:

F(t,w) = t( || v(u + w) II2,) - t 2 " 1 ||u + w||2* - jf(u + w

at the point (1,0) € R * H1(O).

)



Remark 2.1:

Notice that necessarily,
*

|| V t+(u)u \\l + X\\ t+(u)u \\l - (2*-l) || t+(u)u ||2* < 0,

while for f u > 0 we have:

|| V t~(u)u (I2 + A|| f ( u ) u II2 - (2* - 1) || t~(u)u||2* > 0.

Assertion (2.3) can be strengthened as follows:

Lemma 2.3: Assume /Zr > 0 and let { u } C A such that,

l i m || v u j | 2 + A|| un ||2 - (2*-l) || u n ] | 2 * = 0;

then, l im inf || u |j = 0.
n-»+aD

Proof: Argue by contradiction and assume that || u || > 7 > 0, Vn.

Then, ,

f fn n = (2*-2) | |un | |2* + o(l)

and

I + ̂ KI|
un | |2*12

2
But this is impossible since, as above, it yields:

i
At this point we are ready to establish the following:



Proposition 2Ai H f satisfies Mf > 0» then the minimization problem:

cn = inf I (2-4)
u A

attains its infimum at a point uQ which defines a critical point for I. Furthermore,

uQ > 0 for f > 0.

Proof: Let f ^ 0, since for f = 0 we have cQ = 0 and uQ = 0.

For u e A it follows that,

4) f fu( || vu ||2 + A|| u ||2 ) - ( 1 -

from which we immediately derive that I is bounded below in A.

Claim 1: cff .< 0 . (2.5)

Indeed if v 6 H (Q) is the unique solution for:

' - A V + Av = f in H 1 ^ ) / •

then [ fv > 0. Thus, from Lemma 2.1, there exist 0 < t~"(v) < t + (v) such that

t""(v) v € A and,

cQ < I(t^(v)v) = min l(tv) < 0.

te[O , t+(v)]

Next, apply Ekeland's principle (cf [A-E]) to (2.4) to obtain a sequence { un } C A satisfying:

(a) I(un) < cQ + I

(b) I(u) > I(un) - I | | u n - u | | , Vu e A.

Notice that necessarily, || vun ||^ + A|| un ||j - (2* - 1) || un ||2 > 0.

As in [Ta], we show that condition (b) implies || P(u ) || —* 0 as



10

n —» + to. In fact, in view of (2.5), for n large, it follows that,

Thus,

t>! < II \ II < b2 . (2.6)

for suitable IK, b2 > 0.

Now, fix n with I 'OO # 0. By Lemma 2.2 and the estimate (2.6), for S > 0 sufficiently
n •

small, we can find t(6) > 0 such that,

(2) t(0) = 1 and | t ' (0) | < - w

j™jl+ *W*jl " (2*-l)||un||
2*

( c> 0 suitable constant).

On the other hand, since || u |j "> bj, from Lemma 2.3 also follows that,

*l im inf || v u \\Z + A|| u \\* - (2 — 1) || u ||% > 0;
n-»+oo / 2

which yields I . x

jt^O)! < a, forasuitable &. > 0.

Thus,

— 11 U r —" U 11 y I(U ) ~" I(U r) —— v\\ I (U ) || "t" Oi || U *"" U r |
TL o n n v II \ j ^ / ii \ ii j2 () •'

and

Therefore,

' W I I < J ( | t ' ( O ) | + l ) — 0 as n -,+eo.
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So, if we call uQ the weak limit of (a subsequence of) u n in H^fi) we have that, uQ solves

(l) f. Therefore uQ € A, and

cQ < I(uQ) = £ ( || v uQ ||| + A|| u o | | | ) - f f uQ <
ft

< l i m I(u ) = cn.

Thus, u n —» UQ strongly in H (ft) and UQ is the desired minimizer.

Notice that, t~(u0) = 1 (t~(uQ) as defined in Lemma 2.1). So for f > 0, we have,

H I uQ | ) > 1.
Therefore,

I ( t " ( | u o | ) | u o | ) < I ( | u o | ) < I(uQ).

which yields UQ > 0. •

Remark 2.2: Arguing as in [Ta], one can conclude that uQ is a local minimum for I.

Set,

A+ = { u G A : || V u ||2 + A|| IE I|| - (2* - 1) || u ||2* > 0 } C A.
2 * 2

The argument above, shows that, UQ 6 A and,

cn = inf I = i n i I.
u A A"1"

Thus, in the search of our second solution, it is natural to consider the second minimization

problem:

c, = i n f I (2.7)
1 A

where

A" = { u 6 A : || V u | | | -h AH u | | | - (2* - 1 ) || u ||2
+ < 0 } .

2
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We start by describing some nice (topological) properties of A .

To this purpose set S = {u 6 H1(fi) : || u || = 1}. We have,

LCTnTna 2.4:

The subset A"" is closed in H (ft). Furthermore, the map: ^ : S —» A~~ given by,

*(u) = t+(u)u (t+(u) as defined in Lemma 2.1)

defines an homomorphism.

Proof: Note that if u G A" then || u || > b > 0 for a suitable b > 0. Thus, in view of

Lemma 2.3, every sequence {un} in A"" satisfies

•lim inf | | v u n | | 2 + A|| ^ | | | - (2* - 1 ) || un ||2* < 0
2

which readily gives A~ closed.

The continuity of t (u) follows immediately from its uniqueness and extremal property.

Thus, $ is continuous with continuous inverse given by:

We have:

Proposition 2.2: Let N > 5, then the minimization problem (2.7) attains its infinum at a

critical point u. € A"" of I. In addition, u« > 0 for f > 0.

Proof: First of all notice that any minimizing sequence { u } c A"" for (2.7) satisfies:

0 < bx < || un || < b2

for suitable b. and bg.

Therefore, exactly as in the proof of Proposition 2.1, via Ekeland's principle (which applies in

view of Lemma 2.4) we derive a minimizing sequence { un } C A~ satisfying:

II I ' K ) II - 0.
Since I involves a nonlinearity with critical growth, to be able to carry out the final

convergence argument we need some information on the value c..
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Claim:

< '0 + K T
where S is the best constant in the Sobolev inequality (cf [T]).

To establish (2.8) we follow [Ta] and note that, in view of Lemma 2.4, A~ disconnects

H (ft) in exactly two components:

U~ = { u = 0 or u * 0 : | | u | | < t + ( p f ) } ,

U+ = { u : | | u | | > t + C ^ ) 1 } ,

and A+ c XT".

As usual for this type of problem (cf.[B-N]), to obtain (2.8) we use a suitable cut off

function u of an extremum for the Sobolev inequality as given by the function:

N-2
_ ( N ( N - 2)e)

V

with e > 0 fixed sufficiently small and y 6 dQ. chosen so that, in a small neighborhood of

y, the domain ft lies on one side of the tangent plane of dQ at y and the mean curvature of

dCl at y (with respect to the outward normal) is positive. The existence of such a y is

guaranteed by the smoothness of dQ.

o QN/2 9

As well known, || v ue \\* = ^ - + o(l) and || u^ = o(l) as e —» 0.

Therefore, if we let

An = sup t+ (u) < + OD
0 llu||=l
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for R > 2S ' An + 1 and c > 0 sufficiently small, we have,

f * R2 > AQ

H-r V R

||uo+R u c |

that is, u0 + R U f e U + . Thus, we can find tQ e (0,1) such that,

' v e = u0 + t 0 R u e € A V

So, for a suitable constant C > 0, we find:

< I(n0) \ + f lflu

where

Direct calculations show that,

KIue~1+ f K I 2 ~ \ + f
N-2

VlHl

N-2-,

, a > 0;

(cf[B-N]) and max IQ(t u£)

Therefore,

1 °

rllvnJa + A»ucll2iN/2

c 2 *

llvujl2 + A||u6||2-|N/2 or n r i
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On the other hand, our choice of u guarantees that, for N > 4, we have:

_ c e i /» + 0 ( ( i /2 ) , c > o,

(see [A-M], [C-K], [W]). Thus, for N > 5 we conclude:

N-2 , s N/2
£ £ _ c ,1/* + o(£>/2) + o

for e > 0 sufficiently small.

At this point, to show that the sequence {u } is precompact we use an inequality of Cherrier

[Ch] which, for every ,r. > 0, gives a constant M r > 0 such that:

l a » * * I |V4X|I2 + M r l l U H 2 - V u 6 H l

Since u is uniformly bounded in H (ft), after taking a subsequence (which we still call u )

we find u, e H (ft) such that u —* u. weakly in H (ft). In particular, u . e A and so

IO4) > c0.
Furthermore, if we write u = u i + v

n ^ ^ v
n ~* 0 weakly in H (ft), we derive:

... n2 1 11 .. 112 , A / ! \ . „ ^ „ , 1 S

which yields:
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Moreover,

2 2

that is,

II v v n »1 " II v n HJ* = °M' ( 2 1 ° )
Putting together (2.9) and (2.10) we have that,

o cN/2
l i m llwJIJ := 7 < ^ ~ - (2-11)

s i

Next we show how (2.10) and (2.11) can hold simultaneously only if l i m || vv || = 0,

(i.e., 7 = 0).

Let us argue by contradiction and assume .7 > 0. Take r > 0 such that:

From (2.10) we have:

Since 7 > 0, then || v v n ||2 is bounded below away from zero. Therefore,

| N / 2

which, in view of our choice of r, contradicts (2.11).

This gives un —» Uj strongly in H (ft) and so u^ is the desired minimizer.

Finally, for f > 0 we have:

iCt+CI^DIuJ) < I ( t + ( | u | ) u x ) < ^ t ^ I( )
1 1 l l

which yidds u. > 0.
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Obviously uQ t u... To conclude the proof of Theorem 2.1 set u, = min{uQ, u1};

we show that f > 0, f # 0 implies the existence of a solution 0 < uQ < u, . To this

purpose note that when f > 0, (f 4 0) the unique solution u for the problem:

- a + Xu = fii in

gives a positive subsolution for ( l)j for all fi € (0,1) and u —> 0 as \k - ^ 0.

On the other hand, u, = min{u0, u.} defines a supersolution for (l)j. So choosing \L > 0

sufficiently small to guarantee u < u , a.e. in ft, by the method of sub-super solutions, we

obtain a solution uQ for ( l )j satisfying:
- ' / . • •

O 0 < U < UQ < 11 + .

This concludes the proof of Theorem 2.1.

Remark 2.3: Notice that, if u, is a minimizer for (2.7) and f t 0 then

I fu, > 0.

To see this, observe first that c2 < ^-(SN(A))N /2 with SN(Jl) as defined in (1.2). Indeed,

let UQ be a minimizer for (1.2) with f UQ > 0 and IQ(UQ) = max I(t uQ) then,

N ( S
N ( ^ ) ) N / 2 ^ c l *

On the other hand, if by contradiction we assume that f û . < 0, then for tft > 0

satisying In(tn u.) = max In(t u.) we have:
u u 1 t > 0

cx = ICnj) > I(tQ ux) > IQ(t0 n
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Therefore,

l lw

+ * l|I'(un)| | + o( || u n - wj | | ) .

On the other hand, for a suitable C. > 0 we have:

which yields,

H1'^)!! ^ -r (I ^W I + 1 tK0) I + J ) + t;(o) (r(un), u+) +

+ V(0) (P(nn), - T Q < I C4(l + 2C3) i~* X3 as n

In conclusion the sequence {u } satisfies

l S N / 2
0) I(un) — ?x < cx < c

Q

Thus, as we have seen in the proof of Proposition 2.2, conditions (i) and (ii) are sufficient to
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guarantee a convergent subsequence for {un} whose (strong) limit will give the desired

minimizer. •

Obviously, Proposition 3.1 would yield the conclusion for Theorem 1 only if the given

relations between 7-, 72 and c, could be established. While it is not clear whether or not

such inequalities should hold, we shall use these values to compare with another minimization

problem.

Namely, set

A7 = Â  n A2 C A""

and define,

c0 = inf I. (3.4)
A ;

It is clear that c2 > c^ An upper bound for c2 is provided by the following:

Lemma 3.1i

For fixed e > 0 and y e dQ there e±ist s > 0 and p € IR such that

S U* — #x TJ C A *

In particular, for N > 5,

,N/21
c2 < sup I ( s u r t U ) < ci + N1 s>O,t x £>y 1 n

for e > 0 sufficiently small and y suitably fixed in dtt.

Proof: We shall show that there exist s > 0 and t € R such that

s(ux - 1 U f ) + 6 A~ and - s ^ - 1 U£ )~ e A~ (3.5)

To this purpose let,

max u l . . _ m i n u l
Q v 1 fi v



22

For t e (t,, t2) denote by s,(t) and s_(t) the positive values given by Lemma 2.1

according to which we have:

8 + W ( u r t u
f / e A~

and

-sJtX^-tU^yF € A"
Note that s , (t) is a continuous function of t satisfying:

lim s+(t) = t + ( u i - t i u
c

t-»t* '

Similarly, s_(t) is continuous and,

lim s (t) = +CD and lim s (t) = t (t9 U •

Therefore, by the continuity of s±(t) we find a value t~ € (tp tg) such that

V V = Ut0) =
 so >l°-

This gives (3.5) with t = tg and s = SQ.

At this point we only need to estimate I(su1—tU ) for s > 0 and t 6 K. To this

purpose we fix y 6 0Q as in the proof of proposition 2.2 and let u = U . The structure
c c,y

of I guarantees the existence of R > 0 (independent of e) such that ^su^ —tu£) < c^
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for all s2 + t2 > R2. On the other hand, for s2 + t2 < R , we have:
N-2

I C s ^ - t n ^ < 1(8^) + I0(tuc) + OC

N-2
< maxlfsu,) + maxln(tu ) + 0(e ) =

s>0 L t€R u e

N/2 N"2

^ ci + N T - - c f l / 2 + °(cl/2) + °(€"3"); c

where we have used the estimates in [A—M], [C-K] and [W]. Hence, for N > 5 and e > 0

sufficiently small we readily obtain,

1 SN/2

< SUpI(su,-tu) < C, + jr—ir--
s>0 e

telR

Proposition 3.2: Assume that 7, > c, and ?« ^ c i • ^ e minimization problem,

c2 = inf I

A*

attains its infimum at u« € A« which defines a (changing sign) critical point for I.

Proof: Exactly as in Proposition 3.1, by means of Ekeland's principle, we derive a minimizing

sequence {un} C A* satisfying:
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In particular, we have:

0 < ax < || u^ || < a2 (3.6)

for suitable constant a. and a2. Thus, after taking a subsequence, we obtain

u* - * u* 6 HX(n) weakly in E}(Q).

We start by showing that u $ 0.

Indeed, if by contradiction we assume for instance, that u = 0 then we would have:

0) Hvn+|g-||uJ|rC = o(l)
2

and

1 - 4 - 2 1 - 4 - 2 - 4 -
(ii) l i m w || v IV; |L * || u"; || * = l i m I(u^) <

n-»+ GD l l

i sN/2

< c2 - 1 i m I(-uD < co - c, < TT —tr-•

But, we have already seen how condition (i) and (ii) can hold simultaneously only if

l i m || v ui" || = 0 which clearly contradicts (3.6). A similar argument applies to u~ .
n-++ OD

Thus, u2 = u + — u~ i 0 is a changing sign solution for (l)j and in particular,

I(u2) > cQ.
Set u + = u + + vj" and u~ = u~ + v" with v* - - 0 in H1(f2). Note that,

2 " II v n II2* =
2
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In view of (2.8) and Lemma 3.1, we also have:

li m I(v+) + I(-vp = H m I(un)-I(u2) < c 2 - c 0 <
n-M- OD n»+

So, necessarily,

lim
n-H-co

which, in view of (3.7), yields:

that is, u 2 = u — u 6 A j or u 2 = u - u € Aj•

Consequently, since we are in the situation where 7 ^ ) 7 2 ^ ci> w e conclude:

I(u2) > c r

Therefore, if we write u = u 2 + w with w —^ 0 in H (Q) we obtain,

and

m J || vwn ||| - 4 || wn ||
2* - l i m I(nn) - I(u2)

oD 2 2 n»+

1
<- C2 " c l < N

(3.8)
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This, in the usually way, yields || w || —» 0. Thus u —> u2 strongly in H (Q) and

U9 6 Â  gives the desired minimizer. •

The proof of Theorem 1:

For f > 0 (f < 0) Theorem 1 is a direct consequence of Theorem 2.1 and Proposition

3.1 and 3.2. In case f changes sign, note that, if the situation of Proposition 3.1 occurs then

we would be done since fi, > CQ and /*2 > CQ. SO assume that we are in the situation of

Proposition 3.2. To conclude it suffices to show that u2 i Uj (since, obviously, u2 i UQ).

In fact, argue by contradiction and assume that u2 = u... Then, c2 = c,,

u^ € Aj n A2 and 7- = c. = 72- On the other hand, f u j > 0 (see Remark 2.3),

thus f u"J" > 0 or — f u j > 0. Assume, for instance, that f u|" > 0. From Lemma

2.1 then we obtain a f > 0 such that

u+ 6 A+ and I(u+)

This is clearly impossible since, t~" u"J" — u j 6 A2 and

r u+

Thus, in all circumstances, a third changing sign solution for (l)j is guaranteed.

Sketch of the proof of Theorem 2

The proof of Theorem 2 follows by considering the (dual) functional,

2N

F(w) = ^ T T f I w ̂ ^ "" \ f wKw + f wKf' w 6 E
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with E and K as defined in (1.4) and (1.5).

As above, the idea is to consider,
N f

0 } ,A* = {w € E , ( F ' ( w ) , w ) = 0 a n d ^ f | w | N + 2 - I w K w >

and

2N r
A^ = {w € E,(F'(w),w) = 0 and ^ [ | w | N T T - I wKw < 0 }.

One shows that the condition fir > 0 (fir as defined in (1.3)), implies that the corresponding

minimization problems:

c* = inf^F (4.1)

c* = inf F (4.2)

A_

yield tffifi distinct critical values for F, hence two (distinct) solutions for (2) .̂

For the minimization problem (4.1) this follows exactly as for Proposition 2.1 with the

obvious modifications.

The minimization problem (4.2) is treated similarly to that in (2.7) and the

corresponding compactness argument follows by providing an appropriate upper bound on c .̂

This can be derived using the estimates contained in [C—K]. We leave the details to the

interested reader.
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