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Lntroduction

In this note we shall discuss some multiplicity results for a class of inhomogeneous
Neumann problem involving the critical Sobolev exponent.

We will place particular emphasis on the existence of changing sign solutions which for
constant data, will yield non constant solutions. More precisdy, let X > 0 and let ft C IRN,
N > 3 be abounded domain with smooth boundary 5ft. For agiven function f we seek
solutions for the following problem: |

| ) 2-2
AU + Ju = |u| u+ f inft

(1) ||.S: 0 in dQ

with n the outward pointing normal on dQ and2* = jaxy *f‘e A€t exponent in the
SoboIe/embedding..h | | _ - _ ) .r | | |
Even though our discussion extends to include T 6 H—L (the dual of HZ(ft)), we prefer
* . _ 2N
to amplify the technlqualltles and assume f € L l (ft) |
The homogeneous cae, ie. f = 0, has been treated by several authors (cf [A—M],
[G-K], {W]). They have established the existence of a positive solution for (1)f-o for all

X > 0. It must be noticed however that when-f = 0, problem (I){-Q aways admits the

. -~
constant positive solution u = X2_2. The above mentioned results can guarantee a

non—condant positive solution only when X islarge.

The problem of finding non constant solutions for (1)f-Q has been examined in [C—T].
There the oddness of the problem has dlowed to obtain changing Sgn solutionsfor dl A > 0,
provided N > 5.

Here, we extend these results to include the case where f ~ 0. It should be noticed
that for f f O problem (I)j isnolonger odd and the techniques used in [C—T] become
unsuitable. .However, extending an approach introduced in [Ta] for the corresponding Dirichlet

problem, we are able to construct "ad hoc" minimization problems which yield the desired



solutions.
N+2.
More precisely, following [Ta] let cy = g (RT3 (N—2) and define:
N+2

b= inf {cN Uval? + aup?) T - r[m}. (L1)

llufl_«=1

2

The role of pg will become clear from the discussion below. Our main result states the
following:
Theorem 1:

Let N 2 5 and f # 0. If p; > 0, then (1); admits at least three (weak) solutions one of
which necessarily changes sign. Furthermore, if f > 0 then the other two solutions u, and

0y satisfy: 0 Cupg € up IR : -

‘ O‘b.vi:joﬁs‘ly reg‘ylar”czlaya f will yield classical solujcions for (1);. Also we have,
0 <y, < “-1 incase f > 0 and { # 0. Furthefrﬁoﬁe, pu‘tting tdgether the results of
[A—M] (see also [W] and [C—K]) and [C—T] we see that the given Theorem continues to hold
for f = 0; only that, in this :caise, the "smaliéét" solution 'uo ré’duces to the trivial one, i.e.,
Uy = 0. So, Theorem 1 can be viewed as a bifurcation type result. In fact, the condition by
> 0 (to be compared with (*) in [Ta]), is essentially a "smallness" condition on f{, since it

certainly holds when f satisfies:

N+2
£l 5y < oy (SNO) T
N+Z
with
— i 2 2 _
sx() "u";*:l {hvul? + Mul?) (1.2)

Incidentally, let us also mention that the minimization problem (1.2) attains its infinum at a
positive function in HY(Q) (cf [A-M], [C—K] and [W]).

When {f = constant > 0 (not too large), the claimed two positive solutions could



correspond to (suitable) constants. While it follows from our construction that this is not the
case for A large, our result asserts that, in any case, problem (1) ¢ admits nonconstant
solutions for all A > 0.

We also point out that our result holds in the subcritical case (where one replaces the
power 2" in (1); with p € (2, 2*)) under both Neumann or Dirichlet boundary condition.
The proof is simpler in this situation and therefore left to the reader.

| Finally, let us mention that our approach can be applied to handle the case A = 0 and

i f = 0. This is done via a dual variational principle as introduced by Clarke [Cl] and

discussed in [C—K] in this context.

In this situation one finds a "dual" correspondent for the value g S given by:

2-N :
up = inf{cN(J;wKw)T+‘J;wKw;w €Ewlyy =1) (1.3)
= | - i
where o
2N ;
E={weLNt2 (n):i w = 0} (1.4)
and K: E — Eis theinverseof —a in E, that is:
Kf=g& —ag =1in HI(Q) and ig = 0. (1.5)

We have:
*
Theorem 2: Let N > 5. If f # 0 satisfies J}f = 0 and k¢ > 0, then the problem:

*
- a1 = |u|2_2u+finf2

(2) :
f-g;l—l=0 in

admits at least two (weak) solutions.



Notice that, since i[l f = 0, all solutions of (2); must change sign.
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THE EXISTENCE OF THE FIRST TWO SOLUTIONS:

This section will be devoted to prove the following:

Theorem 2.1: Let N > 5 and f # 0 satisfy b > 0. Problem (1)f admits at least two
solutions u, and L'E Furthermore, if f > 0 then 0 < u, < u,. m _

Such a result should be compared to the a‘naloéc)us" one obtained in [Ta] for the
corresponding Dirichlet problem. In fact, the proof is essentially the same and we shall refer to
[Ta] for several of the details. |

To start, let us observe that (weak) solutions for (1), are the cﬁtical points for the

functional,

%

I(u)=%lIVu|2+/\|u|2—Elgi!|u|2 —]{fu;ueﬂl(ﬂ).

Denote by (-, -) the scalar product in Hl(Q) corresponding to the norm:
2 2 2 1
full® = llvuly + Muly v e H(Q).
Easy computations show that I is bounded from below in the set,

A= {ue H(Q): (' Q),u) =0}



So, in the search for solution of (l)f, a first candidate would be the minimizer for the following

problem:

= inf I (2.1)
A

On the other hand, to insure that < is indeed critical for I, we require that A admits no

%

boundary. This is guaranteed if the function:
| o(t) = I(tu) t>20
admits a nonzero critical pomt for each dlrectlon ueH (Il) uto
Following [Ta], this corresponds to require that:

I'(tg(u)u) >0 Vu#0

with
N
Ivull2 + A3 |2 -2
g = | 2——= " e
(2 -1) Jlull®s
2
Equivalently,
* 1
| 2 -1 2,2 —1 PP
* 1 12— - (Ilvul|2 + Afull3) 22
2 -1
- ||11]| *
2
that is,
*
2 -1
IIVUII2 + Allullg 2-2 u
"ll”* CN —ifni"; >0 Vu#O

a2
2

which is exactly the condition pe > 0.

A straightforward consequence of this observation is the following,



Lemma 2.1: Assume pe > 0.

For every u # 0 there exists unique t (u) < t+(u) such that,

(i) 0 < t7(u) < ty(w) < tT(w) (ty(u) givenin (2.2))
(ii) t*(u)u € A
(i) It (u)u) = min 1(t); It () = max I(tu).

t€ [0, ()]

Furthérmore, t (u) > 0 when J.fu > 0. -

The proof of Lemma 2.1 follows exactly as in Lemma 2.1 of [Ta].

Next, we derive some other useful consequences from the condition b > 0.

mz& Set,
A = {uea:flval? + Mul?-@ -1)lu)’ =0}

If b > 0 then,
AO = {0} (2'3)

Furthermore, for every u € A—{ 0} thereexist ¢ > 0 anda Cl—map:

t:Be —»IR+



such that,

() tw)@Uu+w) €A, VweEB:={w6HM@:w|<c}:

E
2|r vu-vp + 2|rXup - Zﬁr [ul 2 <p
. _ : _ Bk i il
(i) t(0) = 1 and (t'(0),r) = ¥
||VU|b2 + Xlulg - %) [Ju|]\

Yo € HAM).

Proof;

To obtain (2.3) let us argue by contradiction and assume that thereexistu € A—{ 0 }:
- a *

2 R A 2
Ivuly « Afull’ = @ + 3 lul*
This implies that, o

. - * 9*
“lul| > 7 for suitable 7 > O"and-I fu= (2 -2)||ull2.
I

But thisisimpossble since, |
_. o N Lo
o< 7AIUll * fi s (2 -2) up—12"—2

2 o o
( lvulls + 3 | {2 -2
E 2 |uu9 f -
2 L2-1 ol

*
*
—,[Iu = (2 —2)||u||:,., —lfu - 0.

At this point we obtain the second part of our claim as a straightforward application of the

Implicit Function Theorem applied to the function:
' % %* .
Ftw) = t( [ viu+w) %) - t2 1 Jju+w|[> - jf(u+w
- . 2 .

Y
at thepoint (1,0) € R * HYO).



Remark 2.1:

Notice that necessarily,
*
+ 2 2 * + 2
v tt@ully + AT @ul; - @ -1) [tH @ % <o,

while for l fu > 0 wehave:

v @y + M@ l3 - @ =11 el > o

Assertion (2.3) can be strengthened as follows:

Lemma 2.3: Assume p; > 0 andlet {u } C A such that,

*

11m||V11”2 + M, ||2—(2—1) | v, ||*= ;
n-+o

then, 'lim inf |u || =
n-+o :

Proof: Argue by contradiction and assume that [|u_|| 2 7 > 0, Vn.
Then, o : T
v *
fu, = (27 =2) uy 1% + o(1)
un = ( - un 2*
and

v, 13 + Mo |12

(2°-1) lluy 12 *

o(1).

But this is impossible since, as above, it yields:

*
* 2
Tap ¢ @ =2) g I - iqun + o{1) = of1)

At this point we are ready to establish the following:



Proposition 2.1: If f satisfies pe > 0, then the minimization problem:

= inf I (2.4)

attains its infimum at a point u, which defines a critical point for I. Furthermore,
u, >0 for f > 0.
Proof: Let f # 0, sincefor f = 0 wehave ¢, = 0 and u, = 0.

For u € A it follows that,

1) = [§-2] Ulwely+wi3) - (1—51*)1qu

from which we immediately derive that I is bounded below in A. ‘
Claim 1: cyg < 0 . - o , (2.5)
Indeedif v € Hl(Q) is the unique solution for:

—av + dv = f in BH(Q)

then va > 0. Thus, from Lemma 2.1, thereexist 0 < t (v) < t+(v) such that
l

t (v)v € A and,

¢, ¢ It (v)v) = min I(tv) < 0.
t€[0, t1(v)]
Next, apply Ekeland’s principle (cf [A~E]) to (2.4) to obtain a sequence { u } C A satisfying:

(2) I(u) € ¢y + 3

(b) I(w) 2 u) - & Jlug—ull, Yu e A

*
. . 2 2 * 2
Notice that necessarily, || vu I3 + Alu I5 — (2 =1) |u |7 > 0.

As in [Ta], we show that condition (b) implies || I'(un) | — 0 as



10

n — + o. In fact, in view of (2.5), for n large, it follows that,

<l 2 21
J){un?_—rand o I < 2 s J;fun.

Thus,

b, < llu |l € by (2.6)
for suitable bl,b2 > 0.
Now, fix n with I’(un) # 0. By Lemma 2.2 and the estimate (2.6), for § > 0 sufficiently
small, we can find t(6) > 0 such that,

I'(u)
(1) =t -y 2l e
U5 (6) [Un "I,(un)]
2 t(0) = 1 and |t/(0)] < c ¥

2 2 * 2
Mivugly + Alluglly - (2;1)I|un||2*

(c > 0 suitable constant).

On the other hand, since || u_ || "> b;, from Lemma 2.3 also follows that,
. . *

' *
lim inf ||vu |2 + Mu 2 - @ - lul? > o
n-+4w . 2 ‘
which yields - .
|t/(0)| < a; forasuitable a; > 0.

Thus,

1 ’

Llug—ugll 2 Iay) - Xy = A1)l + of Il u,—ugll)

and
luy—ugll € 11=t() [ Nluyll + 6 < by | 1-2(6) | + &

Therefore,

Il € (10| +1) — 0 as 0 — +o.
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So, if we call u; the weak limit of (a subsequence of) u, in Hl(Q) we have that, u, solves

(1); Therefore u) € A, and
1 2 2
¢ € My = 5 (Nvugl2+Mugl3) - r[fu" <

< lim I(u) = c,
ot n 0

Thus, u, — u, strongly in Hl(ﬂ) and u is the desired minimizer.
Notice that, t"(uy) = 1 (t (uj) as defined in Lemma 2.1). Sofor £ > 0, we have,

t—(luol)zl-

Therefore,

I(t—(luol) 'uol) < I(Iuol) < I(uo)-
which yields u, 2 0. : =

1

Remark 2.2: Arguihg as in [Ta) , one can conclude that u, is a local minimum for I.

Se{ ,
*

) - | *
at = {uEA:”vuIIZ + Mull? - —1)||u||§* >0} c A

+

The argument above, shows that, u, € A and,

¢, = infl =inf I
0 A At
Thus, in the search of our second solution, it is natural to consider the second minimization

problem:
»

¢, = i;l_i_' I (2.7)
where

*
- 2 2 * 2
AN={uwenr:|vuly+Auly - (2 —1)|Iu|12*<0}-



We start by describing some nice (topological) properties of A™.
Tothispurposeset S = {u6 H(fi): || u | = 1}. Wehave,
The subset A™ isclosed in Hl(ft). Furthermore, themap: ~ : S —» A— given by,
*(u) = t*(u)u ~ (t*(u) as defined in Lemma 2.1)
defines an homomaor phism.
Proof: Notethatif u G A" then [[U ]| > b > 0 for asuitable b > 0. Thus, in view of

Lemma 2.3, every sequence {u,} in A™ satisfies
*

lim inf [[vun[l3 + Al "~ ]| - (2*-1) || un I* <0
e 2

which readily gives A~ closed.
The continuity of t¥(u) follows immédiately from'its UniqUieness and extremal property.
Thus,' $ is continuous with continuous inverse given by:

q:‘l(ﬁ‘):ﬂ%n- B a

We have:
Proposition 2.2: Let N > 5, then the minimization problerﬁ (2.7) attainsitsinfinum at a
critical point u. € A™ of |. In addition, ug 2 0 for f > 0.
Proof: First of all notice that any minimizing seqlieﬁce { un} c A" for (2.7) satisfies:
0 <bes [[unll < b
for suitable b, and bg.
Therefore, exactly as in the proof of Proposition 2.1, via Ekeland's principle (which applies in

view of Lemma 2.4) we derive a minimizing sequence { u, } C A~ satisfying:

H1K)n-o.
Since | involves a nonlinearity with critical growth, to be ableto carry out the final

conver gence argument we need some information on the value c;.
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1 sN/2
@ <%t~ T2 (28)
where S is the best constant in the Sobolev inequality (cf [T]).
To establish (2.8) we follow [Ta] and note that, in view of Lemma 2.4, A~ disconnects
HI(Q) in exactly two components:
U ={u=0orut0:fuf <ttt (ﬁ")},
vt o= fuclel > (o
and At ¢ U™
As usual for this type of problem (cf.[B—N]), to obtain (2.8) we use a suitable cut off

function u, of an extremum for the Sobolev inequality as given by the function:

N-2
oo NN -2 b
€,y - N—

(e+]x-y%) 2

with € > 0 fixed sufficiently small and y € 6 chosen so.that, in a small neighborhood of
y, the domain 2 lies on one side of the tangent plane of 90 at y and the mean curvature of
0 at y (with respect to the outward normal) is positive. The existence of such a y is

guaranteed by the smoothness of 9.
s _ sN/2 2
As well known, |[vu_ |5 = =5— + o(1) and | ully = o(1) as e — 0.
Therefore, if we let

+
A, = sup t'(u) < +o
0 =1
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for R > 2S_N/ 4 A0 + 1 and ¢ > 0 sufficiently small, we have,

2 2 2 2 2
| v(ug+Ru ) |l5 + Alug+Ru [I5 2 [[vuglly + Muglly + 3 R > Ay 2

0

+ u0+R u
>t ¢
[ mgrreT )

that is, u, + RUE e Ut Thus, we can find ty € (0,1) such that,

Ve = 4 -'f-;tOP.‘ue € A

So, for a suitable consfant C >0, \;re ﬁnd: :
2" 1 2 1
¢, <1(v,) < X(ug) + I(tgR u,) + c[i lugl u? ~ +J} lugl? T, +‘J) |f|ue]

where

! *
voiog s 2 w2 1 .2
Io(u) ="g(fvull3 + Auly) - 2% Iull

Direct calculations show that,
N-2

2 1 2" -1 e &
£|u0|uc_ +£|u0| - u€+‘[|f|ue —ae ¥ 40

4

€ , a > 0;

2 2

1 qlive s + Aully {N/2

(cf [B-N]) and max Ij(tu,) = f 2 .
£20 I I

Therefore,

2 2 N-2
lvu 5 + Alju_[l5 {N/2 =
c15c0+1[ €2 62] +0[e ]

2
"ue "2*
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On the other hand, our choice of u_ guarantees that, for N > 4, we have:

vu [l + Al fl5 N/2 gN/2
[" "2 ” "2] / < / - C 61/2 + 0(51/2), C > 0,‘

||u " *

(see [A-M], [C—K], [W]). Thus, for N > 5 we conclude:

N-2

1 sN/2 [ T] 1 sN/?

1/2
¢, S+ g —Ce 1/2+o(e/

)+0 <°0+N_2_

for ¢ > 0 sufficiently small.

At this point, to show that the sequence {un} is précompact we use an inequality of Cherrier

[Ch] which, for every 7 >0, givesa constant M_ > 0 such that:
S
B e <l + Ml Vo e BY@)

Since u  is uniformly bounded in HI(Q), after taking a subsequence (which we still call u_)
we find u; € HI(Q) such that u — u; weakly in HI(Q). In particular, u; € A andso
I(u;) 2 ¢,

Furthermore, if we write u, = u; + v, with v, — 0 weaklyin HI(Q), we derive:

1 2 1 2
I(o,) = Tuy) + P vy U3 = Iy 0 + o) — ¢ < ¢ + | S

which yields:

N/2
. 1 2

Lim gl - v n . < g L (29)
[+ 1]
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Moreover,
*
= () ug) = ((uy)v)) + Hovgllg = vy llzs + of1)
that is, .
2 271
| 1l " 1 e = oM (41°)
Putting together (2.9) and (2.10) we have that,
o] cN/2
. _: < A y
lllinmllelJ =7 (2-11)
Next we show how (2.10) and (2 11) can hold simultaneously only if 1im | w_|| = 0,
- n++m
(e, 7 = 0).
Let us argue by contradiction and assyme_._7‘>, 0.. Take r > 0 such that:
| - Nj2 SR
[_,s i
2 '

From (2 10) we have

||w,1||2 vy || .+ of1) ¢ [*mv“ r] v, || + of1),

Since 7 > 0, then || vv, ||2 is bounded below away from zero. Therefore,

IN/?
Iveally 2 [ = 7]+ o)

which, in view of our choice of r, contradicts (2.11).
This gives u, —» Uj srongly in Hl(ft) and so u”" isthe desred minimizer.
Finally, for f > 0 we have:

iCt+CIADIud) < 1(t°(] u [uy) € max " " = I(u,)
101 I {20

which yidds u, 2 0. .
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Obviously u; # u;. To conclude the proof of Theorem 2.1 set u, = min{u,, u};
*
we show that f > 0, f # 0 implies the existence of a solution 0 ¢ U, <u 4 To this

purpose note that when f > 0, (f # 0) the unique solution u p for the problem:
—au + Ju = 4f in HY(Q)

gives a positive subsolution for (1)f forall 4 € (0,1) and u, — 0 as g — 0.
On the other hand, u 4+ = min{uo, ul} defines a supersolution for (l)f. So choosing g > 0

sufficiently small to guarantee u < u, a.e. in §, by the method of sub—super solutions, we

+
*
obtain a solution u, for (1), satisfying:
. ° , * .
0 <'u p < T, < u,.
This concludes the proof of Theorem 2.1.

!

Remark 2.3: Notice that, if v, is a minimizer for (2.7) and {4 0 then
i[ fu1 > 0.

To see this, observe first that ¢; < %T(SN(A))N/z with Sy (1) as defined in (1.2). Indeed,
let u, be a minimizer for (1.2) with | fu, > 0 and I (u,) = maxI(tu,) then,
0 0 0N 0 £>0 0

Io(ug) = § (SONN/? and ¢ < 1 (aghng) ¢ Ty(t*(ug) ug) € Ty(ug):

On the other hand, if by contradiction we assume that g[ f u < 0, then for ty > 0

satisying Iy(tju;) = max Io(t u;) we have:
t 20

¢ = I(uy) 2 Itgu;) 2 I(tguy) 2 HSNONV/2.
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Therefore,

2lwg—uy | 2 Xu) ~Iwg) = ~(1'(u), ws—up) + o | ws—u, 1l

1" (up)
I Cup)l

I'(u)) -
]+] _(l—t_(é)){l’(un), [un— 5 ||1'(:n)||] ]

= (1-1,() [I’(un), [un-—6
+ 6 [ T(u)ll + o lu,— wgll)

On the other hand, for a suitable C 4 > 0 we have:

’

Iws=uyll € Cu( (=11 + 1£(§)-1]+8)
which yields,

Cy ' , | PR
N1 Q) | € 5 (1300) [ +]¢2(0) | +1)+1t(0) (I'{uy),up) +

4 17(0) (I'(uy), —17) € $C,(1+2C,) =¥ 0 as n — +a.

In conclusion the sequence {un} satisfies

. 1 sN/2
) Iu) — 1 <c¢ <c¢ + g5

(@ Ny |l — o

Thus, as we have seen in the proof of Proposition 2.2, conditions (i) and (ii) are sufficient to
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guarantee a convergent subsequence for {u } whose (strong) limit will give the desired

minimizer. m

Obviously, Proposition 3.1 would yield the conclusion for Theorem 1 only if the given
relations between 10 79 and ¢ could be established. While it is not clear whether or not

such inequalities should hold, we shall use these values to compare with another minimization

problem.
Namely, set
Ay = AI n Ag C A
and define,
Ax

It is clear that Cy 2 ¢y An upper bound for Cy 18 provided by the following:
Lemma 3.1:
"Forfixed ¢ > 0 and y € 90 thereexist s > 0 and g € R such that
8111 - [er,y € A*.
In particular, for N > 5,
, o A . 1 SN/2
¢y < sup I(sul—tUe,y) <¢ + g9
s20,t
for ¢ > 0 sufficiently small and y suitably fixed in Q.

Proof: We shall show that there exist s > 0 and t € R such that

s(u; —t Ue,y)+ € A and —s(ul-tUe,y)— € A (3.5)

To this purpose let,
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For t e (ti, t,) denote by s+(t) and s (t) the postive vaues given by Lemma 2.1
according to which we have:
8+W(urtuf/eA~
and
-sJtXM-tUMYF € A"
Note t.hat s+_(t) is achtinuousfun_ctiop of. t gtisfying:

lim s (t) = "F(Yi-ti )<+m and lim 5,(t) = + e
t»t] t-+t2

Similarly, s (t) is conti nuous and,

lims (t) = «® ad lim s (t) = t (t9 o) < 4o
L e g - '

Therefore by the contmwty of s+(t) wefind avalue t; € (tptg) such that
| VV = Uty =o >
Thisgves (35 witht = tg and s = SQ. '
At this point we only need to estimate | (su;—tU ) for s > 0 and t 6 K. Tothis
purposewefix y 6 0Q asin the proof of proposition 22 andlet u- = U-- . The structure

o c,y
of | guaranteestheexistenceof R > 0 (independent of €) suchthat "su® —tug) < c®
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2

for all 82 + t2 > R2. On the other hand, for 52 + t° < R2, we have:

N-2
T) <

I(su;—tu) < I(suy) + Ip(tu) + O(e

N-2
T) _

< maxI(su,) + maxI (tu ) + O(e
520 U ter O €

' 2 12

Lol w2 2N N2

= I(u) + N[ . ] +0(e 1)
€ 2*

1 sN/2 1/2 1/2 52
¢+ g~ —Ce + o(e’?) + 0(e “); C>0

where we have used the estimates in [A—M], [C—K] and [W]. Hence,for N > 5 and ¢ > 0
sufficiently small we readily obtain,

1 sN/2
¢y < :ggl(sul—tue) <¢ + gy -
teR

Proposition 3.2: Assume that 7 2 ¢ and T9 2 €. The minimization problem,
Cy = iz_x_f I
Ax

attains its infimum at u, € As which defines a (changing sign) critical point for I.

Proof: Exactly as in Proposition 3.1, by means of Ekeland’s principle, we derive a minimizing
sequence {u_} C A satisfying:
I(u n) — C,
It (@)l — o
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In particular, we have:
ES
0<a <luill ¢a (3.6)

for suitable constant 3y and 2. Thus, after taking a subsequence, we obtain
+ + 1 . 1
u — u € HY(Q) weaklyin H'(Q).

We start by showing that ut ¢ 0.

Indeed, if by contradiction we assume for instance, that ut = 0 then we would have:

%*
. 42 2
@ lvulpg-nud 7 = o)

and

ey
=
—
b
B
B =t
<
=
+
T
|
SN
=
+
o
*
I
[e——y
b
B
—t
—~~
[=
+
N’
A

. 1 sN/2
< 02 — lim I(—Il;) < C2—Cl < N7
n-+o
But, we have already seen how condition (i) and (i) can hold simultaneously only if

. +
lim |lvuy

-+

Thus, u, = wt—u" ¢ 0isa changing sign solution for (1)f and in particular,

I(u,y) 2 ¢,

+ _ .+ +
Setun-—u +v11

| = 0 which clearly contradicts (3.6). A similar argument applies to u .

and ug = u + v with v; — 0 in HI(Q). Note that,

*
+ 2 + 2
Nov llg = vy Ilz* = o(1) (3.7)



In view of (2.8) and Lemma 3.1, we also have:

. + .
lim I(vl) + I(-v) = lim I(u )-1I(u,) ¢ c,—cy <
e O 2 pate 2=

N/2
18§ 1 oN/2
< xSt < g

So, necessarily,
1 SN /2

i m min{I(v}), (=)} < § o
n-+ o _
which, in view of (3.7), yields:

Ivil — o0 or v |l — 0

that is, u, = u+ —u € A'{' or uy = u+ —u € A';.

Consequently, since we are in the situation where 1 1o b4 ;) We conclude:

I(uy) 2 ¢ -

Therefore, if we write u = uy + w, with w — 0 in HI(Q) we obtain,

*
2 2
low 1l — Il wy Ilz* = o(1)

and
*

: 1 2 1 2 .
lim mllvw || — =W, [« = lim I(u) - I(u,) =
n-+ 2 172 n 2* n-++o (n) (2)

¢y —¢C <lSN/2.
$¢-¢ <§gT7
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(3.8)
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This, in the usually way, yields || w || — 0. Thus u  — u, stronglyin HI(Q) and

u, € Ax gives the desired minimizer. -

The proof of Theorem 1:
‘For f > 0(f < 0) Theorem 1 is a direct consequence of Theorem 2.1 and Proposition
3.1 and 3.2. In case f changes sign, note that, if the situation of Proposition 3.1 occurs then
we would be done since k> < and by > Cp- So assume that we are in the situation of
Proposition 3.2. To conclude it suffices to show that u, # u; (since, obviously, u, # uO).
In fact, argue by contradiction and assume that uy = u;. Then, ¢, = ¢,

u, € AI n AE and 7] = ¢; = 75 Ontheother hand, J)ful > 0 (see Remark 2.3),
thus J;f u'{ >0 or —l[f uI > 0. Assume, for instance, that {qu'{ > 0. From Lemma

2.1 then we obtaina t~ > 0 such that

t u41' € AT and I(u'{') > I(t u';).

This is clearly impossible since, t— u*l' — u; € A, and

19 =1(u;) = 1}) + (=] > It u]) + [-u]) = 17w —u]) 2 7,
Thus, in all circumstances, a third changing sign solution for (1), is guaranteed. g

Sketch of the proof of Theorem 2
The proof of Theorem 2 follows by considering the (dual) functional,

2N
F(w) = Eﬁvz'i |W|N+2 —%i[wKw + erKf, w e E
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with E and K as defined in (1.4) and (1.5).

As above, theideais to consder,

2N
Atz {w € E (Fw)w) =0 and ™ f | w|[" -[wKw >0
M . 4
and
2N 3
AN ={w € E,(FW),w)=0ad ~ [ |w | TT- |thw <0}
9]

One shows that the condition fi:F > 0 (fiE as defined in (1.3)), implies that the corresponding

minimization problems.

G = infAF (4.2)
Ay

g = infF (4.2)
A

yield tffifi distinct critical values for F, hence two (distinct) solutions for (2.

For the minimization problem (4.1) this follows exactly as for Proposition 2.1 with the
obvious modifications.

The minimization problem (4.2) istreated smilarly to that in (2.7) and the
corresponding compactness argument follows by providing an appropriate upper bound on c*.
This can be derived using the estimates contained in [C—K]. We leave the details to the
interested reader.
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