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Abstract

We present a formal asymptotic analysis which suggests a model for three-phase
boundary motion as a singular limit of a vector-valued Ginzburg-Landau equation.
We prove short-time existence and uniqueness of solutions for this model, that is, for
a system of three-phase boundaries undergoing curvature motion with assigned angle
conditions at the meeting point. Such models pertain to grain boundary motion in
alloys. The method we use, based on linearization about the initial conditions, applies
to a wide class of parabolic systems. We illustrate this further by its application to an
eutectic solidification problem.
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1 Introduction

In this paper, we study some models for three-phase boundary motion. We show formally

how a geometrical model of interface motion arises as the singular limit of a vector-valued

reaction-diffusion equation. Then, we prove local existence and uniqueness of solutions for

the limiting problem using a widely applicable method based on linearization about the

initial configuration.

First we study formally the asymptotic behavior as e —> 0 of the vector-valued Ginzburg-

Landau problem
2 V u W ( u ) (1)

—u|an,= 0 or u(x,t)\dn = h(x) (2)

t£(x,0) = s(x), (3)

where « : f i x R + - » Rm , with Q C Rn and n > 2, m > 2. The potential W : Rm -> R is non

negative and its minimum value zero is attained at three vectors a,b and c, so as to model

a three-phase physical system or three grain boundaries meeting along n — 2 dimensional

surfaces. The parameter e represents the thickness of the transition layer, and is assumed

to be small.

The study of (l)-(3) is partially motivated by the work of Allen and Cahn [AC] on

the motion of curved antiphase boundaries. Consideration of the gradient flow associated

to a free energy functional, modified so as to account for thermodynamic properties of

non-uniform systems ([CH],[AC]), lead them to the study of scalar Ginzburg-Landau type

diffusion equations ([GSS]) of the form of (1),

ut = MAu - aW'(u), (4)

where W is an even function with exactly two local minima. In equation (4), a is a positive

kinetic coefficient and the diffusion coefficient satisfies M = 2aK where K is the gradient

energy coefficient and is proportional to the square of the antiphase boundary thickness,

which is assumed to be much smaller than the boundary's curvature. Allen and Cahn used (4)

to propose that the correct law of motion for antiphase boundaries is mean curvature motion

and, in particular, that it is independent of the surface tension of the interface. (This was

later proved rigorously using partial differential equations techniques -[BK], [DeMS], [ESS];
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more recently Bonaventura [Bo] showed that the mean curvature motion is the scaling limit

of an interacting spin system with Glauber-Kawasaki dynamics.)

For the system (l)-(3) our formal asymptotic analysis suggests that u = ue separates

$7 into several regions where ue « a, b or c respectively, and each interface separating these

regions moves in the slow time scale a = e2t with normal velocity equal (as e —• 0) to the sum

of its principal curvatures. To obtain this result we follow the general method of [RSK] and

[ORS]. In the process of developing the formal analysis, one needs an explicit representation

of standing waves connecting the local minima of W. It turns out that these standing waves

come out as a byproduct of works by Sternberg [S] on F-convergence for the energy associated

to (1) in which W has two zeroes. In fact, one can obtain an explicit representation of the

standing waves in terms of geodesies for an appropriate metric, weighted by the potential

W (see Lemma 1). There are several results on existence of traveling wraves for gradient

systems ([R], [Te]) but an added difficulty here is that the wells of W have the same height

(and hence the speed is zero). To our knowledge the existence of a standing wave for (1) has

not been proven elsewhere.

We then specialize to the case n = 2 and derive, besides the motion by curvature for the

interfaces, the formula

sin(fl2) = sin(fl3)

which prescribes the angles between three interfaces at a "triple junction" in terms of the

minimum energies $7/3 it takes to change from phase 7 to phase /?, with 7,/? = a, 6 or c

(see Lemma 1 and Figure 1). Formula (5) is well-known by material scientists working in

the theory of phase transitions (e.g. in grain/phase boundary motion [Mul], [Mu2], [Sm], or

in simple fluid phases in equilibrium [W], [C]). Note that, in the particular case where W

is symmetric, this formula suggests that the angles between the interfaces must be 120°, as

is expected for grain boundaries in an isotropic material. The analysis is further supported

by the results of Baldo ([Ba]) on the F-convergence problem for the energy associated to

(1), which state that this energy converges to a weighted perimeter energy functional whose

gradient flow is mean curvature motion.

In the second part of this paper, we present a simple and general method to obtain

short-time existence (and uniqueness) of solutions for the three-phase boundary motion

model derived in our formal analysis when n = 2. More precisely, we prove local existence

of smooth solutions for the problem of three curves lying in a domain Q C R2, each moving



by curvature, which meet at a point with prescribed angle conditions. The other endpoint
of each curve meets the boundary 5f2, also with a prescribed angle. In particular, this
answers a question posed by Mullins about the well-posedness of this problem ([Mul]). The
method we use is based upon linearizing the problem about the initial data and verifying that
the linearized boundary conditions satisfy the "complementary condition" for the resulting
parabolic system (see e.g. [So]). This condition assures the existence of a solution to the
linearized problem which is then used to establish local existence for the full problem via a
fixed point argument. This method easily extends to the case of networks in which there are
many "triple junctions", and to situations where the physical system exhibits any number of
phases. It also applies to some cases of anisotropic mean curvature motion when the problem
is a non-degenerate second order parabolic problem. To show further the wide applicability
of the method, we sketch the proof of local existence of solutions for another problem in the
theory of phase transitions, namely eutectic solidification ([K],[W]). We study a simplified
model for lamellar eutectics. In this model, two curves (the solid-liquid interfaces) move
normally with a speed whose dominant contribution is proportional to their curvature. As
the two curves evolve, the locus of their meeting point traces out a third curve (the solid-solid
interface) that should maintain a fixed angle with the solid-liquid interfaces at the meeting
point (see Figure 4).

Several discrete models have been suggested to simulate the evolution of grain growth.
Among these we can cite the Potts model (see [GAG] and references therein), vertex and
boundary dynamics models (see e.g. [CN] and [KNN]), mean-field theories ([FSU]) and
motion by crystalline curvature ([T]). (See also [CHT] for a survey of several approaches to
defining and computing geometric motion of interfaces.) In this regard, we believe that the
model we study in this paper, which is certainly amenable to discretizations, is very likely
to yield valuable numerical results. Research in this direction will be left for further work.

Acknowledgments. We wish to thank R. Kohn for suggesting the problem studied in
this paper and for several helpful discussions. We also thank R. Pego for his useful comments.
This work was partially supported by the Army Research Office and the National Science
Foundation through the Center for Nonlinear Analysis.



2 Formal Analysis

In this section, we use a multiple time scales asymptotic analysis to obtain formally the

asymptotic behavior of the solution u = u£ of (l)-(3) as e —* 0. Specifically, we show that

ue divides Q into regions where ue % a, b or c and that the interfaces dividing these regions

evolve normally with speed equal to their mean curvature. In the two-dimensional case, we

also derive a formula for the angles between the interfaces at their meeting point in terms of

a metric involving the potential W and the equilibria a, b and c.

We shall follow closely two papers in which the scalar version of (l)-(3) is studied: the

first one is the paper of Rubinstein - Sternberg - Keller [RSK] where the boundary conditions

are of Neumann type, and the second is the paper of Owen - Rubinstein - Sternberg [ORS]

where the Dirichlet problem is studied. In [RSK] it is formally shown that the interfaces

meet the boundary of Q with a 90° angle, while the results in [ORS] suggest that the contact

angle depends on the boundary data h and on the potential W. The essential difference

between our formal analysis and that of [RSK] and [ORS] is the behavior of ue near triple

junctions. Hence we shall modify ideas from [ORS] to study the behavior near triple juntions

and mostly quote results of [RSK] and [ORS] for the study of ue in the interior of Q and

near the boundary

First we seek the "outer expansion" in the original time scale. For this, we write ue in

the form of

ue = u°o
ui(x, t) + e2u^\x, t) + e4u°2

ut(x, t) + ... (e « 1). (6)

Substituting (6) in (1) and (3), we obtain

(7)

u™\x, 0) = g{x). (8)

Since W is a non-negative potential with minima at a, b and c, it follows from (7) that

UQUt(x,t) tends to a, 6 or c as t —> oo. For simplicity, we shall assume that lim^o© u™*

divides Q into 3 regions, and we let Fi divide phase a and phase 6, F2 divide phase b and

phase c and finally we let F3 divide phase c and phase a (see Figure 1). Hence interfaces



generate in this time scale. Subsequently, the diffusion term in (1) becomes large and we

anticipate that these interfaces will evolve. Therefore a better approximation for ue near the

transition layers is obtained by expanding it in a slower time scale. Moreover, we expect

a different asymptotic behavior near dQ. and near the triple junction. Therefore we must

study the solution ue separately in three regions: near the interior transition layers, where

the interfaces meet dQ and, finally, around the triple junction.

First, we study the interior transition layer through F t. Following [RSK], we introduce

the slow time scale a = e2 t and rescaled coordinates

6i = e-ldi{x, a), (9)

where dt(x, a) is the signed distance from x to the interface IV Expanding in these new

variables,

ue = u^{6ha) + e aft*, o) + e2 v&{6h a) + ... (10)

Next we substitute (10) in (1) with i = 1 and, by carrying the calculation up to second

order, it follows ([RSK]):

2 ( < ) M l = V u W ' X < ) (11)

UQI —* a as 6\ —> — oo, u^ —• b as 6\ —> oc. (12)

«-d! = kdl , (13)
OO

where k^ is the mean curvature of the level sets of d\. Thus the interface Fi evolves in the

slow time scale a according to its mean curvature and the profile of the transition layer is a

standing wave given by the solution to (11) and (12). A similar calculation can be carried out

for the other two interfaces F2 and F3 with the same conclusion except that (12) is replaced

by (see Figure 1)
i*Q2 —• b a s <52 —> — o c , tiQ2 —* c a s 62 —* o c ,

t*03 —• c a s 63 —* —oc , UQ3 —* a a s 63 —> 0 0 .

Here we make the observation that standing wave solutions arise as a byproduct of work

by Sternberg [S] on F-convergence for the energy associated to (1) in the case that W vanishes

on 2 vectors. It turns out that the geodesies connecting the local minima of W obtained

using a weighted "distance" functional yield an exact representation for the standing waves.



Lemma 1 Let
mf 2fJW{p{t))\p'{t)\dt, (14)

and let pab(t) be a geodesic connecting a to 6, i.e. a path p which achieves the infimum in

(14)' Then there exists a smooth increasing function (3 : (—00,0c) —> ( — 1,1) such that the

curve 7ab({)i) = Pab{/3(t>i)) is a solution to (11)-(12). In particular, given a unit vector e,

ue(x,t) = 7ab (JYJ is a solution to (1) connecting a to b. The function 7^ satisfies

and

= 2 r

This Lemma follows easily from the proof of the Lemma in [S].

Regarding the behavior of ue near dfl, we just recall that in [RSK] it is shown that if

the boundary conditions are of Neumann type, Ft meets dQ at a 90° angle. In the case of

Dirichlet boundary conditions, ue(x, t) = h(x) on 3Q, results of [ORS] show that F, must

meet dQ at a prescribed (non-zero) angle which depends only on h and on the potential W.

Finally, we study the behavior of u€ near the triple junction of the interfaces. To simplify

the argument, we assume from now on that n = 2, i.e. u£(-,t) : Q C R2 —> Rm . Recalling

that the interior interfaces evolve in the slow time scale a = e2t, we let m(a) and 0,-, i = 1,2,

denote the meeting point and the angles between the tangent planes to F, and to F t+i at

m{a). Then the angle between Fi and F3 satisfies 03 = 2n - 9\ — 62 (see Figure 1). In order

to determine the angles between the interfaces at m(a), we introduce the following systems

of stretched coordinates around m(a)

x — m(a)

v, = — — ,
with r)i = (CnC) where Ct represents coordinates along the tangent plane to I\ at m(a)

and ^t is perpendicular to Q (see Figure 2). Next, let T be an isosceles triangle with base

perpendicular to Fi as in Figure 2. Since the interior interfaces evolve in the slow time scale

a, we expand ue near 771 = 0 in the form



Using (1), UQ1 satisfies
t4" = VuW''K"). (15)

Furthermore, we have the following matching conditions between U™ and u^ ([VD]J:

lim < ( 6 , C i ) = < ( 6 ) , (16)

X n (6 ,Ci) = < ( ^ ) , (17)

where lim* denotes the limit as |£i| and |&| —> oo along the lines which are at some distance
& from the interface I\ (see Figure 3). We note that from (15), (16) and (17), it follows that
it™ is in fact independent of a. Since the coordinates ({,-,(,•) satisfy

£ = - sin(7t)fi - cos(7t)Ci and Q = cos(7t-)£i - sin(7,-)Ci

wrhere 0 < 7t < 2n is the angle between Ft and the £i-axis, the matching conditions (16)—(17)
can be written as

for £,• fixed. Following ideas from [ORS], we now multiply (15) by d^u™ and we integrate
over T :

I JT dix «j" • V u W / « ) drn = J JT 2dix «»• • dl < + 2d^ u™ • dl <" dm.

Since this can be written as

/ JT db [ ^ « ) + ft, «of -1««. < I2! dm = JJT 2dCi ( ^ tif • aCl < ) dm,

using the divergence theorem it follows that

2] / j (19)/ [ ( j , ) | C l 4 f | { 1 < | ] , / { 1 j , Cl

where 1/ = (^1, ̂ 2) is the outward unit normal vector to dT.

Next, we parametrize these line integrals in the (&, (,) coordinates. The last two sum-
mands of the integrand in the left hand side of (19) become



while the integrand in the right hand side of (19) satisfies

- 0 € l 4
B • a C l < = |dcXn |2cos(7<)sin(7l) + cos(27l-)0Cl.uJr • d^ - | ^ X " |

Assuming that 0 < 6i < 7r, i = 1,2,3, and choosing counterclockwise orientation along dT,

we can write rf^ = ds, d£2 = sin(72 + 0)ds and df3 = sin(73 — 0)ds, where 6 is the angle at

the base of T (see Figure 2). Now using this change of variables, the matching conditions

(18) and the fact that lim^-i^oo I^.WQ1! = 0 for finite energy solutions (this also follows from

the matching conditions since u1^ is independent of £•), we take the limit as the length R of

the base of T tends to oo. Since we want to use the matching conditions (18), we need to

consider two domains of integration within each line integral. The first domain lies within

a fixed distance a to Ft while the second consists of those points which are at least a-away

from F t. In taking the limit as R -+ oc and then as a —• oo, the line integrals which are

away from Ft tend to zero: indeed the integrands tend to zero since ntf —• UQUt wrhich, in

this time scale, is either a, b or c. Therefore taking the limit in this order, we obtain on the

left hand side of (19)

Urn lim Jlim
a

where we used that v\ d£\ = 0 and the fact that in the R limit Q » 1 so that we can use

the matching condition (18). Similarly, we obtain for the right hand side of (19)

lim lim — / 2 & u1? • dCl WJ," */2ds =

—2 / |<9£2UQ9|2cos(72)sin(72)-—— rf^2
y~oo "" sin(72 + ^)

- 2 / 1^3^03l2cos(73)sin(73) . C ° S
 m ^ 3 ,



where this time the integral along d£\ vanishes in the limit since 71 = 270°.

In view of (19), it follows

3|
2 cos(273) + W{u'0'3)] siD

S
(^_' e)<& (20)

- -2 L &•*
- 2 / " |9 ( ,<3 | ; cost-r,) sin(73)

^ Si — C7 j

Next we obtain the angle conditions at the meeting point. Indeed applying Lemma 1 to

(20) yields

2 / , sin(0) _6c/ N 2/
cos ( 7 2 ) 5Sh7T?)* (c)"cos (

which after simplification, gives

cos(72) $6c(c) = - cos(73) $ca(a).

Further, since 72 + f = ^1 and 73 - 72 = 62, it follows that 73 = Y ~ ^3 an(* we conclude

sin(^)$6c(c) = sin(e3)$ca(o). (21)

If we rotate T so that its base is around F2, we can similarly derive the equation

() » ) $a6(6). (22)



Therefore (21) and (22) give the angle conditions between the three interfaces. We note

that (21) and (22) are the well-known formulae for the angles between three interfaces in

grain/phase boundary motion ([Mul], [Mu2], [Sm]), or in simple fluid phases in equilibrium

([W], [C]), where $a6(6) represents surface tension of the interface between phase a and b.

Also note that if W is symmetric $ca(a) = $a6(6) = ^ ( c ) and (21)-(22) imply that the

interfaces must meet at an angle of 120°.

The case in which one of the angles 0, > 7r while the others are positive, cannot occur:

indeed one can easily check that (21) and (22) would continue to hold, which is impossible

since $^ (7 ) > 0 for /? and 7 equal to either a, b or c. On the other hand, if one of the angles

vanishes the limit problem becomes ill-posed (see Remark 2).

In conclusion, it follows from (13) that the interfaces F t, i = 1,2,3, evolve normally

according to their mean curvature and the angles they form at triple junctions are given

by (21) and (22). In the two dimensional case, parametrizing I\, i = 1,2,3, in arc-length

coordinates, we have shown formally that the solution u€ of (l)-(3) asymptotically yields

the following three-phase boundary problem for the curves F t:

Tit = Tiss in Dt = { ( M ) / 0 < s < L{(t)} (i = 1,2,3)

Tls = cos(#i) at s = 0

T2t ^s =cos(02) at 5 = 0 (23)
*l |r3 , l

Ft- JL d$l at s = Lift), in the case of Neumann boundary conditions,

Z(Ft-, dft) = a t at 5 = L((t), in the case of Dirichlet type boundary conditions,

where 0 < 6{ < n and a, ^ 0.

3 Short-time existence

In this section, we present a local existence result for the three-phase boundary problem (23)

derived in the previous section. While arclength parametrization is geometrically convenient,
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it will be easier, from our perspective, to write the equations in coordinates in which the spa-

tial and time variables are independent. In order to find the simplest formulation, let us first

suppose that the curves are given by the graphs of functions v>, and let (//(<), t^'(//(*), t)) and

(Zj(t), '̂(JjC*)**)) be, respectively, the meeting point of the three curves and the intersection

point of each curve with dQ. Then (23) can be written in the form

< y < f(t) ; = 2,3

( 2 4 )

—-jj-r = cos(02) at y = fi(t)

= Qi a t y = /](<)

z ( ( - l , - v J ) , a n ) = Q i aty = /i(O i = 2,3

where

Local existence and uniqueness for this "free boundary problem" can be established directly

via a fixed point argument (in fact the proof becomes easier if one considers the system of

equations satisfied by wJf = v*y). However a more straightforward formulation of the problem

(23) which does not involve free boundaries can be derived. In fact, if the position vector for

Fi is given by (ui(x,t),U2(x,t)) (x € [0,1]) and if u\ is invertible, then letting y = Ui(x,t)

and vl(y,t) = u2(uil(y,t),t), one can easily show from (24) that p1 = (1*1,1*2) satisfies

Pit • Ari = j ^ p • M = * i , (25)

11



where N\ is the unit normal to Fi and ki is its curvature. Since (23) does not prescribe the
tangential velocity, a choice must be made, and motivated by (25) it is natural to consider
the system

Pj(x,0) = p<>(x)

Py(O,t) = P2(0,t) = P3(0,t)

II*£**= costfi) atz = 0 (26)
|Plx| \P2x\

P2x P3x

\P2x\ |P3x|
at x = 0

b{pj) = 0 at x = 1,

where

is tangent to dfl at pj(l,t). If we let

Pi = {uuu2), P2 = (u3,u4) andp3 = (u5,u6), (27)

then (26) is equivalent to the following system of parabolic equations for the Uj's:

"j T^^jxx 3 = = *•')*'

\P\x\

12



Uj(O,t) = uj+2(O,t) = ui+4(0,t) j = 1,2 (28)

«1IW3I + «2x«4x ~ COs(0i)|pix||p2x| = 0 at X = 0

"3r«5x + U4x«6x ~ COS(02)|p2l||p3x| = 0 at X = 0

-ulxdXib(Pi) + u2xdXlb{Pi) - cosCaOlpLllf (pi)| = 0 at x = 1

+ u4xdXlb(p2) - cos(Q2)b2x||f (p2)\ = 0 at x = 1

- COs(o3)|p3x||f (P3)| = 0 at X = 1

( j ) a tx = l j = 1,2,3.

We shall prove the following theorem:

Theorem 1 Let u°j(x) € C2+o([0,1]) (0 < a < 1) satisfy the compatibility conditions for

(28), and assume that dQ. is C2+o. Then ifcij / 0, 0 < 0j < n and S = miuj infz |p°r(^)| > 0,
there existsT = T(|u°(z)|2+Q, |6|2+Q,6) such that (28) has a unique solution in C2+Q'1+f ([0,1]x
M).

By reparametrizing, it follows:

Corollary 1 IfTj(s,O) G C2+Q(D0) and satisfy the boundary conditions in (23), then (23)
has a unique solution in C 2 + Q I 1 + ^(Z)T) .

Remark 1 The theorem also holds if the angles 6j between the curves, and the angles Qj be-
tween the curves and the boundary dft, change in time as long as 6j(t),aj(t) €

In order to keep the presentation simpler, we choose 0! = 02 = 120° and aj = 90° in what
follows. The modifications necessary to treat the general case are simple and will be pointed
out later on. The idea of the proof of the theorem is to first linearize the system (28) about
the initial data, use the classical theory for parabolic systems (see e.g. [So]) to establish
existence for the linearized system and then obtain local existence for the full problem by
means of a fixed point argument. More precisely, if we let

Xj = {u 6 C2+Q'1+f ([0,1] x [0,T])| |ti|2+Q < M and u(x,0) = u%x)} 1 < j < 6,

we seek a fixed point of the map

13



which associates to Uj e Xj, the solution u = TZu of the linearized system:

ujt - DjUjxx = fj

uj(x,Q) = u°j(x)

where (cf. (27), (28))

and /_,- =
for j = 5,6

t? ~ tit?) E>
) f o r -? =

with the linearized boundary conditions:

£,-((),<,«) = ^ ( 0 , 0 - ^ + 2 ( 0 , 0 = 0 1 < i < 4

and

B 5 ( 0 , t, u) = [u0
3x + -u°lxr7ri ) u i x + I u °

654 U4x

B6(0,<,u) = I ttf

j = l,2,3

i = 4,5,6.

(29)

(30)

(31)

(32)

(33)

(34)

(35)

14



The functions $, \f and E are defined by

and

l,t)) + Bj{l,t,u) j = 1,2,3 (37)

(l,t,tO j = 4,5,6.

(Here and throughout, an expression with a bar above means that Uj is replaced by Uj in the

expression. Also to simplify the notation, we shall wTite C2+Q instead of C2+Q '14^([0,1] x

[0,T]), and | • |2+Q for the norm in C2+Q.)

We shall show that in fact, for a suitable constant M and small enough T, the map

1Z is contracting. The success of this approach depends solely on the uniform parabolicity

of the system (28) (for small time) and the fact that the boundary conditions (32)-(35)

are "complementary" for the equations (29) ([So, p. 11]), i.e. that the system (29)-(35) is

well-posed.

Proof of Theorem 1: First we show that there exists a solution in C2+Q for the problem

(29)-(35). This follows from the classical theory of parabolic systems. In fact, (29)-(35) has

a unique solution (u,j) satisfying

< Cs (J2 \fj\a + E K°|2+a + |*|l+a + |*|l+a + E |^ | l + Q ) , (38)

provided the boundary conditions (32)-(35) are "complementary" ([So, p. 121]).

To describe the complementary condition at the meeting point, i.e. at x = 0, let

B(0,t,dx,dt) be the matrix of boundary conditions at x = 0, i.e.

B(0,t,dx,dt)u(0,t) = (0 ,0 ,0 ,0 ,$ ,*) where u = (Uj) j = I,--- ,6.

15



Then

1
0
0
0

0

0
1
0
0

tr652

0

- 1
0
1
0

0
- 1
0
1

1x654

0
0
2

0
0

0
0
0

- 1
0

ir665 ir666

where &,_,, i = 5,6, 1 < j < 6, are the constants defined in (33)-(34). Let £(x,t,dx,dt) be the

matrix of the system (29) and let L = det£(x,t,ir,p) = Y[j(p+ DjT2), and £(x,t,ir,p) =
LC~1(x,t,iT,p). Then £ is a diagonal matrix and the element in row k is Tlj^kiP + -^j7"2)-

We note that the parabolicity condition is fulfilled since DjT2 > max sJ . 0 | 2r2 (see [So, p.

8]). The complementary condition at x = 0 is fulfilled if the rows of the matrix A(0,t, ir,p) =

B(0, t,iT,p)£(O,t,iT,p) are independent modulo the polynomial

J[(T - iy/p/Dj) when Kt(p) > 0 and \p\2 > 0 (see [So, p. 11]).

We must therefore verify that the homogeneous system of 6 equations with 6 unknowns given

by

has the unique solution (a, b, c, d, e, / ) = 0, mod Y[j(T — i^p/Dj). Explicitly, we must verify

that, mod Uj{r - iJp/Dj),

{a + eirb-ol) Y[(T- iJp/Dj) = 0,

(b

(-a + c + e irbbZ + / i

(-6 + d + eirbu + f irb&A) J](r -

j) = 0,

j) = 0,
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(-d + firb66) j) = 0,

has (a, b, c, d, e, / ) = 0 as its unique solution or, equivalently, that (a, 6, c, rf, e, / ) = 0 is the
only vector satisfying

(6 - e JP/D2bb2) = 0,

(-a + c - Jp/D3(eb53 + /663)) = 0,

b4 + fb64)) = 0,

(-d-fJp/D6b66) =

Thus, it suffices to show that

det

1 0 0

0 1 0

- 1 0 1

0 - 1 0

0 0 - 1

0 0 0

0

0

0

1

0 0

0

0

0

fp/D4be4
# 0 . (39)

17



From (39) and using that £)x = D2 = rariT

that the value of the determinant is
= D 4 = 7-^

1^2
17

x1
£>5 = D 6 = p find

In the general case of arbitrary angles 9j, it is easy to check that the condition for the system

of boundary conditions at x = 0 to be complementary for the parabolic equations (29) is

given by

(1 - cos(0!))(l - cos(02))(sin(0i + 02) + sin(0i) + sin(02)) ± 0 ,

which is satisfied if 0 < Oj < X, j = 1,2.

The complementary condition at x = 1 is easier to verify as the system decouples into

three 2 x 2 subsystems. When Qj = 90°, the matrix B( l , t , t r ,p) is given by

dXib(P°i)

0
0
0
0

0
0
0
0

0 0
0 0

dXib{p%) dX2b{pl)
-irdX2b{p\) irdXlb(p°2)

0 0
0 0

0
0
0
0

0
0
0
0

dXlb(P°z) dX2b(P°z)
b(p°3) irdXib{p°3)

Xi

so that the rows of B(l,t,iT,p)C(l,t,iT,p) are independent modulo U.jiT — i

determinant of

j) if the

0

0
0
0

0

0
0

0

0

dXlb(p°2)

y/f3dXib(P°2)

0
0

0

0

dX2b(p°2)

0
0

0
0
0
0

0
0
0
0

dX2b(P°z)

is non-zero.

18



But using that D\ = £>2, we find

,

and similarly for the determinant of the other 2 x 2 submatrices. Thus, the Neumann

boundary condition (35) is complementary. In a similar way, one can show that the bound-

ary conditions at x = 1 in (28) (with arbitrary angles ctj) are complementary as long as

(9Xl6(^),9X26(p^)) • p®x ̂  0, j = 1,2,3. This means that the complementary condition is

satisfied at x = 1 if Qj 7̂  0, i.e. as long as the curves are not tangent to dVt. Thus given

Uj € -Yj, there exists a unique solution to (29)-(35) satisfying (38).

Next, using (38), we show that the operator 11 maps Ilj=i Xj into FIj=i -Xj. For this we

first find a bound on the CQ norm of / 1 ; similar bounds hold for | / j | Q , 2 < j < 6. Using

the convention that the C2+Q norm of a vector is the sum of the norms of its components, it

follows that for Uj € Xj, we have Ipj^+a < 2M and hence

p° 6

>ra>x
where 6 = miiij infj. |p^r(x)|. Therefore, using the identity

(40)

J2(0)f(t)
(41)

and that | |p l x | - \p°lx\\ < \pu - p°u\ < \plx - p0^ , we have

\PuPu\2 < p\Plx - P°lx\o (42)

Using (31) and (42), it follows that for T < t0

no ^ PlxP

1

Jpjj2 |2+Q
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< (43)

which can be made arbitrarily small.

Next, we find a bound for the C1+Q norm of the function $ defined in (36) (a bound for
\& is obtained in a similar way). For this, we shall use the following identity which holds for
any two functions h\ and h2 defined on [0,T]:

hxh2 - h\h2 - M ° = (hx - h\){h2 - h°2) - h\h\

with our convention that h\ = /ii(0) and h\ = ^2(0). Then

(44)

= | - p i r ' P 2 * - d

-(Plx ~ P°ix)(P2x ~ P\x) + PulI - \(\Pix\ *| - \P°2X\) + \\PI\\PI

^ + C|ft|2+a|ft|2+a(r1+ft +

where in the first inequality we have used the compatibility conditions for the initial data.
On the other hand, at x = 1 we have (c.f. (37))

Flll+Q = l + Q

l+a

with similar bounds for |52|i+tt and |E3|i+Q. Finally, since b(p^) = 0

|H4|i+a =

20



< \Db(P<>)p%+a "" ̂ )Pl)(Pl ~Pl)^^|l+Q

and similarly for |E 5 | 1 + a and |E6|i+Q. Putting this together in (38), we find for T <t0

6 / 6 6

Hence, choosing

M =

we conclude that there exists a time t\ = ti(M, |6|2+Q,<5) < <o small enough so that

(45)

i.e. 1Z maps itself.

Next we prove that the map 71 is a contraction. Let (UJ) and (VJ) G YljXj with T < t\,

let (UJ) = 7^(Sj) and t'j = 7^(0j) be the associated solutions to the linearized problem (29)-

(35) and let ujj = Uj — Vj. Moreover, let pj, qj, j = 1,2,3 be the associated position vectors,

(gj = (^1,^2), etc.) and let Zj = pj — qj. Then the u / s solve

Wjj - DjU>jxx = £,• (46)

(47)

where Dj is as in (29) and

' (_L_ _ _,!_) fi > x _

i = 3,4
j = 5 ' 6 '
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with the corresponding boundary conditions

BjiO^Lj) = u>j(0,t) - u;j+2(0,t) = 0 1 < j < 4

and

Since this is a linear parabolic system that satisfies the complementary conditions and the

compatibility conditions, we shall again use Schauder-type estimates to show that

i

T < t2,

where t-i < t\ and <i is as in (45).

First using (41) and (47), we find a bound for pi in C°:

\9
1

1 Q ^
1 1

12 l/j, 12

+

A similar bound holds for pj

(ht - /i?)(/*2 - h°2) - (7i

2 < j < 6. Next, we use (44) and the identity

to obtain, at x = 0,

\(Qiz ~ qix)(

\ZlxZ2x\l+a

~ ?2x) - (Plx ~ Plx)(p2x ~

~ P°lx)\ l+a
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The same type of bound can be obtained for the term involving \&. On the other hand at

x = l,

= |(9i« " Pi*)? (Pi) + (T(«i) - f (pO) qlx + f (p?)(pi* - §i.

DT(Xpi
o

/ £>f (Aft + (1 - A)pj)(ft -
Q

A similar bound holds for \E.2(p2) — ^ ( ^ l i + o and |E3(p3) — H3(93)|i+Q. As for E4, we have

+ (1 - A)pO(9i - Pi)dA +

Again similar bounds hold for the terms involving E5 and Ee- Therefore, putting this together

and using the Schauder estimates for (46), it follows

j=\

Thus TZ is a contraction for

T<t2(M,\b\2+Q,6)

where %2 is such that

D

Remark 2 A word is in order to justify the possible non-existence of a solution when either

otj = 0 or Qj = 0. We show this in a model case: we assume that Fj is a graph so that its

position is given by (xi, u) where
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Let x\ = $(t) denote the intersection of Fi with the boundary of ft = {x2 > 0} and let

ax = 0. Then u > 0 and the boundary conditions for u are

u(s(t),t)=0

and

^,(*(0»*) = 0,

which contradict Hopf's Lemma. A similar argument works at the meeting point of the three

curves: for the model problem in this case, one can take one of the curves to coincide with

the £i-axis and the other two to be graphs symmetric about this axis. In this model, the

graphs stay symmetric, and we are in the same situation as above.

As can be seen from the proof of Theorem 1, the method used to obtain local existence

is simple and quite general. Indeed it is enough to show that the problem is parabolic and

that the linearized boundary conditions are complementary. Therefore it can be used in a

wide variety of physical systems. As a further example we consider another problem in the

theory of phase transitions, namely eutectic solidification ([W], [K]).

In lamellar eutectics two solid phases grow into a liquid phase. We model this process

by considering two curves (the solid-liquid interfaces) meeting at a point with a prescribed

angle, moving normally with a given speed whose dominant contribution is proportional

to the curvature of each curve. As the two curves evolve, the locus of the meeting point

traces out a third curve (the solid-solid interface) that should maintain a fixed angle with

the solid-liquid interfaces at the meeting point (see Figure 4). The system of equations for

the position vectors pj of these two curves is therefore given by

(49)
jx I

Pj(x,0) = p%x)
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= cos(aj) a t z =
\Pi*\ W(Pj)\

b(pj) = 0 at x = 1,

where f and 6 are as before, 0 < 0j < 7r and a is any smooth function. In a very similar

way as above, we can prove short-time existence and uniqueness for this problem as long as

OLJ 7̂  0 and Q\ + 62 # 7r. Since the proof is similar to that of Theorem 1, we will only give

a sketch of the proof. Also, for the sake of simplicity, we will only consider the special case

that a = 0 since it is clear that the argument works equally well for any smooth function a.

Sketch of proof: The main difference with the system (26) is that the boundary con-

ditions at x = 0 contain time derivatives. To overcome this difficulty we shall replace pjt in

the boundary condition at x = 0 with the help of (49) and study the problem satisfied by

Qj = Pjx around x = 0. The system of equations for qj is:

x 9 Qj '_ QjxxQ3t" W2

To find the boundary conditions at the triple junction, we observe that pu(0,t) =

so that using (49), we find:

1—io = i—fo a t x = 0. ol

Moreover
Pit Plxx

bifi ipi«r

and hence the other boundary conditions at x = 0 become

\) a tx = 0 (52)

= cos(^ + 62) ata: = 0. (53)
1921
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This is now a second order parabolic system with boundary conditions involving only q and

qx. If we linearize (50)-(53), we can show that the boundary conditions at the triple junction

are complementary provided that the determinant of the matrix

0 ^

-Dly/pDi -y/^(v^-cos(9l)7Bi^v^) VD^2u°4 - cos(^ + 62)DlU°2

0 0 1X -y/D{u\ + cos(02

0 -y/pD1D2 0

is nonzero. Here Dx = y ^ , D2 = jjjp, ft = (ui,t£2) and q2 =

The value of the determinant is

i ( ^ ) ( ( ^ + f l 2 ) - l)(cos(0!)

and hence the boundary conditions at the triple junction are complementary as long as

6l+&2? 7T.
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Figure 1. Three-phase boundary



R/2 R/2

T

Figure 2. The inner variables ( T. is the
tangent plane to iv at m(o))



U O3

uout

u i n

uout

Ut l
01 u11

u01

Figure 3. The matching conditions



3 flM65 0135=1

Figure 4. Eutectic interfaces separating solid 1
solid 2 l l. and liquid I I phases.


