NJMAT 9a-oac

On the Propagation of Singularities of Semi-Convex Functions

I. Ambrosio
P. Cannarsa

Dipartimento di Matematica
H.M. Soner

Carnegie Mellon University
Research Report No. 92-NA-026

August 1992

Sponsors
U.S. Army Research Office

Research Triangle Park
NC 27709
National Science Foundation 1800 G Street, N.W.
Washington, DC 20550
1.に
"amtHTie Me)ion University Pittsburgh P. ${ }^{4}$! $52!30 \mathrm{~S}^{\prime \prime \prime \prime \prime}$.*

ON THE PROPAGATION OF SINGULARITIES OF SEMI-CONVEX FUNCTIONS

L. AMBROSIO* P. CANNARSA** H.M. SONER***

Abstract

The paper deals with the propagation of singularities of semi-convex functions. We obtain lower bounds on the degree of the singularities and on the size of the singular set in a neighborhood of a singular point. These results apply to viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular, they provide sufficient conditions for the propagation of singularities, depending only on the geometry of the superdifferential at the singular point.

Key words, convexity, semi-concavity, propagation of singularities, Hamilton-Jacobi equations

INTRODUCTION

In a recent paper [1], upper bounds on the dimension of singular sets of semiconvex functions were derived by measure theoretic arguments.

To briefly describe these upper bounds, let $u: \mathbf{R}^{\mathbf{n}}-\mathbf{R}^{\mathrm{n}}$ be a semi-convex function (Definition 1.2 below). Define

$$
S^{k}(u)=\left\{x € \mathbf{R}^{\mathbf{n}}: \operatorname{dim}(d u(x))=k\right)
$$

where $k €[0, \mathrm{n}]$ is an integer and $d u(x)$ denotes, as usual, the subdifferential of u. Clearly, $\left\{S^{k}(u)\right\}^{\wedge}=: 0$ is a partition of R^{n} and $S^{\circ}(u)$ is the set of all points of differentiability of u. Since we are interested in first order singularities, we call a point x singular for u if $x € S^{k}(u)$ for some $k \geq 1$.

In [1] it is proved that $S^{k}(u)$ is countably $W^{n} \sim^{\text {fc }}$-rectifiable. In particular,

$$
H-\operatorname{dim}\left(S^{k}(u)\right)<\mathbf{n - f c}
$$

where $7 i$ - dim is the Hausdorff dimension.
The purpose of the present work is to obtain lower bounds on the dimension of $S^{k}(u)$. More precisely, we will describe the structure of $S^{k}(u)$ in a neighborhood of x, knowing the geometry of $d u\{x)$.

A motivating application of these results concerns the analysis of singularities of solutions to the Hamilton-Jacobi-Bellman equation

$$
\begin{equation*}
H(x, u, V u)=0 . \tag{1}
\end{equation*}
$$

[^0]In fact, if the data are smooth, viscosity solutions of such PDE's (and, in particular, the solutions that are relevant to optimal control) enjoy well known semi-concavity properties (see for instance [12], [13], [15], [16]).

The present work is related to [4] and [5], in which viscosity solutions of (1) are shown not to have any isolated singularity if H is strictly convex with respect to p. In [4], [5], however, no attention is paid to the dimension of $d u$ at such singular points, and no attempt is made to estimate the Hausdorff measure of the singular sets.

Different approaches to the analysis of singularities of Hamilton-Jacobi equations are obtained for the one dimensional case in [14] and using characteristics in [21].

Semi-convexity was the only property used in [1] to prove upper bounds on singular sets. On the contrary, to obtain lower bounds we need additional information. This fact is the essential difference between [1] and the present paper. In order to understand the nature of the additional information, let us consider the set of reachable subgradients

$$
\mathbf{V}>\mathbf{u}(\mathbf{x})=\left\{\quad \operatorname{Um} \quad V u\left(x_{h}\right): x_{h} G S^{\circ}(u) \backslash\{\mathbf{x}\}, x_{h}-\mathbf{x}\right\} .
$$

The above set is a set of generators of $d u(x)$ in the sense of convex analysis. Then, we show that the strict inclusion

$$
\begin{equation*}
\mathbf{V}, \mathbf{u}(\mathrm{z}) d u\{x) . \tag{2}
\end{equation*}
$$

is a sufficient condition for the propagation of any singularity x G $S^{k}(u), 1 \leq k<n$ (see Example 2.1 below). The inclusion (2) is satisfied by any viscosity solution of (1) with a strictly convex Hamiltonian, as $V+u(x)$ is contained in the zero level set of $H(x, t t(x),-)$.

Moreover, if x is an isolated singularity, by adapting a variational argument of Tonelli (see the proof of the implicit function theorem in [20]), we show that $V+u(x)$ coincides with $\mathbf{c} ? \mathbf{u}(\mathbf{x})$, see Theorem 2.1 below.

Furthermore, inserting nonsmooth analysis into this procedure, we obtain a more detailed description of the singular sets. In Theorem 2.2 we prove that singularities propagate along directions related to the geometry of $d u\{x)$. These directions are orthogonal to the exposed faces of $d u(x)$. In Theorem 2.3 we give a lower bound on the maximum integer $m \leq k$ such that x is a cluster point of

$$
\mathbf{E}^{\prime \prime »}=\mathbf{Q} \mathbf{S}^{\prime}(\mathbf{u}),
$$

and in (2.7) we estimate from below the Hausdorff (n - fc)-dimensional measure of $S^{m}(t x)$. Roughly speaking, the computation of m takes into account how many vectors in $\mathrm{V}^{*} \mathbf{u}(\mathbf{x})$ are necessary to generate $d u(x)$.

We conclude with an outline of the paper. The first section contains preliminary material on Hausdorff measures, semi-convex functions, and the estimates of [1]. In §2 we develop our main results on propagation of singularities of semi-convex functions. The last section is devoted to applications to Hamilton-Jacobi-Bellmann equations and to the discussion of some examples.

1. NOTATION AND PRELIMINARIES

We briefly introduce some notation. We denote by $B_{p}(x)$ the open ball in R^{n} centered in \mathbf{x} with radius p , and we abbreviate $B_{p}=B_{P}(Q)$.

For any set $A C R^{n}$ we denote by $\operatorname{co}(A)$ the convex hull of A. Moreover, the following sets of convex combinations of points of A will be often used in the sequel.

$$
I_{j}(A)=\left\{\sum^{j} \lambda_{i} p_{i}: p_{i} \in A, \lambda_{i} \geq 0, \sum^{j} \lambda_{i}=1\right\}
$$

for any integer $\mathbf{j} \geq 1$. We also define

$$
m i(A)=\operatorname{maxjj} \geq 0: 1 ;(A) \# \operatorname{co}(A) \backslash
$$

Clearly $I \cap(A)=A$, hence $m(A)=0$ if and only if A is a convex set. Moreover, by Carathéodory's Theorem (see for example [18, p.155]) we know that Jfc+i $(A)=$ $\operatorname{co}(A)$, where k is the dimension of $\operatorname{co}(A)$. Therefore $m(A) \leq \operatorname{dim}[\operatorname{co}(A)]$. However, the integer $m(A)$ does not depend just on the dimension of $\operatorname{co}(A)$. For example, if A is a finite set of affinely independent points, then $m(A)$ equals the dimension of $\operatorname{co}(A)$. On the other hand, if A is the boundary of a fc-dimensional ball, then $m(A)=1$.

For any set $S \mathbf{C} \mathbf{R}^{\mathrm{n}}$ we define

$$
S^{l^{\prime}}=\left\{p € \mathbf{R}^{\mathrm{n}}: q —(\leqslant 7, p) \text { is constant on } 5\right\}
$$

and

$$
\mathbf{T}(5, \mathbf{x})=\left\{r 0: r>0_{2} \quad \sigma=\lim _{f \cap+\infty 0} \frac{\left.\frac{X h}{1} \frac{x}{\mathrm{p}^{\wedge}-\mathrm{x}[}, x_{h} € S \backslash\{\mathrm{x}\}, x_{h}-+x\right\} .}{}\right.
$$

The set $T(5, x)$ defined above is the so-called contingent cone to S at \mathbf{x} ([3], [6]).
For any real number $\mathbf{r} €] 0, \mathrm{n}]$ we denote by $\boldsymbol{H}^{\boldsymbol{r}}(\boldsymbol{B})$ the Hausdorff r-dimensional measure of $\boldsymbol{B} \mathbf{C} \mathbf{R}^{\mathbf{n}}$, defined by

$$
\mathcal{H}^{r}(B)=\wedge_{2}^{\wedge} \operatorname{supinf}_{\delta>0} \wedge^{\wedge} \underbrace{\infty}_{i=1}\left(\operatorname{diam}\left(f_{t}\right)\right)^{\mathrm{r}} \text { IBC } \bigcup_{i=1}^{\infty} B_{i}, \operatorname{diam}\left(B_{i}\right)<\delta V,
$$

where o; r is the Lebesgue measure of the unit ball in R^{r} if r is an integer, any positive constant otherwise. We also denote by $7 i^{\circ}(B)$ the cardinality of B. The Hausdorff dimension of B is defined by

$$
H-\operatorname{dim}(B)=\inf \left\{\mathbf{r}>0: H^{r}\{B)=0\right\}
$$

For an introduction to the properties of Hausdorff measures see for example [10], [17]. We merely recall that H^{r} is a Borel regular measure in R^{n}, and

$$
\begin{equation*}
n^{r}(B)<+00 \quad \Rightarrow \quad W^{m}(B)=0 \vee m>r . \tag{1.1}
\end{equation*}
$$

We now recall the definition of semi-convexity and the main properties of semiconvex functions.

DEFINITION 1.2. Let ft $C R^{n}$ be an open convex set, and $u: f t-+R$. We say that u is semi-convex in ft if there is a non decreasing upper semicontinuous function $u:[0,+\infty 0[->[0,+00[$ such that $v(0)=0$ and

$$
\begin{align*}
& \left.\boldsymbol{t u}\left\{\boldsymbol{x}_{\boldsymbol{t}}\right)+(\mathbf{1}-\boldsymbol{t}) \boldsymbol{u}\left\{\boldsymbol{x}_{2}\right)-\mathbf{u f o}\right) \geq-\mathbf{t}(\mathbf{1}-\boldsymbol{t}) _{\mathbf{x} l}-\boldsymbol{x}_{2} \backslash \boldsymbol{u}>\left(\left(\boldsymbol{x}_{l}-\boldsymbol{x}_{2} \backslash\right)\right. \tag{1.2}\\
& x_{t}=\operatorname{txa}+(1-t) x_{2}, x i, x_{2} € \mathrm{ft}, \mathrm{t} €[0,1] .
\end{align*}
$$

We call semi-convexity modulus of u the least function u) satisfying (1.2). If u : ft —» R is semi-convex and $x € \mathrm{ft}$, we say that $p € \mathrm{R}^{\mathrm{n}}$ is a subgradient of u at x if

$$
\liminf _{y \rightarrow x} \frac{u(y)-u(x)-\langle p, y-x\rangle}{|y-x|} \geq 0 .
$$

Borrowing the notation of convex analysis, we denote by $d u\{x)$ the set of subgradients of u at x, call it the subdifferential of u at x. It is easy to see that $d u(x)$ is a compact, nonempty, convex set. Moreover,
(1.3) $p e d u(x) \longleftrightarrow u(y)-u(x) \sim(p, y-x) \geq-|y-x| w(y y-x \mid), \quad V j / € \mathrm{ft}$.

It can also be shown that $d u(x)$ is a singleton if and only if u is differentiable at x. Hence, the set of non differentiability points of u can be classified according to the dimension of the subdifferential at the singular point.

DEFINITION 1.3. Let $x e f t$, and let $k e\{0, \ldots, n\}$ be an integer. We define

$$
S^{k}(u)=\{x € \mathrm{ft}: \operatorname{dim}(\operatorname{du}\{x))=\mathrm{fc}\}
$$

and

$$
\left.£^{*}(\mathrm{u})=\mid \mathrm{J}^{\mathrm{n}} \mathrm{~S}^{\wedge} \mathrm{u}\right)=\{x € \mathrm{ft}: \operatorname{dim}(5 \mathrm{u}(\mathrm{x}))>\mathrm{ib}\}
$$

In order to find sufficient conditions for the propagation of singularities, it will be useful to consider the set $\mathrm{V}^{*} \mathbf{u}(\mathbf{x})$ of reachable subgradients.
definition 1.4. Let $u: \mathrm{ft} \rightarrow \mathrm{R}$ be a semi-convex function, and let $\boldsymbol{x} \mathrm{G} \mathbf{f t}$. We define

$$
V+u(x)=\left\{\quad \lim \quad V u\left(x_{h}\right): x_{h} 65^{\circ}(t x), x_{h}+x\right)
$$

Then, it is known that $d u(x)$ is the convex hull of $V_{\ll, u(x)}$ (see e.g. [4]).
In the following theorem we list some basic properties of semi-convex functions. We recall (see [3]) that a set-valued map $S(x)$ is said to be upper semicontinuous if the following implication holds:

$$
P h^{\prime} € S\left(x_{h}\right), \quad x_{h}->x, \quad P H-\wedge P \quad \Rightarrow \quad \text { pe } S(x)
$$

THEOREM 1.1. Let $u: \mathrm{ft}^{*} \mathrm{R}$ be a semi-convex function. Then,
(1) u is locally Lipschitz continuous in ft and

$$
\left.\frac{d u}{n n}(\dot{x})=\text { hin }-* \underline{u(x+t} f \underline{f}\right)-u(x)=\max \{\langle p, \theta\rangle: p \in \partial u(x)\}
$$

for any z G it and any $6 \mathrm{GR}^{\mathrm{n}} \backslash\{0\}$.
(2) Tie set-valued maps $d u(x), \mathrm{V}^{*} \mathrm{tz}(\mathrm{z})$ are upper semicontinuous in x.
(3) If z G $S^{k}(u)$, then $!^{*}+!(\operatorname{V} \cdot \mathbf{u}(x))=8 u\{x)$.
(4) For any k G $\{0, \ldots, n\}$ and any $p>0$ we have

$$
\mathbf{T}(\mathbf{S j}(\mathbf{u}), \mathbf{z}) \mathbf{C}[d u(x)]^{ \pm} \quad \text { Vz G } 5 \mathbf{j}(\mathbf{u}),
$$

where $S_{\rho}^{k}(u)$ denotes the set of all points $x G^{k}(u)$ such that du(x) contains a fc-dimensional ball of radius p.
(5) For any integer $k G\{0, \ldots, n\}$ the set $S^{k}(u)$ is countably $H^{n} \sim^{k}$-recti6able, that is it can be covered, up to a $\%^{n} \sim^{k}$-negligible set, with a countable sequence ofC ${ }^{l}$ hypersurfaces $T h \mathbf{C} \mathbf{R}^{\mathbf{n}}$ of dimension ($n-k$), i.e.

$$
n^{n}-k\left(s^{k}(u) \backslash J r_{h} \backslash .=0\right.
$$

Moreover,

$$
f_{s^{k}(u) n n^{f}} H^{k}\{d u(x)) d^{\prime} H^{n}-^{k}(x)<+o o
$$

for any open set $Q^{r} \mathbf{C C} \mathbf{f t}$.
Proof. (1) See [1] and [4].
(2) The upper semicontinuity of the map $d u(x)$ easily follows by (1.3), and the upper semicontinuity of $\mathrm{V}^{*} \mathbf{r x}(\mathrm{x})$ follows directly from its definition.
(3) Since $V^{*} u(x)$ is closed and its convex hull equals $9 u(x)$, the assertion follows by Carathéodory's Theorem.
(4) See [1], Theorem 3.1.
(5) See [1], Theorem 4.1.

REMARK 1.1. Note that (5) provides an upper bound on the Hausdorff dimension of $S^{k}(u)$, which is not greater than $(n-k)$. It is easy to see that this bound is optimal. Indeed, let

$$
u\left\{x_{u} \cdots, \mathbf{x}_{\mathrm{n}}\right)=\left|x_{1}\right|+\ldots+\left|x_{k}\right| .
$$

Then, $S^{k}(u)$ is the ($\mathrm{n}-\mathrm{fc}$)-plane of all $\boldsymbol{x} \mathrm{G}^{\mathrm{n}}$ such that $\mathrm{z}, \cdot=0$ for $1 \leq i \leq k$.

2. EXPOSED FACES AND REACHABLE SUBGRADIENTS

We want to study the structure of the singular set $\mathbf{E}^{1}(u)$ in the neighborhood of a singular point z .

DEFINITION 2.1. We define the singularity degree of $\mathrm{zG}{ }^{\wedge}(u)$ as the unique integer k such that $z G S^{k}(u)$. We say that z is an isolated singularity of degree k if $\mathbf{T}\left(\mathbf{E}^{\mathrm{fc}}(\mathbf{t x}), \mathrm{z}\right)=\mathbf{0}$. We say that a singularity propagates if

$$
\mathrm{T}\left(\Sigma^{1}(u), x\right) \neq \emptyset
$$

Moreover, all vectors $6 e \mathrm{~T}\left(\mathrm{E}^{1}(\mathrm{u}), \mathrm{x}\right) \mathrm{n} d B \backslash$ are called directions of propagation of the singularity at x.

Clearly, a convex function may well have an isolated singularity of degree n. Indeed, if $x \mathrm{G} \mathrm{S}(u)$ for some $p>0$, then $d u(x)$ contains an n-dimensional ball. Hence, by Theorem 1.1, x is not a cluster point of $S^{\wedge}(u)$. In other words, $S \%(u)$ is a discrete set for any $p>0$. Moreover, there are convex functions with isolated singularities of degree < n.

EXAMPLE 2.1. Let

$$
u\left(x_{1}, \ldots, x_{n}\right)=\sqrt{\left(x_{1}^{2}+\ldots+x_{k}^{2}\right)+\left(x_{k+1}^{4}+\ldots+x_{n}^{4}\right)}
$$

Then, u is a convex function in R^{n} and $u € \mathrm{C}^{2}\left(\mathrm{R}^{\mathrm{n}} \backslash\{0\}\right)$. On the other hand, $d u(0)=[-1,1]^{*} \mathrm{x}\{0\}^{\mathrm{n}} \sim^{*}$, so that 0 is the only point in $S^{k}(u)$.

Note that, in the above example $d u(0)=\mathrm{V}^{*} \mathrm{u}(0)$. More generally, we will show that a sufficient condition for the propagation of a singularity of degree $k<n$ at x is the strict inclusion $V+u(x) d u(x)$. In particular, this condition is satisfied for solutions of some Hamilton-Jacobi equations, see $\S 3$.

In the remainder of this paper we always assume that $Q \mathrm{CR}^{\mathrm{n}}$ is a convex open set, $u: Q \longrightarrow \mathrm{R}$ is a semi-convex function, and $u(t)$ is the semi-convexity modulus of u. Since our statements are local, we assume that u is Lipschitz continuous in Q and we denote by $[u]_{u_{\mathbf{p}}}$ its Lipschitz semi-norm.

We will see that the directions of propagation of singularities are related to the geometry of the subdifferential $d u(x)$ at the starting point x. To analyze the singular directions we introduce the following sets.

DEFINITION 2.2. Let $x € \mathrm{fi}$ and $0 € d B i$ we set

$$
\begin{gathered}
d u\{x, 6)=\left\{p e d u(x):\langle p, 0)=\frac{d u}{\partial a^{\wedge}}(x)=\max _{q € \hat{a} u\{x)}\langle q, \theta\rangle\right\}, \\
\text { V.u(x,0) }=\left\{\lim _{\text {im }} V u\left(x_{h}\right): x_{h} € S^{\circ}(u) \backslash\{x\}, x_{h} \rightarrow x, \frac{x_{h}-x}{\left|x_{h}-x\right|} \rightarrow \theta\right\} .
\end{gathered}
$$

The collection $\left\{0 \operatorname{tt}(\mathrm{x}, 0):{ }^{\wedge} \mathrm{G} d B i\right\}$ consists of all the exposed faces of the convex set $d u(x)$. The following theorem is the basis of our singularity propagation argument (see Theorem 2.2 and Theorem 2.3).

THEOREM 2.1. Let $x € £ 2, \mathrm{p} € \mathrm{R}^{\mathrm{n}}$ and sequences $x^{\wedge} — \bullet x, d u(x h) 3$ Ph $\longrightarrow P$ be given. Suppose that

$$
\begin{equation*}
\lim _{-+\mathbf{x})} \frac{X h X}{\left|X_{h}-\mathbf{x}\right|}=0 \tag{2.1}
\end{equation*}
$$

Tien, p G $\boldsymbol{d u}(x, 6)$. In particular,

$$
V+u(x, 6) \mathrm{C} d u(x, 8)
$$

Conversely, for any $p \in \partial u(x, \theta)$ there are sequences $x_{h} \rightarrow x$ satisfying (2.1), and $\partial u\left(x_{h}\right) \ni p_{h} \rightarrow p$.

Proof. We have to show that $\partial_{*} u(x, \theta)=\partial u(x, \theta)$, where

$$
\partial_{*} u(x, \theta)=\left\{\lim _{h \rightarrow+\infty} p_{h}: p_{h} \in \partial u\left(x_{h}\right), x_{h} \neq x, x_{h} \rightarrow x, \frac{x_{h}-x}{\left|x_{h}-x\right|} \rightarrow \theta\right\} .
$$

Let p_{h}, x_{h} be as in the definition of $\partial_{*} u(x, \theta)$ and set

$$
t_{h}=\left|x_{h}-x\right|, \quad p=\lim _{h \rightarrow+\infty} p_{h} .
$$

We know, by the upper semicontinuity of $\partial u(x)$, that $p \in \partial u(x)$. We will now show that $p \in \partial u(x, \theta)$. Indeed, by the semi-convexity of u we have

$$
u(x)-u\left(x_{h}\right)-\left\langle p_{h}, x-x_{h}\right\rangle \geq-t_{h} \omega\left(t_{h}\right) .
$$

Devide both sides by t_{h} to obtain

$$
\left\langle p_{h}, \frac{x_{h}-x}{t_{h}}\right\rangle \geq \frac{u\left(x+t_{h} \theta\right)-u(x)}{t_{h}}+\frac{u\left(x_{h}\right)-u\left(x+t_{h} \theta\right)}{t_{h}}-\omega\left(t_{h}\right) .
$$

Since

$$
\frac{\left|u\left(x_{h}\right)-u\left(x+t_{h} \theta\right)\right|}{t_{h}} \leq[u]_{\text {Lip }}\left|\frac{x_{h}-x}{t_{h}}-\theta\right| \rightarrow 0,
$$

by letting $h \rightarrow+\infty$ we get

$$
\langle p, \theta\rangle \geq \frac{\partial u}{\partial \theta}(x) .
$$

Thus, $p \in \partial u(x, \theta)$ and $\partial_{*} u(x, \theta) \subset \partial u(x, \theta)$.
Next, we proceed to show the reverse inclusion. Let us denote by d the dimension of $\partial u(x, \theta)$. Since θ is orthogonal to $\partial u(x, \theta), d$ is strictly less than n. We may assume that $d>0$, the inclusion being trivial if $\partial u(x, \theta)$ is a singleton.

Since $\partial_{*} u(x, \theta)$ is compact, it suffices to show that $p \in \partial_{*} u(x, \theta)$ for any $p \in$ $\operatorname{Int}(\partial u(x, \theta))$, the relative interior of $\partial u(x, \theta)$.

Let $\theta_{i}, 1 \leq i \leq(n-d)$ be an orthonormal basis of $[\partial u(x, \theta)]^{\perp}$, i.e.,

$$
\left\langle\theta_{i}, \theta_{j}\right\rangle=\delta_{i j}, \quad\left\langle(p-q), \theta_{i}\right\rangle=0 \quad \forall p, q \in \partial u(x, \theta) .
$$

We can also take θ_{1} to be equal to θ. For $r, t>0$ satisfying the condition $t \sqrt{1+r^{2}}<$ $\operatorname{dist}(x, \partial \Omega)$, let $y(r, t)$ be a minimizer of the function

$$
u\left(x+t\left(\theta_{1}+y\right)\right)-t\langle p, y\rangle
$$

in the compact set K_{r} defined by

$$
K_{r}=\left\{y \in \mathbf{R}^{n}:\left\langle y, \theta_{i}\right\rangle=0 \forall i=1, \ldots,(n-d),|y| \leq r\right\} .
$$

We claim that for any $\mathrm{r}>0$ there is $\mathrm{r}>0$ (depending on r) such that for $t<r$ any minimizer $y(r, t)$ satisfies the condition $|y(r, £)|<r$. Indeed, if the claim were not true it would be possible to find $r>0$ and a sequence of minimizers $y_{h}=y(r, t h) €$ $K_{r} \mathrm{n} d B_{r}$ corresponding to an infinitesimal sequence $t h$ - Passing to a subsequence, we may assume that y^{\wedge} converges to $y € K_{r} \mathrm{n} d B_{r}$. Since $y h$ is a minimizer, we have

$$
u\left(x+t_{h}\left(\theta_{1}+y_{h}\right)\right)-t_{h}\left(p, y_{h}\right) \leq u\left(x+t_{h} \theta_{1}\right) .
$$

Hence,

$$
\underline{u\{x+\operatorname{th}(O i+V h))-u\{x)}-\underline{u\left(x+t_{h} 9_{1}\right)-u\{x)}<\left\langle p, y_{h}\right\rangle .
$$

Recalling that

$$
\left|\frac{u\left(x+t_{h}\left(\theta_{1}+y_{h}\right)\right)-u\left(x+t_{h}\left(\theta_{1}+y\right)\right)}{t_{h}}\right| \leq[u]_{L_{\mathrm{Lp}}}\left|y_{h}-y\right| \rightarrow 0
$$

we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial\left(\theta_{1}+y\right)}(x)-\frac{\partial u}{\partial \theta_{1}}(x) \leq\langle p, y\rangle \tag{2.2}
\end{equation*}
$$

On the other hand, since the map (,- 0 i) is constant on $d u(x, 0)$, we have that $d u / d d i(x)=(\mathrm{p}, 0 \mathrm{i})$. Also, since $\mathrm{p} € \operatorname{Int}(\mathrm{du}(0))$,

$$
\frac{d u}{\partial\left(\theta_{1}+y\right)} \mathrm{r}(x)>(\mathrm{p}+€ ? /, 0 \mathrm{i}+\mathrm{v})=(\mathrm{p}, 0 \mathrm{i})+(P i v)+\mathrm{cr}^{2}
$$

for $|e|$ sufficiently small. We thus obtain a contradiction with (2.2), and the claim is proved.

Now, let $\mathrm{r}>0$ and let $r(r)>0$ be given by the claim. Returning to the definition of $y(r, £)$, by the nonsmooth Lagrange multiplier rule (see for instance [6], 6.1.1) we conclude that for any $t €] 0, \mathrm{r}(\mathrm{r})$ [we can find $\mathrm{Aj}(\mathrm{r}, \mathrm{i}) 6 \mathrm{R}$ satisfying

$$
0 \text { e } t\{d u(x+i\{9 i+y\{r, t)))-p\}-\sum_{i=1} \lambda_{i}(r, t) \theta_{i},
$$

or, equivalently,

$$
\begin{equation*}
p+\sum_{i=1}^{n-d} \frac{\lambda_{i}(r, t)}{t} \theta_{i} \in \partial u\left(x+t\left(\theta_{1}+y(r, t)\right)\right) \tag{2.3}
\end{equation*}
$$

Let $\left.\left(r_{h}\right) \mathrm{C}\right] 0,+\mathrm{oo}\left[\right.$ and $\left.t_{h} €\right] 0, \mathrm{r}\left(\mathrm{r} /{ }_{1}\right)$ [be two sequences converging to 0 . By taking scalar products in (2.3) with $6 i$ it is easy to see that $\backslash i\left\{r h, t_{h}\right) \backslash t_{h}$ is not greater than $2[u]_{\mathrm{L}_{\mathrm{ip}}}$. Hence, by passing to a subsequence if necessary, we may assume that $*_{i}\left(r_{h}, t_{h}\right) / t h$ converges to $\mathrm{A}^{\bar{*}}$ as $h-++$ oo for $i=1, \ldots,(\mathrm{n}-d)$.

Then, by letting h —» +00 in (2.3) we get

$$
p+\sum_{i=1}^{n-d} \bar{\lambda}_{i} \theta_{i} \in \partial_{*} u\left(x, \theta_{1}\right)
$$

as $\mid y\left\{r_{h}, t_{h}\right) \backslash<r_{h}$. Moreover,

$$
\lim _{h \rightarrow+\infty} \frac{\theta_{1}+y\left(r_{h}, t_{h}\right)}{\left|\theta_{1}+y\left(r_{h}, t_{h}\right)\right|}=\theta_{1}
$$

On the other hand, since the vectors 0^{*} are orthogonal to $d u(x, \sigma)_{y}$ all $\overline{A^{*}}$ are equal to 0 . Thus, $p € 5^{*} \mathbf{u}(\mathbf{x}, 0 i)$ and the proof of the theorem is complete. |

THEOREM 2.2. Let $\boldsymbol{x} € \mathrm{ft}, 0 € \& \mathrm{Bi}$, and an integer $m €[1, \mathrm{n}]$ be given. Then,

$$
\begin{equation*}
\mathbf{J}_{\mathrm{m}}\left(\mathrm{~V}^{*} \operatorname{Tz}(\mathbf{x}, \mathbf{0})\right) \# d u(x, 0) \quad=» \quad 0 € \operatorname{Tan}\left(\mathbf{E}^{\mathrm{m}}(\mathbf{t z}), \mathbf{x}\right) \tag{2.4}
\end{equation*}
$$

Moreover, $\stackrel{<}{\bullet} \mathbf{? t z}(\mathbf{x}, \mathbf{0})=\mathbf{c o}\left(\mathbf{V}^{*} \mathbf{t z}(\mathbf{x}, \mathbf{0})\right)$.
REMARK 2.1. In particular, if $\mathbf{V}^{*} \mathbf{u}(\mathbf{x}, \mathbf{0})^{\wedge} \mathbf{d u}(\mathbf{x}, 0)$, then $\mathbf{0}$ is a direction of propagation of the singularity at x. Moreover, (2.4) provides a lower bound on the degree of the singularity near x. Indeed, in view of definition 1.1, (2.4) implies that $0 € \mathbf{T}\left(\mathbf{E}^{\mathrm{m}}(\mathbf{u}), \mathbf{x}\right)$, where $m=\mathbf{m}(\mathbf{V} * \mathbf{u}(\mathbf{x}, 0))$. Hence, there are singular points of degree m near x, along the direction 0 .

Proof of Theorem 2.2. Let $\mathrm{p} G \boldsymbol{G} \boldsymbol{d u}\{x, 6) \backslash \mathrm{J}_{\mathrm{m}}(\mathrm{V}, \mathrm{tz}(\mathrm{x}, 0))$. We argue by contradiction. So, suppose that $0 \wedge T\left(E^{m}(t t), x\right)$. By Theorem 2.1, there are a sequence $\left(x_{h}\right) \mathbf{C}$ ft $\backslash\{x\}$, and vectors $p h$ such that $p^{\wedge} €^{\wedge}(x / J$ and

By our assumption, for h large enough x^{\wedge} does not belong to $S^{m}(u)$. Hence, the dimension of ${ }^{\wedge}\left(x^{\wedge}\right)$ does not exceed $m-1$. By Theorem 1.1(3), there are vectors Pi,h $€ \mathrm{~V}_{\langle\mathrm{i}} \mathbf{i}\left(\mathrm{x}_{1}\right)$ and non negative real numbers $\mathrm{A}^{\wedge} h$ such that

$$
\begin{equation*}
p_{h}=^{\wedge} \lambda_{i, h} p_{i, h}, \quad \sum^{m} \lambda_{i, h}=1 \tag{2.5}
\end{equation*}
$$

By passing to a subsequence, we may assume that for any \boldsymbol{i} the m-tuples $\lambda_{i, h}$ converge as $h —+00$ to A^{*} and $p i, h$ converge to $p »$ as $\left.h —+c x\right)$. Since $\left.p^{\wedge} G^{\wedge \wedge \wedge(~} x_{h}\right)$ a diagonal argument shows that $\mathrm{p} » € \mathrm{~V} » \mathbf{u}(\mathrm{x}, 0)$. Now, let $/ \mathrm{i}$ —* $^{*}+00$ in (2.5) to obtain

$$
p=\sum_{i=1}^{m} \lambda_{i} p_{i}, \quad \sum_{\mathfrak{t}=1}^{m} \lambda_{i}=1
$$

Hence, $p € J_{m}\left(V \ll t t\left(x,{ }^{\wedge}\right)\right)$ and this contradiction proves (2.4).

Finally, a similar argument (with $m=n+1$) shows that each vector $p € d u(x, 6)$ is the convex combination of at most $(n+1)$ points of $V^{*} t x(x, 0)$. |

Note that (2.4) implies that x is only a cluster point of $E^{m}(u)$. However, we will show that, under suitable assumptions, there is a whole continuum of singular points near x, whose size can be estimated from below.

Let 5 be any plane in \mathbf{R}^{n} passing through the origin, and let $n s$ be the orthogonal projection on 5 . For any $7>0$ we denote by $C_{y}(S)$ the cone

$$
C_{y}(S)=\left\{x e R^{n}:|\operatorname{irs}(*)| \leq I\left|\pi_{S^{\perp}}(x)\right|\right\} .
$$

We note that $\mathrm{C}_{7}(5)$ D 5^{X} and $C_{y}(S)$ approaches 5^{X} as 7 -» $0+$.
THEOREM 2.3. Letx $€ S^{k}(u)$ with $_k k _\mathrm{n}-1$ begiven. Setm $=\mathrm{m}\left(\mathrm{V}^{*} \mathrm{ti}\left({ }^{*}\right) \mathrm{J}\right.$ Tien,

$$
\begin{equation*}
\mathbf{T}(5 T », z) \mathbf{D}[\wedge(\mathbf{x})]^{* 1} . \tag{2.6}
\end{equation*}
$$

Inaddition, wehave

$$
\text { Ihninf } \lll\left(* \bullet^{\prime}(\ll) \text { n B,M } 0\left[x+C_{\gamma}(S)\right]\right) \underset{1}{ } \geq
$$

for any $7>0$, wiere 5 is tie k-plane parallel to $d u(x)$ and containing 0.
Proof Observe that $c^{\prime} ? \mathbf{i} /(\mathrm{z}, 0)$ equals $d u(x)$ and $\mathrm{V}>\mathbf{u}(\mathrm{x}, 5) \mathrm{C} \mathrm{V}^{*}$? $\mathrm{x}(\mathrm{x})$ for any $0 €$ $[\partial u(x)]^{\perp}$. Hence, (2.6) follows from the previous theorem.

In order to simplify our proof of (2.7), we assume that $x=0$. Since $E^{m}(u)=Q$ if $m=0$, we may also assume that $m>0$. Let us denote by $S{ }^{1}$ the unit sphere in S^{\perp}.

Let us pick a vector p in the set $d u(0) \backslash / \mathrm{m}\left(\mathrm{V}^{*} \mathrm{u}(0)\right)$, which is not empty. For any $26 S^{1}$ and any $r, t>0$ we denote by $y(r, t, z)$ a minimizer of the function $u(t z+t y)-t(p, y)$ in the set

$$
K_{r}=\{y e S:|y|<r\} .
$$

We claim that for every $r>0$ there is $r(r)>0$ such that for any $t €] 0, r(r)[$ and any $z G S^{\mathbb{X}}$ any minimizer $y(r, t, z)$ belongs to the (essential) interior of K_{r}. This claim can be proved as in Theorem 2.1. Indeed, suppose that the claim is not true. Then, there exist $\mathbf{r}>0$ and a sequence of minimizers $y^{\wedge}=j /\left(\mathbf{r}, \mathbf{t}^{\wedge}, z_{h}\right)$ e $K_{r} D d B_{r}$ corresponding to a sequence $t h \longrightarrow 0$. Passing to a subsequence, we may assume that $y h$ converges to $y € K_{r} n d B_{r}$ and $Z H$ converges to $z € S^{\mathbf{x}}$. Since y_{h} is a minimizer, we infer

$$
u_{i}\left(t_{h} z_{h}+1 / \wedge\right)-\wedge(\mathbf{p}, j \mathbf{j} \mathbf{f}) _u\left(t_{h} z_{h}\right)
$$

Hence,

Recalling that

$$
\left|\frac{u\left\{t_{h} z_{h}+t_{h} y_{h}\right)-u\left(t_{h} z+t_{h} y\right)}{t_{h}}\right| \leq[u]_{\text {Lip }}\left(\left|z_{h}-z\right|+\left|y_{h}-y\right|\right) \rightarrow 0
$$

and

$$
\left|\frac{u\left(t_{h} z_{h}\right)-u\left\{t_{h} z\right)}{t h}\right| \leq[u]_{L i \mathbf{p}}\left|z_{h}-z\right| \rightarrow 0
$$

we obtain

$$
\begin{equation*}
\frac{d u}{\partial(z+y)}(0)-\frac{\partial u}{\partial z}(0) \leq\langle p, y\rangle \tag{2.8}
\end{equation*}
$$

On the other hand, since the map (\cdot, z) is constant on $\mathbf{e}) u(0)$, we have that

$$
\frac{d u}{T z^{\prime}}{ }^{\prime}(0)=\langle p, z\rangle .
$$

Also, since $\boldsymbol{p} € \operatorname{Int}(\mathbf{c ́ h z}(\mathbf{0}))$,

$$
\left.\frac{d u}{d(z+y)}(0) \geq(\mathrm{p}+\epsilon y, z+y)=\mathrm{Ov}^{z}\right\rangle+\langle p, y\rangle+\epsilon \mathrm{r}^{2}
$$

for $|\mathrm{e}|$ sufficiently small. We thus obtain a contradiction with (2.8), and the claim is proved.

Next, we claim that there is $6>0$ such that if $r<6$ and $t<\inf \{r(r), 5\}$, then for any $z € S_{-}{ }^{1}$, any minimizer $2 /(\mathbf{r}, \mathbf{t}, \mathrm{z})$ satisfies the condition

$$
t z+t y(r, t, z) \in \Sigma^{m}(u)
$$

Indeed, let us assume that the claim is not true. Then, by the variational argument used in the proof of Theorem 2.1 , we construct a sequence of minimizers $y_{h}=y(r h i t h, Z h) € K_{r h}$ corresponding to sequences r\&, th—0 and real constants $\mathrm{A} *, \mathbf{i}, \ldots, * h_{y} n-k$ such that

$$
\begin{gather*}
p_{h}:=p+\sum_{i=1}^{\mathrm{n}-\mathrm{fc}} \lambda_{h, i} \theta_{i} \in \partial u\left(t_{h} z_{h}+t_{h} y_{h}\right), \tag{2.9}\\
t_{h} z_{h}+t_{h} y_{h} \notin \Sigma^{m}(u), \tag{2.10}
\end{gather*}
$$

and

$$
\left.\lim z_{h}=26 \mathrm{~S}^{1}, \quad \lim \quad A_{/ \mathrm{li}}=\mathbf{A}_{\mathrm{i}} \mathrm{e} \mathbf{R} \quad \mathrm{Vi}=1, \ldots A n-k\right)
$$

Passing to the limit as h —* $^{*}+\boldsymbol{o o}$ in (2.9) we get

$$
p+\sum_{i=1}^{\mathrm{n}-\mathrm{fc}} \lambda_{i} \theta_{i} \in \partial u(0)
$$

Hence $A^{*}=0$ for any $i=1, \ldots,(n-f c)$ and p_{h} converges to p as $h->+00$. Moreover, by (2.10) and Theorem $1.1(3)$ each vector p_{h} belongs to the convex hull of at most m vectors of $V+u(x h)$ - Repeating the argument of Theorem 2.2 we obtain a set $A \subset \mathrm{~V}^{*} \mathbf{u}(0)$ consisting of at most m points, such that $p € \operatorname{co}(A)$. Hence, $p € /_{\mathrm{m}}\left(\mathrm{V}^{*} \mathbf{u}(0)\right)$, and this contradiction proves the second claim.

Finally, let $6>0$ be given by the second claim. For any fixed $7>0$ let r <inf\{7,£\}. Then,

$$
\Sigma^{m}(u) \cap C_{\gamma}(S) \cap B_{\rho} \supset\left\{t z+t y(r, t, z): z \in S^{\perp}, 0 \leq t<\frac{\rho}{\sqrt{1+r^{2}}}\right\}
$$

provided $p<y / \overline{\overline{1+\mathbf{r}^{2}}} \mathbf{i n f}\{\mathbf{r}(\mathbf{r}), 6\}$. Since $7 T s \pm$ does not increase the Hausdorff measure (see for instance [17], Proposition 3.5), by the inclusion

$$
\operatorname{TT}_{5} X\left(E^{\mathrm{m}}(\mathbf{t x}) \mathrm{n} \mathrm{C}_{7}(5) \text { n } B_{p}\right) D\left\{z e S^{ \pm}:|z|<\frac{\rho}{\sqrt{1+r^{2}}}\right\}
$$

we infer

$$
\left.\liminf _{\rho \rightarrow 0^{+}} \frac{n^{-}\left(2(u)+1 D_{\rho} 11 U_{\gamma}(\nu)\right)}{\omega_{n-k} \rho^{n-k}}+r^{2}\right)^{(k-n) / 2}
$$

By letting \mathbf{r}-* 0 , we complete the proof. |
REMARK 2.2. By (1.1) and Theorem 1.1(5) we infer that $T i^{n \prime \prime k}\left(S^{i}(u)\right)=0$ for any $i \geq k+1$. Hence, (2.7) can be written in the equivalent form: for any $\boldsymbol{x} € S^{k}(u)$

$$
\liminf _{\rho \rightarrow \sim} \mathbf{f} \frac{\left.\ll \mathbf{M}^{\wedge}(-) \mathbf{n B},(\mathbf{x}) \mathbf{n}\left[\mathbf{x}+\mathbf{c}_{7}(\mathbf{5})\right]\right)}{\sim_{n-\kappa} \cdot}>1,
$$

where $m=m\left(V_{1 \mid i x} \mathbf{i x}(x)\right)$. In particular, if $7^{\wedge}\left(V^{*} u(x)\right) 7^{\wedge} d u(x)$ (i.e., $m=A$:), we get

$$
\liminf _{\rho \rightarrow 0^{+}} \frac{\mathcal{H}^{n-k}\left(S^{k}(u) \cap B_{\rho}(x) \cap\left[x+C_{\gamma}(S)\right]\right)}{\omega_{n-k} \rho^{n-k}} \geq 1
$$

and coupling this estimate with Theorem $1.1(5)$ we conclude that $H — \operatorname{dim}\left(S^{k}(u)\right)=$ (n-fc).

3. HAMILTON-JACOBI EQUATIONS

In this section we will apply the general results on the singularities of semiconvex functions to solutions of the Hamilton-Jacobi-Bellman equation

$$
\begin{equation*}
F(y, u(y), \nabla u(y))=0, \quad y \in \Omega \tag{3.1}
\end{equation*}
$$

where $Q C \mathbf{R}^{\wedge}$ is an open domain. We will assume that
$\mathbf{F}: \mathbf{f} \mathbf{I x} \mathbf{R} \times \mathbf{R}^{\wedge}{ }^{*} \mathbf{*}$ is continuous;

$$
\begin{gather*}
p^{*}+\mathrm{F}(\mathrm{t} /, \mathrm{s}, \mathrm{p}) \text { is convex in } K^{N} \quad \mathrm{~V}(\mathrm{j} /, s) € \mathrm{ft} \times \mathrm{R} ; \tag{3.3}\\
\mathrm{n} \text { is semi-concave (i.e. }-u \text { is semi-convex); } \tag{3.4}
\end{gather*}
$$

(3.1) holds at any differentiability point of u.

We note that, for a semi-concave function u, the interesting semidifferential is the so-called superdifFerential, defined as

$$
d^{+} u(y)=\left\{p € \mathrm{R}^{\wedge}: \limsup _{*_{-}-\mathrm{y}} \frac{u(z)-u(y)-\langle p z-y\rangle}{\left.\right|^{2} \sim y \backslash} \leq 0\right\} .
$$

Equivalently, $d+u(y)=-d[-u](y)$. Hence, $d+u(y) \wedge 0$ for any $y € Q$ and the following implication holds

$$
\begin{equation*}
d u(y) \# 0 \quad=* \quad u \text { is differentiate at } \mathrm{j} / . \tag{3.6}
\end{equation*}
$$

Accordingly, the definitions 1.2 and 2.2 will be modified as follows for a semi-concave function u :

$$
\begin{gathered}
S^{k}(u)=\{x 6 n: \operatorname{dim}(d+u\{x))=\mathrm{fc}\} \\
\mathrm{E}^{*}(\mathrm{u})=(\mathrm{J} \wedge(\mathrm{u})=\{\mathrm{x} 6 \mathrm{f} \mathrm{i}: \operatorname{dim}(0+\mathrm{u}(\mathrm{x}))>-\mathrm{fc}\} \\
\partial^{+} u(x, \theta)=\left\{p \in \partial^{+} u(x):\langle p, \theta\rangle=\frac{\partial u}{}(x)=\quad \min \quad\langle q, \theta\rangle\right\} .
\end{gathered}
$$

REMARK 3.1. From (3.2)-(3.5) it follows that u is a viscosity solution in the sense of [8] (see also [7]). Indeed, (3.2) and (3.5) yield

$$
\begin{equation*}
\mathbf{F}(», \mathbf{u}(\mathbf{y}), \mathbf{p})=\mathbf{0} \quad \mathbf{V p} € \mathbf{V} \cdot \mathbf{u}(\mathbf{j} /) \tag{3.7}
\end{equation*}
$$

for any $y 6$ fi, and so (3.3) implies that

$$
\boldsymbol{F}(y, u(y), p) \leq 0 \quad V p € \#^{+} \mathbf{u}(\mathrm{j} /)
$$

The converse inequality on the elements of $d u(y)$ trivially follows by (3.6).
REMARK 3.2. Semi-concavity is a natural property to expect on viscosity solutions of Hamilton-Jacobi-Bellman equations. Indeed, several existence and uniqueness results were first obtained in classes of semi-concave functions (see [15]). More recently, H -J equations have been studied in the framework of viscosity solutions (see [8] and [7]). Under suitable regularity assumptions on F and on the (Dirichlet) boundary data, viscosity solutions to (3.1) are known to be semi-concave (see [16] and [12]). Similar results are also available for viscosity solution of second order H-J equations, see [13]; hence the result of §2 apply to these equations as well. For the sake of simplicity we confine our statements to first order equations.

For any compact convex set $C \mathbf{C} \mathbf{R}^{\wedge}$ we denote by $\operatorname{Ext}(C)$ the set of extreme points of C. We say that a set $A C R^{\wedge}$ is extremal if no $p 6 A$ can be written as a convex combination of other points of A, i.e.

$$
p £ \operatorname{co}(A \backslash\{p\}) \quad V p € A
$$

Our terminology is motivated by the following result.
lemma 3.1. Any compact extremal set A coincides with Ext(co(A)).
Proof. Let $C=\operatorname{co}(A)$, and let $\mathrm{p} € \operatorname{Ext}(\mathrm{C})$. By Carathéodory's Theorem, we can represent p as a convex combination of (N.+1) points pi $€ A$:

$$
P={\underset{\underset{i}{=1}}{N+l}}_{\mathrm{J}^{\mathrm{A}} * \mathrm{P} *!}^{\mathrm{Ai}>0}
$$

Since p is an extreme point of $C, p=p i$ for any $t \in\left\{1, \ldots, 7^{\wedge}+1\right\}$, hence $p 6 A$
Conversely, let peA. By the Krein-Milman theorem (see for instance [18], page 167) we can represent p as a convex combination of at most ($N+l$) points Pi eExt(C):

$$
p=\sum_{i=1}^{N+l} \lambda_{i} \mathrm{Pt}, \quad \mathrm{~A}<>\mathrm{o}, \quad \sum_{i=1}^{N+l} \lambda_{i}=1
$$

In turn, each p^{*} can be represented as a convex combination of at most $(N+1)$ points $p i j € A$:

$$
p_{i}=\sum_{j=1}^{N+l} \lambda_{i j} p_{i j}, \quad \lambda_{i j}>0, \quad \sum_{j=1}^{N+l} \lambda_{i j}=1
$$

so that

$$
P={\underset{\mathbf{i}, \mathbf{i}=\mathbf{i}}{\mathrm{J}}+l}_{\mathrm{N}}^{\mathrm{i}} \mathrm{~A} \mathrm{~A}^{\wedge} \mathrm{p}^{\wedge}
$$

Since $-\mathbf{4}$ is extremal, $p=p t j$ for any $\dot{\mathbf{t}}, \mathbf{j}$, hence $p=p^{\wedge} € \operatorname{Ext}(C)$. |
The main result of this section is the following.
THEOREM 3.2. Assume (3.2), (3.3), (3.4), (3.5), and let x G $S^{k}(u)$ be a singular point. Let us further assume that

$$
\begin{equation*}
\left\{p € R^{N}: F(y, u(y), p)=0\right\} \text { is extremal. } \tag{3.8}
\end{equation*}
$$

Then
(1) $V+u(y)=\operatorname{Ext}\left(d^{*} u(y)\right)$, and if $k<N$ the singularity propagates. Moreover $m=m\left(V^{*} u(y)\right) \geq 1$, and

$$
T\left(\Sigma^{m}(u), y\right) \supset\left[\partial^{+} u(y)\right]^{\perp}, \quad \liminf _{\rho \rightarrow 0^{+}} \frac{\mathcal{H}^{n-k}\left(\Sigma^{m}(u) \cap B_{\rho}(y)\right)}{\omega_{n-k} \rho^{n-k}} \geq 1
$$

(2) Let $0 € \& B i$ and iet us assume tiat $5^{+} M(J /, 6)$ is not a singleton. Then, $V^{*} u(y, 6)$ coincides with $\operatorname{Ext}(d+u(y, 6)), m=m\left(V^{*} u(y, 6)\right)>1$ and $6 €$ $T\left(\Sigma^{m}(u), y\right)$.

Proof. (1) By (3.7) and (3.8), $V^{*} u(y)$ satisfies the hypotheses of Lemma 3.1, so that $\mathrm{V}^{*} \mathrm{u}(\mathrm{y})=\operatorname{Ext}(d+u(y))$. To show (3.9), we need only to apply Theorem 2.3 to $-l$.
(2) As in (1), Lemma 3.1 yields $V+u(y, d)=\operatorname{Ext}(d+u(y, 0))$. The other statements follow from Theorem 2.2 and Remark 2.1. |

REMARK 3.3. The extremality condition (3.8) cannot be dropped. In fact, let $N=2$ and $u\left(y_{u} y_{2}\right)=-y / y j+\overline{y^{*<>}{ }_{2}}$ as in example 2.1. Then, u is concave in \mathbf{R}^{2}, and has an isolated singularity at $(0,0)$. Moreover, it is a viscosity solution of the equation

$$
\sqrt{y_{2}^{2} u_{y_{1}}^{2}+\frac{1}{4} u_{y_{2}}^{2}}=\left|y_{2}\right| .
$$

REMARK 3.4. The condition (3.8) is trivially satisfied if

$$
p \gg F(y, s, p) \text { is strictly convex in } R^{\wedge} \quad V(y, s) G f t \times R .
$$

Theorem 3.2 also applies to nonstationary H-J equations with strictly convex Hamiltonian. Infact, let $N=n+1, y=(£, x)$ with $t \mathbf{G} \mathbf{R}$ and $x G \mathbf{R}^{\mathbf{n}}$, and $p=\left(p t, p_{x}\right) €$ $\mathbf{R} \times \mathbf{R}^{\mathbf{n}}$. Let

$$
H\left((t, x), s, p_{x}\right): \Omega \times \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}
$$

be a continuous function, strictly convex in \boldsymbol{p}_{x}. Then,

$$
F(y, s, p)=p_{t}+H\left((t, x), s, p_{x}\right)
$$

satisfies (3.2) and (3.3), and any semi-convave function $u: f t \longrightarrow R$ satisfying (3.5) is a viscosity solution of the equation

$$
\begin{equation*}
u_{t}+H(t, x, u, \nabla u)=0 . \tag{3.10}
\end{equation*}
$$

Finally, for any $\boldsymbol{y} € f t$ and any $\boldsymbol{s} € \mathbf{R}$

$$
Z(y, s)=\left\{\left\{p_{u} p_{x}\right) \mathrm{GR} \times \mathrm{R}^{\mathrm{n}}: \mathrm{p}<+H\left(y, s, p_{x}\right)=0\right\}
$$

is extremal, because of the strict convexity of \boldsymbol{H}. Indeed, let

$$
Z(y, s) \ni p=\sum_{i=1}^{N+1} \lambda_{i} p_{i}
$$

with pi $e Z(y, 5), A j>0$ and $S{ }^{\wedge}{ }^{1} A^{*}=1^{*} \wedge d^{*}{ }^{\text {et us } s} h^{\circ w}$ that $p »=p$ for any i . Since

$$
p_{t}+H\left(y, s, p_{x}\right)<53\left(\mathbf{A}_{\mathrm{t}} \mathbf{p}_{\mathrm{it}}+\mathrm{A}^{\wedge}\left(\mathbf{j} /, 5, \mathbf{p}_{\mathrm{ix}}\right) \dot{\mathrm{J}}=0\right.
$$

unless $p_{x}=p i_{X}$ for any i $G\{1, \ldots, \mathrm{TV}+1\}$, we have

$$
p a=-H\left(y, s, p_{i x}\right)=-H\left(y, s, p_{x}\right)=\mathrm{p}_{\mathrm{t}} \quad \text { Vi G }\{1, \ldots, \mathrm{JV}+1\}
$$

and, in particular, $p=P i$ for any i.
More generally, the same argument of Theorem 3.2 shows that singularities propagate in the direction 6 if $d \sim^{*} \sim u(y, 6)$ is not a singleton and if the restriction of $\left.F\left(y i^{u}(y) i^{m}\right)^{\text {to }} \#^{+} \mathbf{w}(\mathrm{j} /) 0\right)$ is strictly convex, so that $\mathbf{m}\left(\mathrm{V}^{*} \mathbf{u}(\mathrm{y}, 0)\right) \geq 1$.

REMARK 3.5. In Theorem 3.2(1) it is necessary to assume that x is not a singularity of degree N. In fact, $u(y)=-|y|$ is a solution of the eikonal equation $|V u(y)|^{2}-1=0$, and the singularity in the origin does not propagate.

However, propagation of singularities of any degree has been proved for nonstationary H-J equations with strictly convex Hamiltonian (see [4]). Due to the special structure of the equation it has been shown in [5] that for any singularity \boldsymbol{y} there is at least a direction $6 € d B i$ such that $d u(y, 6)$ is not a singleton. Note that, once the existence of such a direction has been proved, the propagation of the singularity would follow by Theorem 3.2(2).

In [5] it is also shown that viscosity solutions of (3.10) with strictly convex H are such that any $p € \mathrm{~V}^{*} \mathrm{tt}(\mathrm{y})$ is exposed, i.e., there exists $8 € d B \backslash$ such that $d+u(y, 0)=\{p\}$. This condition is stronger than extremality.
remark 3.6. We note that the lower bound in Theorem 3.2 on the maximum degree of the singularity near y depends only on the geometry of $d+u(y)$. To illustrate this phenomenon, we now discuss three examples. In the first example the subdifFerential $d+u(y)$ is a triangle in \mathbf{R}^{3} and the singularity propagates in singularities of degree two, as implied by Theorem 3.2.

In the second example we show that a singularity \boldsymbol{y} of degree \boldsymbol{k} may well propagate in singularities of degree $m<k$ when $m_{\{ }\left\{V^{*} u(y)\right.$) $<k$.

Finally, the third example shows that Theorem 3.2 provides only a sufficient condition for the propagation of singularities of high degree.

EXAMPLE 3.1. Let $\mathrm{fi}=\mathbf{R}^{3}$ and let

$$
u(t, x, z)=\min \{t, x, z\}
$$

Then, u is a viscosity solution of the equation $-U t+H(V u)=0$, where

$$
H\left(p_{x}, p_{z}\right)=\left(\mathbf{p}_{\ll-P_{z}}\right\}^{2}+2\left\{P_{x}+p_{z}-\mathbf{I}\right)^{2}-\mathbf{1}
$$

is strictly convex. We note that $S^{2}(u)$ is equal to the line spanned by $(1,1,1)$ and

$$
\nabla_{*} u(s, s, s)=\{(1,0,0),(0,1,0),(0,0,1)\} \quad \forall s \in \mathbf{R} .
$$

In this case $m\left(V^{*} u(0,0,0)\right)=2$. We note that $S^{l}(u)$ consists of three halfplanes intersecting each other in the above singular line, with directions orthogonal to the triangle generated by $\mathbf{V} * \mathbf{u}(0,0,0)$. This example describes the typical situation analyzed in Theorem 3.2.

EXAMPLE 3.2. Let $u: \mathbf{R}^{3}$-» \mathbf{R} be the function

$$
u(t, x, z)=-\sqrt{x^{2}+\left(|z|+t^{2}\right)^{2}}
$$

The equality

$$
\sqrt{\mathbf{a}^{2}+/ 3^{2}}=\sup \left\{\mathbf{a a}+b p: a \geq 0, b \geq 0, \mathbf{a}^{2}+b^{2}<1\right\} \quad \text { a, } / 3 \geq 0
$$

implies that $y / \overline{\left(p^{2}+i>^{2}\right.}$ is a convex function whenever $c p$ and V are non negative convex functions. In particular, u is a concave function. The origin belongs to $S^{2}\{u)$ and

$$
9^{+} \mathbf{u}(0,0,0)=\{0\} \times \bar{B} \bar{i}, \quad m\{\{0) x d B i)=I .
$$

The singularity in the origin propagates in singularities of degree 1 . In fact, the origin is the only point in $S^{2}(u), S^{1}(u)=\{(t, x, 0): t \neq 0\}$ and

$$
\partial^{+} u(t, x, 0)=\left\{\left(\frac{-2 t^{3}}{u(t, x, 0)}, \frac{-x}{u(t, x, 0)}, \frac{t^{2} \rho}{u(t, x, 0)}\right):|\rho| \leq 1\right\} \quad \forall(t, x, 0) \in S^{1}(u)
$$

Finally, we note that

$$
\nabla u(t, x, z)=\left(\frac{-2 t\left(|z|+t^{2}\right)}{u(t, x, z)}, \frac{-x}{u(t, x, z)}, \frac{-y\left(|z|+t^{2}\right)}{|z| u(t, x, z)}\right) \quad \forall(x, z, t) \in S^{0}(u)
$$

so that u is a solution of the equation (3.1) with

$$
F\left(t, x, z, p_{t}, p_{x}, p_{z}\right)=-p_{t}+\left|p_{x}\right|^{2}+\left|p_{z}\right|^{2}-1+\frac{2 t\left(|z|+t^{2}\right)}{\sqrt{x^{2}+\left(|z|+t^{2}\right)^{2}}}
$$

The function F satisfies (3.2), (3.3) and the extremality condition (3.8).
Example 3.3. Let $\Omega=\mathbf{R}^{3}, y=(t, x)$ with $t \in \mathbf{R}$ and $x \in \mathbf{R}^{2}$. The function

$$
u(t, x)= \begin{cases}t / 2-|x|-1 & \text { if }|x|+2 \geq t \\ \frac{|x|^{2}}{2(2-t)} & \text { if }|x|+2<t\end{cases}
$$

is a viscosity solution of the equation $-u_{t}+|\nabla u|^{2} / 2=0$. We note that $(2,0) \in$ $S^{3}(u)$, and

$$
\nabla_{*} u(2,0)=\left\{\left(p_{t}, p_{x}\right) \in \mathbf{R} \times \mathbf{R}^{2}:\left|p_{x}\right| \leq 1, p_{t}=\frac{\left|p_{x}\right|^{2}}{2}\right\}
$$

Moreover, $S^{2}(u)$ is the halfline $(t, 0)$ with $t<2$. The unit vector $\theta=(-1,0)$ belongs to $\mathrm{T}\left(S^{2}(u),(2,0)\right)$ even though $m\left(\nabla_{*} u((2,0), \theta)\right)=1$.

REFERENCES

[1] G. Alberti, L. Ambrosio, P. Cannarsa, On the singularities of convex functions, Manuscripta Mathematica (to appear).
[2] L. Ambrosio, Su alcune proprietà delle funzioni convesse, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. (1992) (to appear).
[3] J.P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
[4] P. Cannarsa, H.M. Soner, On the singularities of the viscosity solutions to Hamilton Jacobi - Bellman equations., Indiana Univ. Math. J., 36 (1987), pp. 501-524.
[5] P. Cannarsa, H.M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), pp. 305-323.
[6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley \& Sons, New York, 1983.
[7] M.G. Crandall and L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Mat. Soc., 282 (1984), pp. 487-502.
[8] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. mat. Soc., 277 (1983), pp. 1-42.
[9] I. EKELAND, R. TEmAm, Convex Analysis and Variations! Problems, North-Holland, Amsterdam, 1976.
[10] H. FEDERER, Geometric Measure Theory, Springer Verlag, Berlin, 1969.
[11] W.H. FLEMING, The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations, 5 (1969), pp. 515-530.
[12] H. ISHII, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33 (1984), pp. 721-748.
[13] H. ISHII, P.L. LIONS, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential equations, 83 (1990), pp. 26-78.
[14] R. JENSEN AND P.E. SOUGANIDIS, A regularity result for viscosity solutions of Hamil-ton-Jacobi equations in one space dimension, Trans. Amer. Math. Soc, 301 (1987), pp. 137-147.
[15] S.N. KRUZKOV, Generalized solutions of Hamilton-Jacobi equations ofeikonal type I, Math. USSR Sbornik, 27 (1975), pp. 406-446.
[16] P.L. LIONS, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.
[17] F. morgan, Geometric Measure Theory - A beginner's guide, Academic Press, Boston, 1988.
[18] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, 1970.
[19] L. SIMON, Lectures on Geometric Measure Theory Proceedings of the Centre for Mathematical Analysis, Australian National University, Camberra, 1983.
[20] L. TONELLI, Lezioni di Analisi Matematica, vol. I, Tacchi Editrice, Pisa, 1940.
[21] R. TSUJI, Formation of singularities for Hamilton-Jacobi equations II, J. Math. Kyoto Univ., 26 (1986), pp. 299-308.

[^0]: *Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy
 **Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy. Partially supported by the Italian National Project MURST "Equazioni di Evoluzione e Applicazioni FisicoMatematiche" and by the Army Research Office through the Center for Nonlinear Analysis.
 ***Carnegie Mellon University, Department of Mathematics, Pittsburgh, PA 15213. Partially supported by NSF Grant DMS-9200801 and by the Army Research Office through the Center for Nonlinear Analysis.

