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ON THE PROPAGATION OF SINGULARITIES OF
SEMI-CONVEX FUNCTIONS

L. AMBROSIO* P. CANNARSA** H.M. SONER***

Abstract. The paper deals with the propagation of singularities of semi-convex functions.
We obtain lower bounds on the degree of the singularities and on the size of the singular set
in a neighborhood of a singular point. These results apply to viscosity solutions of Hamilton-
Jacobi-Bellman equations. In particular, they provide sufficient conditions for the propagation of
singularities, depending only on the geometry of the superdifferential at the singular point.
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INTRODUCTION

In a recent paper [1], upper bounds on the dimension of singular sets of semi-
convex functions were derived by measure theoretic arguments.

To briefly describe these upper bounds, let u : Rn —• Rn be a semi-convex
function (Definition 1.2 below). Define

Sk(u) = {x € Rn : dim(du(x)) = k),

where k € [0,n] is an integer and du(x) denotes, as usual, the subdifferential of
u. Clearly, {Sk(u)}^=:0 is a partition of Rn and S°(u) is the set of all points of
differentiability of u. Since we are interested in first order singularities, we call a
point x singular for u if x € Sk(u) for some k > 1.

In [1] it is proved that Sk(u) is countably Wn~fc-rectifiable. In particular,

H-dim(Sk(u)) <n-fc,

where 7i — dim is the Hausdorff dimension.

The purpose of the present work is to obtain lower bounds on the dimension of
Sk(u). More precisely, we will describe the structure of Sk(u) in a neighborhood of
x, knowing the geometry of du{x).

A motivating application of these results concerns the analysis of singularities
of solutions to the Hamilton-Jacobi-Bellman equation

(1) H(x,u,Vu) =0.
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In fact, if the data are smooth, viscosity solutions of such PDE's (and, in particular,
the solutions that are relevant to optimal control) enjoy well known semi-concavity
properties (see for instance [12], [13], [15], [16]).

The present work is related to [4] and [5], in which viscosity solutions of (1) are
shown not to have any isolated singularity if H is strictly convex with respect to
p. In [4], [5], however, no attention is paid to the dimension of du at such singular
points, and no attempt is made to estimate the Hausdorff measure of the singular
sets.

Different approaches to the analysis of singularities of Hamilton-Jacobi equa-
tions are obtained for the one dimensional case in [14] and using characteristics in
[21].

Semi-convexity was the only property used in [1] to prove upper bounds on
singular sets. On the contrary, to obtain lower bounds we need additional infor-
mation. This fact is the essential difference between [1] and the present paper. In
order to understand the nature of the additional information, let us consider the
set of reachable subgradients

V>u(x) = { Urn Vu(xh) : xh G S°(u) \ {x}, xh — x } .

The above set is a set of generators of du(x) in the sense of convex analysis. Then,
we show that the strict inclusion

(2) V,u(z) du{x).

is a sufficient condition for the propagation of any singularity x G Sk(u), 1 < k < n
(see Example 2.1 below). The inclusion (2) is satisfied by any viscosity solution of
(1) with a strictly convex Hamiltonian, as V+u(x) is contained in the zero level set
of H(x,tt(x),-).

Moreover, if x is an isolated singularity, by adapting a variational argument of
Tonelli (see the proof of the implicit function theorem in [20]), we show that V+u(x)
coincides with c?u(x), see Theorem 2.1 below.

Furthermore, inserting nonsmooth analysis into this procedure, we obtain a
more detailed description of the singular sets. In Theorem 2.2 we prove that singu-
larities propagate along directions related to the geometry of du{x). These direc-
tions are orthogonal to the exposed faces of du(x). In Theorem 2.3 we give a lower
bound on the maximum integer m < k such that x is a cluster point of

E"» = Q S'(u),

and in (2.7) we estimate from below the Hausdorff (n — fc)-dimensional measure
of Sm(tx). Roughly speaking, the computation of m takes into account how many
vectors in V*u(x) are necessary to generate du(x).

We conclude with an outline of the paper. The first section contains preliminary
material on Hausdorff measures, semi-convex functions, and the estimates of [1].
In §2 we develop our main results on propagation of singularities of semi-convex
functions. The last section is devoted to applications to Hamilton-Jacobi-Bellmann
equations and to the discussion of some examples.



1. NOTATION AND PRELIMINARIES

We briefly introduce some notation. We denote by Bp(x) the open ball in Rn

centered in x with radius p, and we abbreviate Bp = BP(Q).

For any set A C Rn we denote by co(A) the convex hull of A. Moreover, the
following sets of convex combinations of points of A will be often used in the sequel.

for any integer j > 1. We also define

i(A) = maxjj > 0 :1;(A) # co(A)\.

Clearly I\ (A) = A, hence m(A) = 0 if and only if A is a convex set. Moreover,
by Caratheodory's Theorem (see for example [18, p.155]) we know that Jfc+i (A) =
co(A), where k is the dimension of co(A). Therefore m(A) < dim [co(A)]. However,
the integer m(A) does not depend just on the dimension of co(A). For example,
if A is a finite set of affinely independent points, then m(A) equals the dimension
of co(A). On the other hand, if A is the boundary of a fc-dimensional ball, then
m(A) = 1.

For any set S C Rn we define

S1' = {p € Rn : q —• (<7,p) is constant on 5 } ,

and

T(5,x) = {r0:r>0, 6= lim Xh ~ X , xh € S \ {x}, xh-+x}.
/i—^+oo p^ — X[

The set T(5, x) defined above is the so-called contingent cone to S at x ([3], [6]).

For any real number r €]0,n] we denote by Hr(B) the Hausdorff r-dimensional
measure of B C Rn , defined by

OO

^supinf^ V(d iam(£ t ) ) r I B C
2

V

where o;r is the Lebesgue measure of the unit ball in Rr if r is an integer, any
positive constant otherwise. We also denote by 7i° (B) the cardinality of B. The
Hausdorff dimension of B is defined by

H - dim(B) = inf {r > 0 : Hr{B) = 0}.

For an introduction to the properties of Hausdorff measures see for example [10],
[17]. We merely recall that Hr is a Borel regular measure in Rn , and

(1.1) nr(B) < + o o => W m ( B ) = 0 V m > r .

We now recall the definition of semi-convexity and the main properties of semi-
convex functions.



DEFINITION 1.2. Let ft C Rn be an open convex set, and u : ft -+ R. We
say that u is semi-convex in ft if there is a non decreasing upper semicontinuous
function u : [0, +oo[-> [0, +oo[ such that v(0) = 0 and

tu{xt) + (1 - t)u{x2) - ufo) > - t ( l - t)\Xl - x2\u>(\xl - x2\)

xt = txa + (1 - t)x2, xi, x2 € ft, t € [0,1].

We call semi-convexity modulus of u the least function u) satisfying (1.2). If u :
ft —» R is semi-convex and x € ft, we say that p € Rn is a subgradient of u at x if

Borrowing the notation of convex analysis, we denote by du{x) the set of subgradi-
ents of u at x, call it the subdifferential of u at x. It is easy to see that du(x) is a
compact, nonempty, convex set. Moreover,

(1.3) pedu(x) <=> u(y)-u(x)~ (p,y - x) > -\y - x\w(\y - x\), Vj/€ ft.

It can also be shown that du(x) is a singleton if and only if u is differentiable
at x. Hence, the set of non differentiability points of u can be classified according
to the dimension of the subdifferential at the singular point.

DEFINITION 1.3. Let x e ft, and let k e {0 , . . . ,n} be an integer. We define

Sk(u) = {x € ft : dim(du{x)) = fc},

and
n

£*(u) = |J S^u) = {x € ft : dim(5u(x)) > ib}.

In order to find sufficient conditions for the propagation of singularities, it will
be useful to consider the set V*u(x) of reachable subgradients.

DEFINITION 1.4. Let u : ft —» R be a semi-convex function, and let x G ft. We
define

V+u(x) = { lim Vu(xh) : xh 6 5°(tx), xh -+ x).

Then, it is known that du(x) is the convex hull of V«,u(x) (see e.g. [4]).

In the following theorem we list some basic properties of semi-convex functions.
We recall (see [3]) that a set-valued map S(x) is said to be upper semicontinuous if
the following implication holds:

Ph'€ S(xh), xh->x, PH-^P => pe S(x).

THEOREM 1.1. Let u : ft —* R be a semi-convex function. Then,

(1) u is locally Lipschitz continuous in ft and

du ( . r u(x + t6)-u(x)— (x)= hm -* f K-+ =



for any z G it and any 6 G R n \ {0}.

(2) Tie set-valued maps du(x), V*tz(z) are upper semicontinuous in x.

(3) If z G Sk(u), then !*+! (V.u(x)) = 8u{x).

(4) For any k G {0 , . . . , n} and any p > 0 we have

T(Sj(u),z) C [du(x)]± Vz G 5j(u),

where Sk(u) denotes the set of all points x G Sk(u) such that du(x) contains
a fc-dimensional ball of radius p.

(5) For any integer k G {0 , . . . ,n} the set Sk(u) is countably Hn~k-recti6able,
that is it can be covered, up to a %n~k-negligible set, with a countable
sequence ofC1 hypersurfaces Th C Rn of dimension (n — k), i.e.

nn-k(sk(u)\\Jrh\ =0

Moreover,

f Hk{du(x))d'Hn-k(x)<+oo
sk(u)nnf

for any open set Qr CC ft.

Proof. (1) See [1] and [4].

(2) The upper semicontinuity of the map du(x) easily follows by (1.3), and the
upper semicontinuity of V*rx(x) follows directly from its definition.

(3) Since V*u(x) is closed and its convex hull equals 9u(x), the assertion follows
by Caratheodory's Theorem.

(4) See [1], Theorem 3.1.

(5) See [1], Theorem 4.1. |

REMARK 1.1. Note that (5) provides an upper bound on the Hausdorff dimen-
sion of Sk(u), which is not greater than (n — k). It is easy to see that this bound is
optimal. Indeed, let

u{xu... ,xn) =

Then, Sk(u) is the (n - fc)-plane of all x G Rn such that z, = 0 for 1 < i < k.

2. EXPOSED FACES AND REACHABLE SUBGRADIENTS

We want to study the structure of the singular set E1 (u) in the neighborhood
of a singular point z.

DEFINITION 2.1. We define the singularity degree of z G ^l(u) as the unique
integer k such that z G Sk(u). We say that z is an isolated singularity of degree k
if T(Efc(tx),z) = 0. We say that a singularity propagates if



Moreover, all vectors 6 e T(E1(u),x) n dB\ are called directions of propagation of
the singularity at x.

Clearly, a convex function may well have an isolated singularity of degree n.
Indeed, if x G S£(u) for some p > 0, then du(x) contains an n-dimensional ball.
Hence, by Theorem 1.1, x is not a cluster point of S^(u). In other words, S%(u)
is a discrete set for any p > 0. Moreover, there are convex functions with isolated
singularities of degree < n.

EXAMPLE 2.1. Let

Then, u is a convex function in Rn and u € C2(Rn \ {0}). On the other hand,
du(0) = [-1,1]* x {0}n~*, so that 0 is the only point in Sk(u).

Note that, in the above example du(0) = V*u(0). More generally, we will show
that a sufficient condition for the propagation of a singularity of degree k < n at
x is the strict inclusion V+u(x) du(x). In particular, this condition is satisfied for
solutions of some Hamilton-Jacobi equations, see §3.

In the remainder of this paper we always assume that Q C Rn is a convex open
set, u : Q —> R is a semi-convex function, and u(t) is the semi-convexity modulus
of u. Since our statements are local, we assume that u is Lipschitz continuous in Q
and we denote by [u] u its Lipschitz semi-norm.

We will see that the directions of propagation of singularities are related to
the geometry of the subdifferential du(x) at the starting point x. To analyze the
singular directions we introduce the following sets.

DEFINITION 2.2. Let x € fi and 0 € dBi\ we set

du
du{x,6) = {pe du(x) : <p,0) = — (x) = max

oa q € au{x)

V.u(x,0)={ lim Vu(xh) : xh € S°(u) \ {x}, xh -» x,

The collection {0tt(x,0) : ^ G dBi} consists of all the exposed faces of the
convex set du(x). The following theorem is the basis of our singularity propagation
argument (see Theorem 2.2 and Theorem 2.3).

THEOREM 2.1. Let x € £2,p € Rn and sequences x^ —• x,du(xh) 3 Ph —> P be
given. Suppose that

(2.1) lim Xh~X 0
— + cx) \Xh - X|

Tien, p G du(x,6). In particular,

V+u(x,6) C du(x,8).

6



Conversely, for any p € du(x,0) there are sequences XH -* x satisfying (2.1), and
du{xh) Bph-*P.

Proof We have to show that d+u(x,0) = chz(x,0), where

Xh ~" X
dmu(x,6) = { lim Ph'-Ph€ du(xh), xh ^x,xh-> x, r -» 8}.

v fc-»+oo \Xh — X\

Let ph, Xh be as in the definition of d+u(x,$) and set

th = |*fc-*|, p = Um

— X\

We know, by the upper semicontinuity of du(x), that p 6 du(x). We wiU now show
that p € du(x,0). Indeed, by the semi-convexity of u we have

u(x) - u(xh) - (ph,x - xh) > -thu{th).

Devide both sides by th to obtain

xh-x u(x + th6)-u{x) u{xh)-u{x
> > +(Pfc,

Since

Th
by letting h —• +00 we get

\u(xh) -u{x + th0)\ r ,
T Mu o,

Thus, p e du(x,0) and d+u{x,0) C du(x,6).
Next, we proceed to show the reverse inclusion. Let us denote by d the dimension

of du(x,6). Since 6 is orthogonal to chz(x,0), d is strictly less than n. We may
assume that d > 0, the inclusion being trivial if c?u(x, 6) is a singleton.

Since d+u(x,6) is compact, it suffices to show that p € d+u(x,6) for any p €
Int(chx(x,0)), the relative interior of du(x,6).

Let #i, 1 < z < (n — d) be an orthonormal basis of [9i6(x,^)] , i.e.,

We can also take #i to be equal to 5. For r, t > 0 satisfying the condition ty/\ + r2 <
, let y(r,t) be a minimizer of the function

in the compact set KT defined by

KT = {y € Rn : (y, «i) = 0Vt = l ( n - d), |y| < r}.



We claim that for any r > 0 there is r > 0 (depending on r) such that for t < r any
minimizer y(r,t) satisfies the condition |y(r,£)| < r. Indeed, if the claim were not
true it would be possible to find r > 0 and a sequence of minimizers yh = y(r,th) €
Kr n dBr corresponding to an infinitesimal sequence th- Passing to a subsequence,
we may assume that y^ converges to y € Kr n dBr. Since yh is a minimizer, we
have

Hence,
u{x + th(Oi+Vh))-u{x) _ u(x + th91)-u{x) <

Recalling that

we obtain

(2.2)

On the other hand, since the. map (-,0i) is constant on du(x,0\), we have that
du/ddi(x) = (p,0i). Also, since p € Int(du(0)),

du
r (x) > (p + €?/, 0i + v) = (p, 0i) + (Pi v) + cr

for |e| sufficiently small. We thus obtain a contradiction with (2.2), and the claim
is proved.

Now, let r > 0 and let r(r) > 0 be given by the claim. Returning to the
definition of y(r, £), by the nonsmooth Lagrange multiplier rule (see for instance [6],
6.1.1) we conclude that for any t €]0,r(r)[ we can find Aj(r,i) 6 R satisfying

0 e t{du(x + i{9i + y{r,t))) - p } -

or, equivalently,

(2.3)
t = i

Let (rh) C]0,+oo[ and th €]0,r(r/l)[ be two sequences converging to 0. By taking
scalar products in (2.3) with 6i it is easy to see that \\i{rh,th)\/th is not greater
than 2 [u] L. . Hence, by passing to a subsequence if necessary, we may assume that
*i(rh,th)/th converges to A* as h -+ +oo for i = 1,... , (n - d).



Then, by letting h —» +00 in (2.3) we get

n-d

as \y{rh,th)\ < rh. Moreover,

On the other hand, since the vectors 0* are orthogonal to du(x,6)y all A* are
equal to 0. Thus, p € 5*u(x,0i) and the proof of the theorem is complete. |

THEOREM 2.2. Let x € ft,0 € &Bi, and an integer m € [l,n] be given. Then,

(2.4) Jm(V*Tz(x,0)) # du(x,0) =» 0 € Tan(Em(tz),x).

Moreover, <?tz(x,0) = co(V*tz(x,0)).

REMARK 2.1. In particular, if V*u(x,0) ^ du(x,0), then 0 is a direction of
propagation of the singularity at x. Moreover, (2.4) provides a lower bound on the
degree of the singularity near x. Indeed, in view of definition 1.1, (2.4) implies that
0 € T(Em(u) ,x) , where m = m(V*u(x,0)). Hence, there are singular points of
degree m near x, along the direction 0.

Proof of Theorem 2.2. Let p G du{x,6) \ Jm(V,tz(x,0)). We argue by contra-
diction. So, suppose that 0 ^ T(Em(tt),x). By Theorem 2.1, there are a sequence

C ft \ {x}, and vectors ph such that p^ € ^ ( x / J and

X !•» -""• X

lim ph = p, lim Xh = x, lim -j r = 0.
/ i-*+oo /i—•+00 /i—>+c» Ix^ — X|

By our assumption, for h large enough x^ does not belong to Sm(u). Hence, the
dimension of ^ ( x ^ ) does not exceed m — 1. By Theorem 1.1(3), there are vectors
Pi,h € V<ti6(x/l) and non negative real numbers Â h such that

(2.5) ph = ^

By passing to a subsequence, we may assume that for any i the m-tuples
converge as h —• +00 to A* and pi,h converge to p» as h —• +cx). Since p^ G ^^^
a diagonal argument shows that p» € V»u(x, 0). Now, let /i —* +00 in (2.5) to obtain

i=l t=l

Hence, p € Jm(V«tt(x, ̂ )) and this contradiction proves (2.4).

9



Finally, a similar argument (with m = n+1) shows that each vector p € du(x, 6)
is the convex combination of at most (n + 1) points of V*tx(x, 0). |

Note that (2.4) implies that x is only a cluster point of Em(u). However, we
will show that, under suitable assumptions, there is a whole continuum of singular
points near x, whose size can be estimated from below.

Let 5 be any plane in Rn passing through the origin, and let ns be the orthog-
onal projection on 5. For any 7 > 0 we denote by Cy(S) the cone

Cy(S) = {xeRn: |irs(*)| < I

We note that C7(5) D 5X and Cy(S) approaches 5X as 7 -» 0+.

THEOREM 2 . 3 . Letx € S k ( u ) with l<k< n - 1 b e g i v e n . Setm = m ( V * t i ( * ) J -
Tien,

(2.6) T(5T»,z) D [^(x)]*1.

In addition, we have

(2.7, Ihninf « -* (*• (« ) n B,M 0

for any 7 > 0, wiere 5 is t ie k-plane parallel to du(x) and containing 0.

Proof Observe that c?i/(z,0) equals du(x) and V>u(x,5) C V*?x(x) for any 0 €
. Hence, (2.6) follows from the previous theorem.

In order to simplify our proof of (2.7), we assume that x = 0. Since Em(u) = Q
if m = 0, we may also assume that m > 0. Let us denote by S-1 the unit sphere in

Let us pick a vector p in the set du(0) \ /m(V*u(0)), which is not empty. For
any 2 6 S 1 and any r, t > 0 we denote by y(r,t,z) a minimizer of the function
u(tz + ty) —t(p,y) in the set

Kr={yeS:\y\<r}.

We claim that for every r > 0 there is r(r) > 0 such that for any t €]0, r(r)[ and
any z G Sx any minimizer y(r,t,z) belongs to the (essential) interior of Kr. This
claim can be proved as in Theorem 2.1. Indeed, suppose that the claim is not true.
Then, there exist r > 0 and a sequence of minimizers y^ = j/(r, t^, zh) e KrD dBr

corresponding to a sequence th —> 0. Passing to a subsequence, we may assume that
yh converges to y € Kr n dBr and ZH converges to z € S x . Since yh is a minimizer,
we infer

u{thzh + 1 / ^ ) - ^(p, j/fc) < u(thzh).

Hence,
( ) tt(0) u{thzh) - u(0)

< {p,yh).

10



Recalling that

u{thzh + thyh) - u(thz + thy)

and

we obtain

(2.8)

u(thzh) - u{thz)

th

du

On the other hand, since the map (•, z) is constant on e)u(O), we have that

du
Tz{

Also, since p € Int(chz(0)),

du
d(z

(0) > (p y) = Ov

for |e| sufficiently small. We thus obtain a contradiction with (2.8), and the claim
is proved.

Next, we claim that there is 6 > 0 such that if r < 6 and t < inf {r(r), 5}, then
for any z € S-1, any minimizer 2/(r,t,z) satisfies the condition

Indeed, let us assume that the claim is not true. Then, by the variational argu-
ment used in the proof of Theorem 2.1, we construct a sequence of minimizers
yh = y(rhith,Zh) € Krh corresponding to sequences r&, th —• 0 and real constants
A*,i,... ,*hyn-k such that

n-fc
(2.9)

(2.10)

and

t = l

lim = 2 6 S 1 , lim A / l i = A i e R Vi = 1 , . . . An - k).

Passing to the limit as h —* +oo in (2.9) we get

n-fc

11



Hence A* = 0 for any i = 1 , . . . , (n - fc) and ph converges to p as h -> +00.
Moreover, by (2.10) and Theorem 1.1(3) each vector ph belongs to the convex hull
of at most m vectors of V+u(xh)- Repeating the argument of Theorem 2.2 we
obtain a set A C V*u(0) consisting of at most m points, such that p € co(A).
Hence, p € /m(V*u(0)), and this contradiction proves the second claim.

Finally, let 6 > 0 be given by the second claim. For any fixed 7 > 0 let
r <inf{7,£} . Then,

provided p < y/1 + r2 inf{r(r), 6}. Since 7Ts± does not increase the Hausdorff mea-
sure (see for instance [17], Proposition 3.5), by the inclusion

TT5X (Em(tx) n C7(5) n Bp) D {ze S± : \z\

we infer

By letting r —* 0, we complete the proof. |

REMARK 2.2. By (1.1) and Theorem 1.1(5) we infer that Tin"k(Si(u)) = 0 for
any i > k + 1. Hence, (2.7) can be written in the equivalent form: for any x € Sk(u)

f «-M^(-)nB,(x)n[x + c7(5)])

where m = m(V1|lix(x)). In particular, if 7^(V*u(x)) 7^ du(x) (i.e., m = A:), we get

and coupling this estimate with Theorem 1.1(5) we conclude that H—dim(Sk(u)) =
(n-fc).

3. HAMILTON-JACOBI EQUATIONS

In this section we will apply the general results on the singularities of semi-
convex functions to solutions of the Hamilton-Jacobi-Bellman equation

(3.1)

where Q C R^ is an open domain. We will assume that

(3.2) F : f l x R x R^ -* R is continuous;

12



(3.3) p *-+ F(t/, s,p) is convex in KN V(j/, s) € ft x R;

(3.4) n is semi-concave (i.e. — u is semi-convex);

(3.5) (3.1) holds at any differentiability point of u.

We note that, for a semi-concave function u, the interesting semidifferential is
the so-called superdifFerential, defined as

d+u(y) = {p € R^ : limsup : j — ^ < 0}.
*-*y \z ~ y\

Equivalently, d+u(y) = —d[-u](y). Hence, d+u(y) ^ 0 for any y € Q and the
following implication holds

(3.6) du(y) # 0 =* u is differentiate at j/.

Accordingly, the definitions 1.2 and 2.2 will be modified as follows for a semi-concave
function u:

Sk(u) = {x 6 n : dim(d+u{x)) = fc},
n

E*(u) = (J ^(u) = {x6f i : dim(0+u(x)) > fc},

REMARK 3.1. From (3.2)-(3.5) it follows that u is a viscosity solution in the
sense of [8] (see also [7]). Indeed, (3.2) and (3.5) yield

(3.7) F ( » , u ( y ) , p ) = 0 Vp€V.u(j/)

for any y 6 f i , and so (3.3) implies that

< 0 Vp € #+u(j/).

The converse inequality on the elements of du(y) trivially follows by (3.6).

REMARK 3.2. Semi-concavity is a natural property to expect on viscosity solu-
tions of Hamilton-Jacobi-Bellman equations. Indeed, several existence and unique-
ness results were first obtained in classes of semi-concave functions (see [15]). More
recently, H-J equations have been studied in the framework of viscosity solutions
(see [8] and [7]). Under suitable regularity assumptions on F and on the (Dirichlet)
boundary data, viscosity solutions to (3.1) are known to be semi-concave (see [16]
and [12]). Similar results are also available for viscosity solution of second order
H-J equations, see [13]; hence the result of §2 apply to these equations as well. For
the sake of simplicity we confine our statements to first order equations.

For any compact convex set C C R^ we denote by Ext(C) the set of extreme
points of C. We say that a set A C R^ is extremal if no p 6 A can be written as a
convex combination of other points of A, i.e.

p £ co(A \ {p}) Vp € A.

Our terminology is motivated by the following result.
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LEMMA 3.1. Any compact extremal set A coincides with Ext(co(A)).

Proof. Let C = co(A), and let p € Ext(C). By Caratheodory's Theorem, we
can represent p as a convex combination of (N.+ 1) points pi € A:

N+l

P = JZ A*P*' Ai > 0.

Since p is an extreme point of C, p = pi for any t € { 1 , . . . ,7^ + 1}, hence p 6 A

Conversely, let p e A. By the Krein-Milman theorem (see for instance [18],
page 167) we can represent p as a convex combination of at most (N+l) points
Pi e E x t ( C ) :

N+l N+l
Pt, A< > o,

In turn, each p* can be represented as a convex combination of at most (N + 1 )
points pij € A:

N+l N+l

so that
N+l

P= 22 A»A^p^.
t,i=i

Since -4 is extremal, p = ptj for any t, j, hence p = p^ € Ext(C). |

The main result of this section is the following.

THEOREM 3.2. Assume (3.2), (3.3), (3.4), (3.5), and let x G Sk(u) be a singular
point. Let us further assume that

(3.8) {p€RN : F(y,u(y),p) = 0} is extremal.

Then

(1) V+u(y) = Ext(d*u(y)), and if k < N the singularity propagates. Moreover
m = m(V*u(y)) > 1, and

,3.9)

(2) Let 0 € &Bi and iet us assume tiat 5+M(J/, 6) is not a singleton. Then,
V*u(y,6) coincides with Ext(d+u(y,6)), m = m(V*u(y,6)) > 1 and 6 €

Proof. (1) By (3.7) and (3.8), V*u(y) satisfies the hypotheses of Lemma 3.1, so
that V*u(y) = Ext(d+u(y)). To show (3.9), we need only to apply Theorem 2.3 to
—u.

(2) As in (1), Lemma 3.1 yields V+u(y,d) = Ext(d+u(y,0)). The other state-
ments follow from Theorem 2.2 and Remark 2.1. |
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REMARK 3.3. The extremality condition (3.8) cannot be dropped. In fact, let
N = 2 and u(yuy2) = -y/yj + y*<> as in example 2.1. Then, u is concave in R2 ,
and has an isolated singularity at (0,0). Moreover, it is a viscosity solution of the
equation

REMARK 3.4. The condition (3.8) is trivially satisfied if

p >-> F(y, s,p) is strictly convex in R^ V(y, s) G ft x R.

Theorem 3.2 also applies to nonstationary H-J equations with strictly convex Hamil-
tonian. Infact, let N = n +1, y = (£,x) with t G R and x G Rn , and p = (pt,px) €
R x Rn. Let

be a continuous function, strictly convex in px. Then,

satisfies (3.2) and (3.3), and any semi-convave function u : ft —> R satisfying (3.5)
is a viscosity solution of the equation

(3.10) ut

Finally, for any y € ft and any s € R

Z{y,s) = {{pupx) G R x Rn :p< + H(y,s,px) = 0}

is extremal, because of the strict convexity of H. Indeed, let

with pi e Z(y, 5), Aj > 0 and S ^ 1 A* = 1* ^d *et us s h ° w that p» = p for any i.
Since

pt + H(y,s,px) < 53(Atp i t + A^(j/,5,pix)J =0

unle s s px = piX for a n y i G { 1 , . . . , TV + 1 } , we h a v e

pa = -H{y,s,pix) = -H(y,s,px) = pt Vi G {1 , . . . ,JV + 1}

and, in particular, p = Pi for any i.

More generally, the same argument of Theorem 3.2 shows that singularities
propagate in the direction 6 if d~*~u(y, 6) is not a singleton and if the restriction of

iu(y)im) to #+w(j/)0) is strictly convex, so that m(V*u(y,0)) > 1.

REMARK 3.5. In Theorem 3.2(1) it is necessary to assume that x is not a
singularity of degree N. In fact, u(y) = — \y\ is a solution of the eikonal equation
\Vu(y)\2 -1 = 0, and the singularity in the origin does not propagate.
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However, propagation of singularities of any degree has been proved for nonsta-
tionary H-J equations with strictly convex Hamiltonian (see [4]). Due to the special
structure of the equation it has been shown in [5] that for any singularity y there is
at least a direction 6 € dBi such that du(y, 6) is not a singleton. Note that, once
the existence of such a direction has been proved, the propagation of the singularity
would follow by Theorem 3.2(2).

In [5] it is also shown that viscosity solutions of (3.10) with strictly convex
H are such that any p € V*tt(y) is exposed, i.e., there exists 8 € dB\ such that
d+u(y,0) = {p}. This condition is stronger than extremality.

REMARK 3.6. We note that the lower bound in Theorem 3.2 on the maximum
degree of the singularity near y depends only on the geometry of d+u(y). To
illustrate this phenomenon, we now discuss three examples. In the first example
the subdifFerential d+u(y) is a triangle in R3 and the singularity propagates in
singularities of degree two, as implied by Theorem 3.2.

In the second example we show that a singularity y of degree k may well prop-
agate in singularities of degree m < k when m{V*u(y)) < k.

Finally, the third example shows that Theorem 3.2 provides only a sufficient
condition for the propagation of singularities of high degree.

EXAMPLE 3.1. Let fi = R3 and let

Then, u is a viscosity solution of the equation — Ut + H(Vu) = 0, where

H(px,pz) = (p« -Pz)
2 +2{Px + pz - I) 2 - 1

is strictly convex. We note that S2(u) is equal to the line spanned by (1,1,1) and

In this case m(V*u(0,0,0)) = 2. We note that Sl(u) consists of three halfplanes
intersecting each other in the above singular line, with directions orthogonal to
the triangle generated by V*u(0,0,0). This example describes the typical situation
analyzed in Theorem 3.2.

EXAMPLE 3.2. Let u : R3 -» R be the function

The equality

Va2 + /32 = sup{aa + bp : a > 0, b > 0, a2 + b2 < l} a, /3 > 0

implies that y/(p2 + i>2 is a convex function whenever cp and V are non negative
convex functions. In particular, u is a concave function. The origin belongs to
S2{u) and _

9+u(0,0,0) = { 0 } x B i , m{{0) x dBi) = I.
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The singularity in the origin propagates in singularities of degree 1. In fact, the
origin is the only point in S2(u), Sl(u) = {(t,z,0) : t ^ 0} and

{ S ^ W *1} v(t,,,o) € s»W.

Finally, we note that

so that ti is a solution of the equation (3.1) with

F(t,x,z,pt,px,pz) = -Pt + |P l |
2 + |p2|2 -

The function F satisfies (3.2), (3.3) and the extremality condition (3.8).

EXAMPLE 3.3. Let 9, = R3 , y = (t,x) with t € R and x € R2. The function

t/2 - \x\ - 1 if |x| + 2 > t;

Ixl2

L 2(2 -t)
if Ixl + 2 < t

is a viscosity solution of the equation —ut + |Vu|2/2 = 0. We note that (2,0) €
53(u), and

V.«(2,0) = {(Pt,Px) € R x R2 : |P l | < 1, pt = &£}.

Moreover, S2(u) is the halfline (t,0) with t < 2. The unit vector 0 = (—1,0) belongs
to T(52(u),(2,0)) even though m(V*u((2,O),0)) = 1.
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