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Introduction
In this paper we study the connection between the weak propagation of

fronts (closed hypersurfaces in JRN, which propagate in the normal direction

with velocity depending on the position, the normal vector and its gradient)

and the phase field theory, as it applies to the study of the asymptotic behav-

ior of reaction-diffusion equations. More specifically, we study the properties

of the signed distance function to the front; we relate these properties to the

level set formulation of moving fronts and we present some new, general and,

in some cases, sharp results guaranteeing the uniqueness of the fronts ("no

interior"). Finally, we develop a rigorous justification of the "phase field"

theory.

The study of propagating fronts is very interesting from both the the-

oretical point of view as well as for applications (eg. phase transitions in

continuum mechanics, flame propagation, pattern formation, chemical kinet-

ics, etc). The strong geometrical formulation of the motion (which requires

smoothness) faces the development of singularities; the motion can, there-

fore, be defined only locally in time, which is quite unsatisfactory for the

applications. On the other hand, a weak geometrical formulation by Brakke

[Br] for motion by mean curvature gave rise to non-uniqueness problems,

which are, again, unsatisfactory for both the theory and the applications.

More recently, two different approaches were introduced to deal with these

issues, namely, the level set and the phase field approach. The level set

approach, which was put forward by Evans, Spruck [ESpl] for motion by

mean curvature and Chen, Giga, Goto [CGG] for general motions, is based

on considering the front as a level set (for definiteness the zero level set) of

the solution of a degenerate parabolic pde. The phase field approach, sug-

gested by Bronsard and Kohn [BrK] and DeGiorgi [D], defines the front as

the boundary of the regions where the solutions of certain (scaled) reaction

diffusion equations converge to the equilibria points of the associated vector

field. Both approaches have their own advantages. The level set formulation



provides a large number of analytical tools to study the motion for it allows
for the use of very recent developments of the theory of nonlinear degenerate
parabolic pde's. The phase field formulation is very indirect but also closely
related to (and very natural for) the applications. A great deal of work in this
paper is devoted to justifying the "phase field" formulation. A way to related
these two approaches is to study the properties of the distance function to the
front; a lot of work in this paper is devoted in this direction. As a matter of
fact, one could propose an alternative way to study front propagation using
the distance function. This was done by Soner [So] when the normal velocity
of the front does not depend on its position. We chose not to do so in this
paper, although given what we prove here for the distance function one can
easily develop such an approach. A very intriguing mathematical question
arising with the weak formulation of moving fronts is whether such fronts are
uniquely determined by their initial position (if they are described using the
distance function); this is closely related to whether the level set formulation
gives rise to fat level sets. Couple sections in this paper are devoted towards
studying these questions.

The paper is organized as follows: In Section 1 we recall the level set
formulation and slightly improved some of the known results. In Section 2
we discuss the "non-empty interior" difficulty and give an equivalent char-
acterization. Section 3 is devoted to deducing some important properties of
the (signed) distance to the fronts. In Section 4 we study the non-empty
interior difficulty. We give some general sufficient conditions and we present
some counterexamples. Section 5 provides some uniqueness properties for
the distance function, which will be used later in Section 10. In Section 6 we
discuss the asymptotic limits of reaction-diffusion equations and the phase
field theory. Section 7 is devoted to a formal derivation of the results. In
Section 8 we briefly review the theory of traveling waves of reaction-diffusion
equations and we formulate our main assumptions. The main results about
the phase field theory are stated in Section 9 with their proofs given in Sec-



tion 10. Finally, in Section 11 we present some possible applications and

state few open problems.

1 Geometrical evolution of level sets and de-
generate parabolic pde's.

In this section we recall and slightly generalize the level set formulation

presented in Chen, Giga and Goto [CGG] (see also Evans and Spruck [ESpl]

for motion by mean curvature and Giga, Goto, Ishii and Sato [GGIS]). As

mentioned in the Introduction, the underlying idea is to think of the front

as the zero-level set of the solution of a pde. This type of formulation first

appeared in a theoretical work of Barles [Bal] on fronts moving with constant

normal velocity. [Bal] was motivated by the computational work of Sethian

[Sel] for a simple model in flame propagation. Later Osher and Sethian

[OS] used extensively this type of ideas to perform numerical computations

for different types of motions and in particular motion by mean curvature.

Evans and Spruck [ESpl] provided the mathematical foundation of the level

set approach for motion by mean curvature and Chen, Giga and Goto [CGG]

studied motions in the generality described below.

To better explain the ideas involved we first present a formal derivation:

Let Tt be a smooth front at time t > 0 and assume that Tt = dDt where

Dt C IR^ is open. The normal velocity V of Tt at x(£ Tt) is given by

(1.1) V = v(x,f,n,J9n)

where t; is a continuous function of its arguments, n is the exterior unit

normal vector to Tt and Dn is its gradient. Furthermore, we assume that

there exists a smooth function u : JRN x [0, oo) H-* JR such that

Dt = {xe!RN : u(z,t) > 0},I\ = {x G RN : u(-,t) = 0} and Du ̂  0 on Tt.

A classical calculation yields

T/ ut Du i n l a Dxi®Du 2



Inserting the above formulae in (1.1) we obtain

ut + F(x,t,DuyD
2u) = 0

where F is related to v by

(1.2) F(x,t,p,X) = -\p\v(x, t, - i , -ij(7 - ^

for p € 2RN and X € SN, the space of N x N mat trices. An immediate
consequence of (1.2) is that, for all (x,t) € MN x (0 + oo),p € MN and
X eSN,F satisfies

(1.3) F(x,t,\p,\X + /i(p®p)) = AF(*,t,p,.Y) (A > 0,// €

Any i71 which satisfies (1.3) will be called geometric.

In order for (1.1) to be well-posed it is also necessary to assume that it is

parabolic, i.e. that v is nonincreasing in the Dn argument. This translates

in terms of (1.2) to F being (degenerate) elliptic i.e.,

(1.4) F(x,t,p,X)<F(x,t,p,Y) i(X>Y

for all (x,t) 6 JRN x (0,+oo),p € MN and X,Y € SN. The fact that F is

degenerate (in fact at least in the p®p direction) follows from (1.3). Finally

we point out that F is as smooth as t; with a possible discontinuity at p = 0.

The level set approach to front propagations can be described as follows.

Given a closed set To in JRN (front at time t = 0), choose u0 : MN —• M such

that

(1.4) ro = {xeRN

solve (in the appropriate way) the pde

' u< + F(x, t, Du, D2u) = 0 in RN x (0, oo),
(1.5)

tx(x,0) = uo(x) on MN,



and, finally, define Tt (the front at time t) by

(1.6) r t = {x€ JRN :u(x, t ) = 0}.

The main issues associated with such a program are: (i) whether (1.5) does

have a global solution allowing to define Tt and (ii) whether Tt only depends

on To and not the form of i*o outside IV

The first issue is settled ([ESpl], [CGG]) by considering viscosity solu-

tions. Viscosity solutions, which turn out to be the correct class of generalized

solutions for first- and second-order fully nonlinear pde's, were introduced by

Crandall and Lions [CL] (see also [CEL] and Lions [Li] for first- and second-

order equations respectively). For the precise definition as well as some of

the most recent developments as well as references we refer to the "user's

guide" by Crandall, Ishii and Lions [CIL]. In the sequel (unless otherwise

stated) by solution we will always mean viscosity solution. In order to avoid

some techniqualities we will denote by (F) a set of some general assumptions

needed for the statement of the next theorem. We will state and discuss these

assumptions at the end of this section. Finally, we will denote by UC(O) the

set of real valued uniformly continuous functions defined on O.

Theorem 1.1: Assume {F), (1.3) and (14). Then, for any u0 € UC(RN),

there exists a unique solution u € UC(IRN x [0,+oo)) of (1.5). Moreover, if

u and v are respectively sub- and super-solutions of (1.5) (in

UC{BN x[0,+oo)), then

(1.7) tz(-,O) < v(-,0) in RN => u < v in RN x [0,+oo).

Next we discuss the issue of whether Tt depends only on IV This follows

from (1.3), which yields that (1.5) is invariant by non-decreasing changes

u ^ ^ ( u ) . (See [ESpl], [CGG]).



Theorem 1.2: Assume the hypotheses of Theorem 1.1 hold and let

u,v€ UC(RN x (0,+oo)) be solutions of (1.5) such that

{x : u(x,0) > 0} = {x : v(x,0) > 0}, {x : u(x,0) < 0} = {x : v(x,0) < 0},

{x:u(x,0) = 0} = {x:t;(x,0) = 0},
and

(1.8) lim |u(x,0)| lim |t;(x,0)|>0.
|x|->+oo |* |>+oo

Then, for all t > 0,

{x : u(x,t) > 0} = {x : v{x,t) > 0},{x : u{x,t) < 0} = {x : v(x,t) < 0}

and

{x : u(x,t) = 0} = {x : v(x,t) = 0}
D

This results justifies the term equation of geometric type for (1.5), since

it yields that the evolution of the level set To —» I\ depends only on F

and on the "signs" of the initial datum in the different regions (which in

turn give a sense to the expressions "inside To" and "outside To") and not

really on the choice of the initial datum. Such a result was first obtained by

Evans and Souganidis [ESI] in the case where F is independent of D7u using

representation formulae from the theory of deterministic differential games.

In the generality stated above the result was obtained in [CGG]. Next we

present a slightly simplified proof.

Proof: Consider the functions <f> and %l> given by

<£(0 = inf{t>(y,0)|u(y,0)>*} and xp(t) = sup{v(y,0)|u(y,0) < t).

It is immediate that <f> and xp are nondecreasing, lower- and upper-semicontinuous

respectively and

(1.9) <£(w(*>0)) < v(-,0) < VKw(*>0)) on 1RN.



Moreover, the assumptions on u(-,0) and v(-,0) yield that <j> and tf> are actu-

ally continuous at 0 with ^(0) = ^(0) = 0. Finally standard regularization

procedures imply the existence of two sequences of nondecreasing and non-

increasing respectively smooth functions {4>n)n and (*l>n)n such that

(1.10) <t> = sup^>n and V> =
n

Since F is geometric, <f>n(u) and rpn(u) are solutions of (1.5). Moreover (1.9),
(1.10) and Theorem 1.1 yield

<£n(") < v < x!>n{u) in RN x [0,+oo).

Letting n —* oo we conclude easily, since, in view of the assumptions on
u(-,0) and i>(-,0) and the definition of <f> and t/>, <t>(t) > 0 if t > 0 and
tl>{t) < 0 if t < 0.

D

We continue by discussing some examples of motions and their related

"geometrical" equations.

In the first example the hypersurface is assumed to propagate in the

normal direction with velocity v(x,t,n). The geometric equation in this case

is

(1.11) ut - a(*,i , | |^ ) |Z)u | = 0 in RN x (0,oo),

withF(x,<,p, M) = —a(z,t, j£j)|p| satisfying (1.3). This type of propagation,

when a = c constant, was introduced by Landau as a flame front propagation

model and was studied both analytically and numerically by Sethian [Sel]

using (1.11). Then Barles [Bal] showed the connections between (1.11) and

(1.3).
Another very interesting example, both theoretically and from the appli-

cations point of view, is the motion of a hypersurface with normal velocity



equal to its mean curvature. Here (1.5) takes the form

(1.12) , , - A u +
( P ' f f u ) = 0 influx (0,oo),

where (•[•) denotes the usual inner product in 1RN. In this case (1.3) holds
for every A 6 M (not only A > 0). This yields that the equation is invariant
by any change! Equation (1.12) was studied first numerically by Osher and
Sethian [OS] and then analytically by Evans and Spruck [ESpl-4] (see also
Chen, Giga, Goto [CGG], Soner [So] etc.).

Another example of propagations which arise very naturally in the theory
of phase transitions is the case of anisotropic motion where (1.5) is of the
form

(1.13) ut - \Du

for some smooth functions H and /?, with H convex. Equation (1.13) is

studied in [So] and [CGG]. There are some very interesting models of phase

transitions which yield (1.13) but with H not-convex. Following a relaxation

process, these problems give rise to (1.3) but with F discontinuous (in addi-

tion to p = 0) at certain directions in the gradient space. This is the subject

of Gurtin, Soner and Souganidis [GSS].

We conclude this rather long overview of the level set approach by stat-

ing and discussing assumption (-F), which was necessary for the comparison

result of Theorem 1.1. (F) consists of several parts, namely:

(x,t,p, X) »—¥ F(x,t,p,X) is bounded for bounded

(p,X) and continuous for x € RN,t € [0,/2],p 6 B(0,R)\{0}

and \\X\\<R, for all R > 0.

(F2) F . ( x , < , a ( x - y ) , A ' ) - F ' ( y , / , a ( x -



where u>(0+) = 0 and for all x,y € BN,t 6 (0,+oo),a > 0 and mattrices

X,Y € SN such that ( X _° \ < Ka( * ~J \ for some constant

K > 0. Finally,

we recall that F* and Fm denote the upper- and lower-
semicontinuous envelopes of F respectively.

The proof of Theorem 1.1 can be found in [CGG], The arguments of
[CGG] can be, however, slightly simplified by remarking that, since (1.5) is
invariant under nondecreasing changes, it is enough to have a comparison
result in BUC(IRN x [0,oo)), the space of bounded, uniformly continuous
functions. This leads to an easier treatment of the unboundedness of the
domain. As a matter of fact, with these assumptions, Theorem 1.1 extends
easily to the case where either the sub- or the super- solution to be compared
is discontinuous. Since we will use this remark throughout the paper we state
it as a separate theorem. (For the definition of discontinuous sub- and super-
solutions we refer to [Is].)

Theorem 1.3: Assume (F)y (1.3) and (14). Ifue UC{MN x [0,oo)) is a
subsolution of (1-5) and v : IRN x [0, oo) is a discontinuous super solution, then
u(-,0) < t>(-,0) on RN yields u(-,<) < v(-,t) on RN for all t> 0. A similar
result holds if u is a discontinuous subsolution and v 6 UC(FtN x [0,oo)) is
a super solution.

The final remark of this section is that assumption (1.8) in Theorem 1.2
can be relaxed to handle the case of unbounded fronts: we only need to
assume that for each a > 0 there exists e > 0 such that

|u(z ,0) |>( : r ,0) |>e>0 if d ( x , r o ) > a > 0 .

10



2 The non-empty interior difficulty

The level set approach seems to avoid all the geometrical difficulties related
to the onset of singularities, etc. The evolution To —> Tt is well defined and
unique. Given this fact, the next natural questions are related to the regu-
larity of Tt. When N = 2 this issue was completely resolved by Angenent
[A1,A2] (see also the references therein). For N > 3 the issue is more com-
plicated. In addition to a local existence result by Hamilton [H] and Evans
and Spruck [ESp2] for motion by mean curvature, there only partial regu-
larity results (only for motion by mean curvature) due to Evans and Spruck
[ESp3,ESp4] and Ilmanen [111,112].

A more basic question is whether Tt has an empty interior for t > 0. In
principle, one expects Tt to be a hypersurface in MN\ in view of this Tt having
interior seems rather unreasonable. This is related to the non-uniqueness
features for the motion of front described by the distance function as we will
explain in the next section. Before we continue discussing this difficulty we
give a more precise definition.

Definition 2.1: Let Tt be the evolution of To by the level set approach. We

say that Tt has no interior at t > 0 iff

cl{x : u{x,t) > 0} = {x : u{x,t) > 0}

and

int{x : u(x,f) > 0} = {x : u{x,t) > 0}.

In most examples it can easily be shown that Tt has no interior in

for all t > 0 iff (J(I\ x {t}) has an empty interior in RN x (0,oo). For

motion with constant normal velocity this follows from the finite speed of
propagation. For motion by mean curvature it can be shown using explicit

11



solutions of the form ^( |x|2 + (Ar — l)t) as barriers. The last argument can

be easily generalized to more complex equations.

In view of the above remark, we next present a new formulation of the

no empty interior question in terms of whether equation (1.5) has unique

discontinuous solutions, with initial datum IIn0 — Ing* where 1 A denotes the

characteristic function of the set A, and ft0 and fl£ are the "inside of To"

(i.e. the set where u0 is negative) and "outside of I V 0-e. the set where u0

is positive) respectively. (See the discussion after the statement of Theorem

1.2).

Theorem 2.1: The set \J{Tt x {<}) has an empty interior in MN x (0,+oo)

iff there exists a unique solution of (1.5) with initial datum I Q 0 — TLQC.

D

The above formulation of the non-empty interior difficulty has an interest

by itself, since it provides a criterion which can be checked in some cases; we

will do so in the case of first-order motions. Another important consequence

of this formulation is that it is the first step to obtain the properties of the

distance function to the front.

Proof of Theorem 2.1: Let u G UC(RN x [0,oo)) be the solution of (1.5)

with initial datum tf(x, Fo), the signed distance to To, which is normalized

to be positive inside To and negative outside. Recall that by Theorem 1.2, it

suffices to use d(z,F0) as an initial datum in order to obtain F t. For e > 0 ,

set

ue(x,t) = tanh(tz(z,t)/£),

where tanh(-) is the hyperbolic tangent function. u€ is also a solution of

(1.5) (by (1.3)). The stability results for discontinuous viscosity solutions

(cf. Crandall, Ishii and Lions [CIL] yield that the limit u^ = limue is a

12



viscosity solution of (1.5). Moreover, the properties of tanh yield

1 if u (z , t )>0 ,

- 1 if u (z , t )<0 ,

0 if (z,f) G Int{u = 0}.

For the rest of the points, the value of txoo(x,t) depends on the lsc or use en-

velope one considers in the definition of the discontinuous viscosity solution.

Next pick a € (0,1) and set

and

= limtanh((uo0(x,<) + a)/e)

= limtanh((Uoo(i,f) + o)/e).

The functions «<» and u^ are again solutions of (1.5). Moreover,

1 if «(*,*) > 0
- l if o a n d

1 if
- i if

If (J(Ft x {t}) has a non-empty interior, tZoo and u^ are two different dis-

continuous solutions of (1.5) with initial datum 1Q0 — IQC.
Conversely, if {J{Tt x {t}) has empty interior, let it; be a solution of (1.5)

t>o
with iy(-,0) = Ino — log and choose a sequence (<f>n)n of smooth functions
such that <f>n = 1 on [0,+oo),<£n > 0 in R,<f>n{R) C [-1,1] and intyn = - 1
on (-oo,0]. Since wm(x,0) < <f>n(d(x,To)) in MN, (1.3) and Theorem 1.3
yield u;* < <f>n(u) in i? N x (0,+oo) and

wm(x,t) < - 1 = inf

On the other hand, (F3) gives

on {u < 0}.

13



hence, +1 and —1 are respectively sub- and super-solutions of (1.5). There-
fore,

- 1 < w. < wm < 1

and, finally, wm = — 1 on {u < 0}. The same method shows that wm = 1 on

{u > 0}, which, in view of the assumption that {u = 0} has empty interior,

identifies w uniquely. D

By examining the solutions u^ and u^ , both equal to Uoo in the "empty

interior" case, we see that we switched from the pde formulation of the

motion to a "quasi-geometric" formulation, since the notions of sub- and

super-solution are only relevant on the sets Tt = d{xloo{-,t) = 1} and

Ef = ^{&oo(*iO = ! } • This is related to the distance function formulation

for the motion, which we explain in the next section.

3 The properties of the distance function to
the moving front

In this section we study the properties of the (signed) distance d(x^Tt) to a

front I \ , whose evolution has been defined by the level set approach described

in Section 1. The results we present here extend the work of Soner [So], who

actually used the properties of the distance function to define the evolution of

fronts in the case where the velocity of the front is independent of the position.

Although we could do the same here, we chose not to do so, since, once the

correct definition is given, all the arguments will follow exactly as in [So].

Another motivation to study the properties of the distance function, besides

the fact that this quantity intrinsically defines the front, is that the distance

function plays a central role in studying the fronts generated by reaction-

diffusion equations ("phase field theory") as we will explain in Sections 6-10.

As usual we begin with a closed set To in MN and assign to it a notion of

inside and outside in terms of the sign of its distance function. Let Fo —» Tt

14



be the evolution of Fo defined by the level set formulation. To state the main

result we define the extinction time t* € (0, +00] for Tt by

V = sup{< > 0 such that Tt ^ <f>).

Finally, we denote by d the signed distance function to the front Tt.

Theorem 3.1: Assume that Tt has empty interior for all t > 0. Then

d = d A 0 and d = d V 0 satisfy respectively

(3.1) dt + F(x-dPd,i,D&D7d)<0 in MN x(0,f)

and

(3.2) dt + F(x - dDd, i, 2)3, D23) > 0 in ^ N x (0, r ) .

Moreover,

(3.3) -(D2dDd\Dd) < 0 in {<f < 0}

(3.4) -(2?232?3|2?3) > 0 in {3 > 0}.

Remark 3.2: The assumption that Tt has empty interior was made to only
simplify the presentation. In fact one can show that (3.1), (3.2), (3.3) and
(3.4) still hold when Tt has non-empty interior but for different solutions.
Indeed let Tt = d{x : UooOM) = 1} and £t = d{x : iiO0(x,<) = 1}, where
y^ and iZoo are defined as in the proof of Theorem 2.1. Then (3.1), (3.3)
and (3.2), (3.4) hold true for d(x,Tt) and d(xXt)- This again is related to
the connections between the non-empty difficulty and the nonuniqueness in
the weak geometric and distance function formulations of motions. For a
detailed discussion of these connections we refer to [So].

15



Remark 3.3: One can read the speed of the moving front from (3.1) and

(3.2). Indeed if we know apriori that the front moves along its normal direc-

tion and if d is assumed to be smooth, then

dt + F(x, t, Dd, D2d) = 0 if d = 0,

which, in view of (1.1), yields V = v(x,t,n,Dn) = —F(:r,i,n,jDn).

Remark 3.4: One cannot expect that d will solve a pde like (1.5) as it

can be observed by a direct calculation if everything is smooth. The term

x — dDd in (3.1) and (3.2) has a geometric meaning. Indeed, if x £ I \ , then

x - dDd € IV

Proof of Theorem 3.1: We only prove (3.1) and (3.3); (3.2) and (3.4) can

be obtained by similar arguments. To this end, observe that for each k > 0

the functions
0 if t i o o f o O ^ l ,

- * if ueo(«1t) = - l ,

are solutions of (1.5), where UQQ is defined in the proof of Theorem 2.1. We

next introduce the function

wk(x,t)= sup {wk{y>t)-\x-y\).
y€RN

An easy calculation yields

wk(x,t) = max(flf(z,f),-/:).

On the other hand, standard arguments from the theory of viscosity solutions

(cf. Lasry and Lions [LL], Jensen, Lions and Souganidis [JLS]) yield that wk

is a subsolution of (1.5). The inequalities (3.1) and (3.3) follow then easily

when d ^ 0. If d = 0, we need to observe that wu > Wk in MN x (0, oo) and

if wk(x,t) = Wk{x,t) at some point (x,<), then D7'+wk(x,t) C D2.*+wk(x,t);

16



the last inclusion being exactly what is needed at d = 0. Letting k —• oo

completes the proof. D

4 When is the empty interior condition full-
filled?

It has been become, hopefully, clear by now that settling the empty interior

condition is of great importance, since it may lead to some rather unintuitive

situations. Unfortunately, if no conditions are imposed on To, interior may

be created for t > 0. See for example Evans and Spruck [ESpl], Soner [So]

and Ilmanen [111] for some simple examples in this direction for motion by

mean curvature. It can, however, be argued that the interior in the examples

of [ESpl] and [So] is due mainly to the fact that the initial data are not

smooth which, in turn, yields that the normal direction is somehow not well

defined. This, of course, raises the question of finding some necessary and

sufficient conditions of Fo so that no interior is created. We will address this

question below for the case of first-order and second-order motions whose

geometric pde's are of the form

(4.1) ut + a(z,t)\Du\=0 in RN x (0,oo)

and

(4.2) ut + F(Du, D2u) = 0 in RN x (0, oo),

with initial datum

(4.3) u(z,0) = (*(*, r0) in MN.

Throughout this section we will assume that

(4.4) r0 = d{x € MN : d(x, To) < 0} = 8{x G RN : d(x, To) > 0},
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which, in particular, implies that Fo has no interior.
Theorem 4.1: Assume (4.3), (44), a G Wl>°°(MN x (0,JT))(VT > 0) and
that either
(i) a does not change sign in 1RN x (0, +oo)
or
(ii) a is independent oft.
Then I\ = {x : u(x,t) = 0} does not develop interior, where
u e UC(1RN x (0,oo)) is the solution of (4.1), (4.3).

Theorem 4.1 is almost sharp. Indeed at the end of this section we will
give an example of a(x,t) which changes sign and I\ develops interior. We
do not, however, know whether interior is created if a = a(x, A) changes

sign. (The case where a(z, —) > 0 was treated in [Sor].)
\P\

Proof of Theorem 4.1: We present here the proof only in the case of
(ii) since (i) is obtained by similar and even simpler arguments. In view of
Theorem 2.1 and the discussion afterwards, it suffices to prove the uniqueness
of discontinuous solutions of (4.1) with the initial datum

(4.5) *(-,0) ^ l o o - I n g iniR",

where ft0 {x : d(x,T0) > 0}. To this end, we first claim that we can examine
the situation separately in the sets

Ox = {x € MN\a{x) > 0} and O2 = {x € RN\a{x) < 0}.

A formal argument to understand why this claim is true consists in looking at
the optimal control interpretation of (4.1) and in remarking that the paths
of the dynamics starting from a point in O\ (or O2) can never reach the
boundary of O\ (or O2). To justify this argument completely, we adapt some
arguments introduced by Barron and Jensen [BJ1] (See also Barles [Ba2]).
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Let u be a solution of (4.1) and consider the function ue : O\ x [0, +00)
1R given by

Combining classical, in the context of viscosity solutions, computations with

the arguments of [BJ1], one shows easily that ue is an approximate subso-

lution of (4.1) in Ox x (0,+oo) for 7 > 0 large enough. Moreover, ue is

continuous and satisfies

s on Ox.

If t; is another solution of (4.1) and (4.3), we claim that, as e -+ 0,

ue<vm + o(l) in Oix[0,+oo) .

Indeed, we perform the usual uniqueness arguments for viscosity solutions

with a test function tp : (Oi x (0,+oo)) x (O\ x (0,+oo)) -* Ft given by

where /? and 6 are small parameters. The only slight new point comes from

the term
1 1

( +

which take care of the lack of boundary condition on dO\ x (0, +00). We leave

the rest of the routine but tedious details to the reader. D

Remark 4.1: An alternative way to understand the comparison result in

the proof of Theorem 4.1 is to say that (4.1) holds up to the boundary of

O\ x (0, +00). Indeed let u by an use subsolution of (4.1) and assume that

(x,f) € dO\ x (0,+oo) is a strict local maximum of u — <j> for some smooth

4>. The function
0

(y, s) *-• u(y, s) - <f>{y, s) r-r
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attains a maximum at (ye^s$) —• (x,t) as 6 —> 0. Evaluating (4.1) at (ye,s$)

and letting 0 —> 0 yields the result.

We next turn our attention to the case of the motion governed by (4.2);

the typical example here being motion by mean curvature. We will be making

the following additional assumption on F:

(4.5) fX/zQ'p, fQ'XQ) = /x2F(p, X)

for all ft > 0,p € JRn, A' 6 5N and Q 6 # ( # ) , where Q< is the adjoint of Q
and O(N) is the group of N x TV orthogonal matrices (Q* = Q"1).

Theorem 4.2: Assume that (1.3), (1.4) and (4.5) hold and that To is of

class C2. In addition, assume that theix exist nonnegative constants C{

(i = 1,2,3), a skewsymmetric mattrix H and Xo € MN such that

(4.6) cl(x-x0yDd{x)+c2H(x-x0)-Dd{x)-c3F(Dd(x\D2d(x)) ^ 0onro,

where d is the signed distance to IV Then the set [J(Tt x {t}) has empty

interior in JRN x (0x + oo).
t>o

The left hand side of (4.6) is the generator of rotation, dilations and trans-
lations in (x,t) evaluated at t = 0 on IV Condition (4.6) includes as special
cases results of Ilmanen [111] and Soner [So] for motion by mean curvature.
On the other hand, (4.6) is not necessary. Indeed recent work of Soner and
Souganidis [SS] (see also Altschuler, Angenent, Giga [AAG]) for bodies of ro-
tation moving by mean curvature shows that there exist smooth Fo's which
do not satisfy (4.6), but their evolution never develops interior. It follows,
however, that (4.6) holds near the singularities of Tt [SS]. This is related to
a conjecture of DeGiorgi [D]. A related observation is that if (4.6) hold at
a later time, this again yields no interior. For the case of mean curvature,
Evans and Spruck [ESp4] also showed that under some assumptions on Fo,
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almost every level set of the solution of (1.12) does not develop interior. Fi-
nally, at the end of this section we give an example where interior is created
if the velocity depends on t.

Proof of Theorem 4-2: Let u € UC{RN x (0,oo)) be the unique solution
of (4.2) and (4.3) and, for h > 0, define the function

uh{x,t) = $ (u ( ( l + c1/i)e
C2'lH(x - x0) + *o,(l

where $ is some increasing smooth function with $(0) = 0 to be chosen
later. In view of (1.3) and (4.5), u^ is also a solution of (4.2), since H being
skewsymmetric yields Q = e*2*1*1 € O(N). Moreover, if h is small enough,
there exists some TJ > 0 such that

(4.7) |u(-,0)-ufc(-,0)|>ijfcon 1RN.

Assuming for the moment (4.7), we observe that Theorem 1.1 yields either
tih < u — Tjh ov \ih > u + rjh in IRN x (0, oo). If Ut>o(I\ x {t}) has interior,
either of the above inequalities, however, yields a contradiction, for if u = 0
in some neighborhood of a point (xo,to)^ then so does u^ for h sufficiently
small.

We return now to the proof of (4.7). We first observe that we may choose
$ so that we only need to check (4.7) in a small neighborhood of IV But
for a suitable choice of such neighborhood u is smooth. We can therefore
perform the expansion

tx((l + c1/i)e
C2/l//(x - x0) + xo,c3/i) = t*(x,0) + h{d{x - xo)

c2H{x - x0 • Du(x,0) + c3ut(z,0)) + o{h).

Using (4.6), that tx(x,0) = d(x) and the fact that the equation holds for small
t > 0 (since To is smooth) we conclude.

D
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As a matter of fact with a slight modification of the above proof we can
prove that Tt has no interior for t > 0. We leave it up to the reader to fill in
the details.

We continue with an example of interior for a motion governed by (4.1).

Proposition 4.3: Consider (4A) in Ft x (0,oo) with a(x,t) = x - 1 . There
exists an interval I = (/?, 7) such that the evolution To —> Tt has nonempty
interior at some tQ > 0, where To = dl.

Proof, In view of Theorem 2.1 if suffices to show that there exists / such
that the equation

{ t*t + (* - t)\ux\ = 0 in JR x (0,00),

u(x,0) = ( l / - l / c ) ( x ) on R,

has more than one solutions. To this end, choose x0 > 0, solve the forward
and backward ode's

X±(t) = ±a(A'±(0,<) with A'±(so) = *o,

and set (3 = X+(0),7y = A'_(0) and / = (/?,?/). We will compute the min-
imal and maximal solution of (4.8), using the control interpretation of this
equation. Indeed consider the dynamics given by

yx(s) = a(yx(s)ys)v(s) , yx{t) = x,

where v(-) € L°°((0, +00), [-1,1]) is the control process. Following Barles
and Perthame [BaP] or Barron and Jensen [BJ2], one can prove easily that
the minimal and maximal solution of ut + (x — 0lu*| = 0 in f)i = {a: > i}
are respectively

ti.(x,0 = inftx.(ya:(0),0) and u*(x,t) = inf u"(yx(O),O),
() v()
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where tz(x,O) = ( 1 / - I/c)(x). It is easy to see from the above formulae

that um = - 1 on {(x,t) : x = t},um = - 1 on {(x,«) : x = t}\{(zo ,xo)} a n d

u*(xo,xo) = 1. We now turn our attention to Q2 = {(x>0 : * < * } • Here the

maximal and minimal solutions are respectively given by

u(x,t) = sup{- l { T = t } +tx*(yr(r),T)I{T> t}}

and

u(x,t) = sup{~I{rss t} + u . (y x ( r ) , r ) ) I { T > ^} ,

where, for each r(-) ,r is the exit time from ^2- It follows that, while n ^ —1

in £l2,u equals 1 at each point (x,<) € fi for which the trajectory yx may

reach the point (xo,xo). It is easy to check that the set of these points is

exactly the region {(x,t) 6 £V- X+{t) £ ^ < X-(t)} which has a non-empty

interior.

Since (4.8) has a non-uniqueness feature, we conclude by Theorem 2.1.
D

The next example of non-uniqueness corresponds to volume preserving

mean curvature flow. The derivation of this motion and its significance for

applications is discussed in Section 11.

Let To be the union of three disjoints circles in iR2, i.e.

To = dB{xuRo) U dB(x2,Ro) U dB(x3,r0) with x{ € lR2{i = 1,2,3) to be

chosen later and 0 < ro < Ro- We consider the motion of To with normal

velocity

V = - div (Dn) + a{t) (t > 0)

where a(t) = 27rN(t)L~l(t),N(t) and L(t) being the number of disjoint parts

of Tt and its length respectively. In view of this explicit formula, at least for

small time,

Tt = dB(xu Rt) U dB{x2, Rt) U dB(x3, r<),
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where Rt,rt satisfy the ode's

Rt = -Rjl + ot{t) and rt = -r^1 + a(t) with a(t) = 3(2/2* + rt)~\

Let ii = sup{* > 0 such that rt > 0}. The form of Tt above is valid for all
t € (0, ti). Since fi is independent of the choice of the x,'s we can choose Xi
and x2 so that |xi — x2\ = 2i2tl. In view of this choice,

with the two circles touching at a point. There are two possible evolutions
for t > t\ depending on whether we think of I\, as one set or two separate
ones. In the first case Tt moves with a(t) = 2TT (length (Ft))""1 and actually
converges to dB^^^.R^), as t -• 00, where Roo = (2i^ + r^)2. In the
second case, Tt remains stationary (i.e., a(t) = R^1 for t > ti).

We conclude the discussion about the "non-empty interior" difficulty with
a general comment for the t-dependent velocities. It appears that one cannot
hope to have a general theorem guaranteeing no interior without making very
severe restrictions on the ̂ -dependence of the normal velocity. The reason for
this claim is the following. In principle, all motions have some "pathological"
situations, where interior develops. One can take any such a motion, perturb
its velocity by a time dependent forcing term so that to drive the front to
the pathological situation and then simply turn off the time.

5 Uniqueness results for the distance func-
tion formulation

As mentioned in Section 3, one can have a weak formulation of the propaga-
tion of a front in terms of whether the signed distance to the front satisfies
the inequalities (3.1) and (3.2). A natural question to ask is whether (3.1)
and (3.2) are enough to identify the distance function uniquely, i.e. if z sat-
isfies (3.1) and (3.2) and z(x,0) = d(x, F0), is it true that z = d? In addition
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to being a natural mathematical question to ask, having such information

simplifies a lot some of the analysis of the "phase field" theory.

In the sequel, and only in order to considerably simplify the presentation,

we will only consider the equation

(5.1) tit - 6(Au - ^ p i ? ^ ) + a(x,f)|Du| = 0 in RN x (0,oo)

with the initial datum

(5.2) u(x,0) = d(x,ro) in 2RN,

with 6 > 0 and a € Wl*°(RN x (0,oo)). (Some of the arguments and the
conclusions below hold if 6 = 0(x,t) (under some assumptions) as well as for
anisotropic motions. We will discuss these situations elsewhere).

As before we denote by Tt = {x : u(x,t) = 0}. Theorem 3.1 and the
discussion following it says that the functions d\ = d(x,Tt) and d2 = d(x,£t)
(where Tt = d{x : u(x,t) > 0} and £< = d{x : w(x,t) > 0}) satisfy the
inequalities

(5.3) zt - 6Az + a{x - zDz,t) < 0,1 - \Dz\ = 0 in {z < 0}

and

(5.4) *f - B&z + a(x - ^Dr, t) > 0, |X? |̂ - 1 = 0 in {z > 0}.

Of course, if the no-interior condition holds for every t > 0, (5.3) and (5.4)
are satisfied by d = <f(x,I\). The inequalities in (5.3) and (5.4) are a com-
bination of (3.1) and (3.3) and (3.2) and (3.4) respectively as they apply
to (5.1). On the other hand, the equalities in (5.3) and (5.4) follow from
the differentiability properties of the distance function and the definition of
viscosity solutions.

Next we look into the converse of Theorem 3.1, i.e. we are interested in
whether (5.3) and (5.4) identify z as the distance function.
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Theorem 5.1: If the use (resp. Isc ) function z satisfies (5.2) and (5.3)
(resp. (5.2) and (5.4)), then

(5.5) z < d2 in {z < 0} D {d2 < 0}

(resp.

(5.6) z > dx in {z > 0} D {dx > 0}.)

Tfz satisfies (5.2), (5.3) and (5.4) and I\ does not develop interior for all
t> 0, then

(5.7) z(x,t) = d(x%Tt) in 2RN x [0,oo).

Proof: The proof is based on the following two lemmas .

Lemma 5,2: If z is use (resp "Isc) and satisfies (5.3) (resp. (5.4)), then z
is a subsolution (resp. supersolution) of

(5.8) zt - 6(Az - {D^Z1DZ)) + a(x - zDz,t)\Dz\ = 0
\uz\

in {z < 0} (resp. {z > 0}).

Lemma 5.3: If an use (resp. Isc) function z satisfies (5.5) (resp. (5.6)),
then for C large enough, z. = ect(z A 0) (i^esp. ~z = ect(z V 0)) is a subsolution
(resp. supersolution) of (5.1).

We first conclude the proof of the theorem and then prove the lemmas.
We proceed by proving (5.5), since (5.6) follows in a similar way. To this
end observe that, since & (defined in Lemma 5.2) is a subsolution of (5.1),
Theorem 1.2 yields £ < u A 0 in RN x (0,oo); recall that u A 0 is still a
solution of (5.1), since $(u) = u A 0 is an increasing change of u. So, if u < 0
(or equivalently if d2 < 0), z < 0 and the proof of (5.5) is complete.
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Finally, if Tt has no interior for all t > 0, then dx = d2 = d and (5.5) and

(5.6) yield

{z < 0} = {d < 0}, {z > 0} = {d > 0} and {z = 0} = {d = 0},

therefore, z = <f by the uniqueness results for the equations \Dz\ — 1 = 0 and

1 - \Dz\ = 0 respectively in {z > 0} = {d > 0} and {z < 0} = {d < 0}.
D

We now return to the proofs of the lemmas.

Proof of Lemma 5.2: We only treat the case of an use z which satisfies

(5.6); the other case is proved similarly. Since z is use, the set 17 = {z < 0} is

open. Moreover, z being a solution of 1 — \Dz\ = 0 in Qt = {x : z(x,t) < 0}

for all t > 0, yields

z(x,t) = sup{r"(y,o- l* -y | : y ^ fiJ>

where zm(y,t) = limsupz(y',t). This formula implies that z is locally semi-

d2z
convex with respect to x, i.e.-—r > — C in £), for all unit vectors x € MN.

Next we define the £-supconvolution ze of z in fl with respect to t by

= sup {2(

It follows easily that, for (x, f) belonging to compact subset V of fi and £ > 0

small enough, the supremum is actually achieved in ft (and not on dCl) and

that ze satsifies

(5.9) 1 - \Dze\ = 0 and z\ - ^Arff + a(x - zeDze,t) < Ce in V,

where C depends only on the Lipschitz bound of a. Let (xo,tQ) £ il be a

strict local maximum of z — <t> in ft for some smooth <£ and take V'CC fi in
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(5.9) to be a neighborhood of (XQ^IQ). Since ze —» z, there exists (xe,te) G V

maximum points of ze - <j>, such that (xe, te) -* (x0, <o) as e —> 0. Now we use

Alexandrov's Maximum Principle type arguments, brought in the theory of

viscosity solutions by Jensen [J]. More precisely, Lemma A.3 of [CIL] implies

the existence of Xe £ SN such that

(5.10) < and

for some constant K, which is related to semiconvexity constant of z and,

therefore, of ze in V\ the upper bound on Xe comes from the Maximum

Principle. (We refer to [CIL] for the definition of J 2 ' + ) . Last but not least,

note that

Indeed, since \Dz*\ = 1 almost everywhere, D\xz
eDze = 0 at any point

where z€ is twice differentiable. On the other hand (cf. Lemma A.3 [CIL])

XeD<j>(xe,tc) is obtained as a limit of D\xz
tDzt evaluated at nearby points.

Finally, recall that D<f>(xe,te) = Dze(x€ltg)^ since ze is differentiable at max-

imum points of ze — <f> (again due to the semiconvexity).

Inserting all the information in (5.9) we obtain

,t.) < Cc,

where in the two inequalities above ze and <f> and its derivatives are evaluated

at (x€,te). Letting e —> 0 we conclude. D

Proof of Lemma 5.3: We again only present the proof in the case that z

is an use subsolution.
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If c is larger than the Lipschitz constant of a, it is immediate that eciz is

a subsolution of (5.1), since \Dz\ = 1 yields

a(x - zDz,t) > a(x,<) - cz = a{x,t)\Dz\ - cz.

To conclude let (xj>n)n be a sequence of smooth functions such that rl>n(t) = 0

if t > — ;-,VC > 0 and V>» —• 1 uniformly on compact subsets of (—oo,0].

Using the preceeding lemma, it is easy to check that x/;n(e
ctz) is a subsolution

of (5.1). Letting n —• oo we conclude, since xpn(e
ctz) —* ect(z A 0). Q

6 Asymptotic limits of Reaction-Diffusion equations-
Phase field theory.

Reaction-Diffusion equations of the form

(6.1) <£t-A<£ + /(z,t,<£) = 0 in lR N x(0 ,oo)

arise naturally in many areas of applications like phase transitions, flame

propagations, pattern formations, chemical kinetics etc. In most of these

applications fronts develop for large times as the boundaries of the regions

where the solution <j> of (6.1) converges to the different equilibria of the vector

field / (cf. Fife [Fi]). For a discussion of some cases where the solutions of

(6.1) converge to the different equilibria of / we refer to Aronson, Weinberger

[ArW], Fife, McCleod [FiM] etc. The main issue is to identify the rate at

which cf> converges to the different equilibria. For this, one needs to have a

better understanding of the fronts and in particular, the way they propagate.

In the case / (x , /, </>) = f(<f>), formal results of Fife [Fi] and Caginalp [Cal,2,3]

imply that the fronts propagate with normal velocity

(6.2) v = o + I / c + 0 ( i ) (

when K denotes the curvature.
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Our goal here is to justify (6.2) rigorously in the generality of (6.1). A

way to do this is to scale <f> so that to capture the different terms in the

asymptotic expansion (6.2). To obtain the first term the appropriate scaling

is (x/e,t/e). If a = 0, we then go to the next scaling (x/e,t/e7). These

considerations give rise to singular perturbation problems of the form

(6.3) ft - eA<f>£ + -fe(x, t,<f>€) = 0 in R N x (0, +oo) ,

and

(6.4) <f>e
t-A<t>e + \fe(x,t,<j>e) = 0 in 1RN x (0,+oo),

with initial data

(6.5) 4>e{->0) = <&{•) on RN.

Here <J>Q is a given function, which initializes the front and fe is some approx-

imation of / . Singular perturbation problems of the form (6.3) and (6.4) are

of independent interest for they also arise in models with slow diffusion and

fast reaction, in phase transitions etc.

In the sequel we study the behavior, as e —> 0, of (6.3) and (6.4) under

the assumption that <f>»-» fe{x,t,<f>) is a "cubic" type nonlinearity, i.e. it has

two stable and one unstable equilibria. Typical examples of fe are:

(6.6) / • (* ,« , ? )« 2 ( 9 - c / i ( z , <))(«*-1),

(6.7) r(x,<,?)

and

(6.8) TOM,?) = 2

where 6e,(i 6 WliOO(]Rn x [0,+oo)) are given and n takes values in (-1,1) .
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To simplify the presentation we restrict ourselves to problems where the
second order operator is the Laplacian, although all the arguments can be
modified to apply to more general elliptic operators (under of course suitable
hypotheses). This will be addressed in the future. Finally, we remark that the
case where fe is of "quadratic" type (i.e. fe has one stable and one unstable
equilibrium) has been studied by probabilistic methods by Freidlin [Fr] and,
in greater generality, by pde-type techniques by Evans and Souganidis [ES2,3]
and Barles, Evans and Souganidis [BaES). The latter work actually studies
a general system of reaction-diffusion equations.

We conclude this section with a brief disucssion of the "phase field" ap-
proach to study propagating fronts. This consists of studying first the be-
havior of <f>€ as e -* 0 in (6.3) and (6.4) and then define the propagating
front as the boundary of the regions where the <£c's converge to the different
equilibria of the vector field. The advantage of this approach, which is rather
indirect, is that it avoids any discussion of the empty interior and the non-
uniqueness difficulties at least at first glance provided of course that such a
convergence can be proved. It will become, however, apparent below that the
convergence is closely related to the interior issue. Another perhaps advan-
tage of the phase field approach is that it allows other numerical methods.
This way to study motion by mean curvature was proposed by Bronsard and
Kohn [BrK] and DeGiorgi [Dj. A b}'product of our analysis in the following
sections is that the phase field formulation is equivalent to the level set and
distance function ones, taking into account the non-empty interior difficulty.

7 Formal discussion

In this section we discuss, in a formal way, the essential mathematical diffi-
culties involved in the study of (6.3) and (6.4). To simplify the arguments,
we consider the special case

(7.1) /<(*,*,?) = fo(q) -s6 = 2(q - /0(92 - 1) - e* (0 € JR).
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We begin observing that, for sufficiently small e > 0, there exists
he_{9) < h%{6) < h%(6) such that

f<(x,t,h<_(e)) = f<(x,t,h'0(e)) = f<(x,i,h<+(0)) = 0.

Set

[ m'($) = h'+($) - h<_(6),

(7.2)

where re(^) is chosen so that

q'(0,6) =

A straightforward calculation yields

(7-3) q% + c<(8)q< =

with

(7.4)

<(6)(l +exp(-m«(«)[r 4-r^)])) - 1 (r €

in other words, <f is the traveling wave corresponding to the nonlinearity
/o — e6 which travels with speed ce(0). Indeed if we set

• c (* ,0 = q'(t-<?V)t) in B x (0,00),

then
$, - $ a = /0($) - eO in 2R x (0,oo).

In fact, for any "cubic type" notilinearity there exists a unique pair of trav-
eling wave and speed satisfying (7.3) and (7.4). A detailed discussion of this
fact as well as references will be given in the next section.
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We now return to (6.3) and write the solution ft as

= qe(—,o\ in

A simple calculation yields

pe
r[z*t - e&ze + c*(e)} - pe

rr(\Dz*\2 - l ) = 0 i n # x (0,oo),

where <fT and <frT are evaluated at (z*/e,6).

Analyzing the two terms in the above equation separately, as e —* 0, we

formally conclude that \Dz€\ = 1 and, therefore,

z c (x , t )= signed distance function of x to F (,

where Ft is the interface, and

ze
t-eAze + ce(6)^0 on Tt. ,

Since hl(0) S /i + ee(fi(fi))-' and /i<±(0) S ±1 + c ^ i l ) ) - 1 , (7.2) yields

lim

Therefore, always formally, Ft moves with normal velocity

V = -2/x.

The geometric pde which gives Ff as the zero level set of its solutions is

ut + 2fi\Du\ = 0 in RN x (0, oo).

In view of the discussion in Section 6 to consider (6.4) with the vector

field fe given by (7.1), we need to assume /i = 0, i.e.

Proceeding as for (6.3) above, we write

p = q(—,6) in RN x(0,oo)
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and find

p*r[zi - Az* + c~l<f{$)) - ^q€
rr(\Dz<\2 - 1) = 0 in 1RN x (0,oo),

where g£ and <fTT are evaluated at (ze/e,O). Argueing as before we find
(formally) that z€(x,t) = signed distance function from x to Ft, where Ft is
the interface, and

z\ _ A^ + e-
lc€{e) a 0 on rt.

Using the expressions for /IQ(^), J*±(0) and (7.2) we find

c{6) = le.

Therefore, always formally, Tt moves with normal velocity

3
V = mean curvature + -0 .

The corresponding geometric pde is

8 Traveling waves

Here we discuss the existence and the general properties of traveling waves
for functions tt H-» / e ( i , t ,u ) , which have the property that, for a and e small,
the function u »-» /e(z,2,u) — ea behaves like a "cubic function" of u. More
precisely, we assume that, for a and e sufficiently small, the equation
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has exactly three zeroes: h£_(x,t,a) < he
0(x,t,a) < ke

+(x,t,a). Moreover, we

assume that

/ « ( * , « , - ) - e a > 0 in (h'_,h'o) U (/ie
+,+oo),

(8.1) f'{x,t,-)-ea<0m(-oo,h'_)\J{h'0,h<4.),

with 7 independent of (x,l,a,e).
Since, for fixed (x,f,a,e), the function u •-» fc(x,t,u) - ea satisfies the

hypotheses of Aronson, Weinberger [ArW] and Fife, McLeod [FiM], there
exists a unique pair (9f(r,x,f,o),ce(a.',<,a)) such that

(8.2) ^(r ) I , i l f l ) + ct(I,()a)«;(r,i,M) = / [ ( i , ( , ? t (^ ,M)) -£ ' ' ,

and

(8.3) lirn q'{r,x,t,a) = h'±(x,t,a) and 9
e(0,x,f,o) = fcj(x,t,«);

the second part of (8.3) is necessary to fix qc since (8.2) is invariant under

translation in r.

We continue listing a set of technical assumptions that we will be making

on (gc,cc). We then verify these assumptions for a particular class of / f f 's,

which arise naturally in applications. To this end, we assume that, as e —> 0,

(8.4) qe and ce depend smoothly on (x,f,a),

(8.5) fc±(*,M) — h±(x,t,a), h€
0(x,t,a) -» hQ(x,t,a)

and, either

(8.6) c€(x,t,a)->a{x,t,a),

or

(8.7) -£-V(x,*,a) -* a(.r,f,a), if c\x,t,a) -> 0,
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with all the limits local uniform in (x,f,a). Moreover, if

^ 0 ) and ho(x,t) =

we assume that there exists K > 0, independent of (z,t) , such that, for e

and a small enough and all (x,f),

(8.8) .\a{x,t)-a{y,t)\<K\x-y\.

If (8.7) holds, we also assume:

f (•) \h±t-Ah±\<K

(ii) lim sup [s\q^\ +(8.9)

(in') j - |^ r ( r ,x , f ,a) | + p-|g£(r,£,f,a)| < Ke~ « forall \r\ > 6.

Finally, for all (x,f) and e,a sufficiently small, we assume

(8.10) q€
r > 0 and q*a > 0.

Next we present an example where the above hypotheses hold true. In-

deed consider

= 2(9 - ^e(x,

M is a given function. Let

and define

and cc be as

(8.11) /'(*,*,<?)

where 9C : JRN x (0, oo)

in Section 7 for each (x,

and

It is immediate that (8.4) holds (if 6s is smooth) and that (8.5) holds with

h±(x,t,a) = ±1 and ho{x,t,a) = //; (8.6) holds with a(x , t ,a ) =
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where /i = lim^e. If /i(z,<) = 0, then (8.7) yields a{x,t,a) - %(0(x,t) + a),
provided that 0e(z,<) —> 6(x,t) uniformly. In view of the above, (8.8) needs

(8.12) \0{x,t)-6(y,t)\<K\x-y\ or |/z(z,<) - M(y,*)| < K\x - y\.

To conclude, using the explicit formulae in (7.2) we compute

Since \qe\ < el< and |fM| < £2/v for some /T > 0, (8.9)(ii) holds if 6e is such

that

(8.13) lime[sup(e|^| + e\A9e\ + \D6C\)} = 0.

For (8.12) and (8.13) to hold, it suffices to assume that

(8.14) (0"')e>o is uniformly bounded in C2'\]RN x (0,oo)).

Finally, (8.9)(iii) and (S.ll) hold provided 4c|0c| < 1 which, follows from
(8.14) for £ small.

We conclude this section observing that similar computations are possible
for

(8.15) /e(x,t,9) = 2{0'{x,t)q-?{x1t)W{x,t)q)9 - 1).

9 Asymptotic behavior of react ion-diffusion
equations; the main results.

We next state our main theorem about the behavior of the solution <jf of
(6.3) and (6.4). To study (6.3) we consider / e 's which satisfy (8.1) to (8.6)
and (8.8) and (8.10). For (6.4) we will consider / e 's such that (8.1) to (8.5)
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and (8.7) to (8.10) hold. In either case we will denote by (qe(r,x,t),<f(x,t))

the pair of traveling wave and speed which corresponds to fe and we will

assume

(9.1) a{x,t,a) > a(xyt) for all a > 0.

Throughout the discussion below we will be assuming that

(9.2) <j><(x,0) = g e ( ^ £ l E ° ) , M ) on JRN,

where Fo is a closed set in MN. The last assumption can be removed at the

expense of rather lengthy arguments. We will address this issue elsewhere.

In view of the (formal) discussion in Section 7 we expect that the limiting

behavior of <t>€ will be governed by the geometric pde's

(9.3) ut-a{x,t)\Dn\ = 0 in MN x (0,oo)

for (6.3) and

(9.4) ut - ( A , - {D2U^U)) ~ a ( x , I ) | ^ | = 0 in «" x (0,oo)

for (6.4), with (by (9.2)),

(9.5) ti(z,0) = <f(ar,ro) on RN.

Theorem 9.1: Let <f>e be the solution of (6.3), (9.2) with /* satisfying (8.1)

to (8.6) and (8.8), (8.10) and (9.1). Ifu is the solution of (9.3), (9.5), then,

(9.6)
(it) <ft'(x,t)-* h.{x,t) if u(x,<)<0,
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with the limits local uniform in {(xyt) : u(x,t) ^ 0}.

Theorem 9.2: Let <f>e be the solution of (6.4), (9.2) with f€ satisfying (8.1)

to (8.5), (8.7) to (8.10) and (9.1). If u is the solution of (9.4), (9.5), then,

locally uniformly in {(x,<): u(x,t) ^ 0}, as e —• 0

(t) ^(s, t)-Wi+(s,<) if *(*,«)> 0,
(9.7)

(it) <f>*(x,t)->h-(xj) if u(x,t)<0.

In the special case where fe(x,t,u) = 2(u - fi)(l - u2), Barles, Bronsard

and Souganidis [BaBS] studied the limiting behavior or of the solutions <f>e of

(6.3). Gartner [G] also studied the same problem when / c (x , t ,u) = / (x , t ,u )

by a combination of probabilistic and analytic techiques. Evans, Soner and

Souganidis [ESS] studied the limiting behavior of <f>€ in (6.4) when

f(u) = 2u(l — tx2); this problem was first studied in the context of radially

symmetric functions by Bronsard and Kohn [BrK]. Finally, Chen [Ch] and

DeMottoni and Shatzman [DS] obtained results similar to Theorems 9.1 and

9.2 (for special cases of / ) assuming, however, that Tt is a smooth surface.

No such assumption is made here.

We conclude this section remarking that actually one can obtain more

precise results than (9.6) and (9.7). Indeed, it is possible to obtain WKB-

type expressions for <f>e of the form

This is done below in Section 10.1 for some simple case. The arguments

for the general case are, however, rather complicated and will be presented

elsewhere.
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10 Proofs.

Instead of presenting a general proof for Theorems 9.1 and 9.2, we will first

give some less general but more direct arguments utilizing the results of

Section 5. At the end we will turn to the general case. The reason for doing

this is that in the less general cases it is possible to work directly at the

e = 0 level, as opposed to the general case where we need to build super- and

subsolutions for e > 0. The latter approach is tying us down to cases where

the Maximum Principle holds.

10.1 The (:r,<)-independent case.

Here we assume that fc and therefore q€ is independent of (x,i) and is given

by (6.6) for (6.4) and (6.7) for (6.3). As a matter of fact the traveling wave

in either case is q(r) = tanh(r)(r € Ft) and the speed 2efi and 2/z for (6.6)

and (6.7) respectively.

Following the discussion in Section 7, if

(10.1) <}>€ = <?(-) in RN x(0,oo),

then z€ solves

,z€

(10.2) z\ - eAz* + 2q{T){\Dz€\2 - 1) + 2/i = 0 in RN x (0, oo)

in the case of (6.3), and

(10.3) z\ - Aze + -q{-){\Dze\2 - 1) + 2/x = 0 in 2RNx(0,oo)

in the case of (6.4), with, in either case,

(10.4) ze{x,0) = d(x,To) on RN.

We want to study the behavior of zs as e —> 0- To this end, we assume for the

moment that (zc)c>o is locally uniformly bounded in IRN x (0,T) for some
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T > 0 and we proceed. Since (10.2) and (10.3) are translation invariant with

respect to x, it is immediate that

(10.5) \Dze\ < 1 in MN x (0,oo).

On the other hand, the form of (10.2) and (10.3) makes any kind of estimate
z\ hopeless. To circumvent this difficulty we use the, by now classical, half-
relaxed limit techniques described in Barles and Perthame [BaP] (see also
[CIL]), i.e. we consider the functions

(10.6) z*(x,<) = limsupze(x,,s) and zm(x,t) = liminf ze(x,s).
i -T • - <

We begin with (10.3) which can be rewritten as

(10.7) z\ - Az< + 2// = -lq{£)(\Dz*\2 - 1).

The form of q and (10.5) yield

- - ? ( - ) ( | £ > 2 * | 2 - l ) > 0 if ze >0

and

| 2 - l ) < 0 if z€ < 0 .?(

Using (10.5), (10.7) and the above inequalities we get that zm is an use sub-

solution of (9.4) with a = — 2/J and a solution of 1 — \Dz\ = 0 in {z < 0}

and that zm is a lsc supersolution of (9.4) with a = —2/x and a solution of

\Dz\ — 1 = 0 in {z > 0}. That zm (resp. zm) is a subsolution (resp. superso-

lution) of (9.4) in {z < 0} (resp. {z > 0}) follows from (10.7) and the above

inequalities, that z* (resp. zm) solves 1 — \Dz\ = 0 (resp. |Z?z| — 1 = 0) in

{z < 0} (resp. {z > 0}) follows the passage to the limit in both (10.5) and

(10.7).

Theorem 5.1 implies that zm < d2 in {z9 < 0} D {u < 0} and zm > dx

in {z* > 0} D {u > 0}, where u is the solution of (9.4) with a = —2//.

Moreover if the "empty interior11 condition holds, Theorem 5.1 yields

z*(.,0 = *.(•,*) = <*(-, r\)
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therefore the result.

In the case of (10.2), we rewrite the equation as

z\ - eAz< + 2fx\Dz'\ = -(\Dz<\ - l)(2/i + 2q(j))(\Dz'\ + 1))

and pass to the limit using sign type arguments, similar to the first case but

for the limiting equation. Indeed, since fi € (—1,1), we obtain

zt + 2fi\Dz\ < 0 in {z < 0} and zt + 2fi\Dz\ > 0 in {z > 0},

where above we have suppressed the z* and zm notation. The arguments of

the proofs of Theorem 5.1 and Lemmas 5.2 and 5.3 yield

{zm < 0} D {u < 0} and {zm > 0} D {u > 0};

we conclude as before.

It remains to prove the uniform local bound on ze. Such a bound is easy

for (10.2) and we leave it up to the reader; here we concentrate on (10.3). Let

t/> : R -* R be a C2 function such that xj> = 0 in [0,+oo) and V>(-°o) = - 1

with T/?' > 0 in (—oo,0) and t/>" bounded and consider the function u>c defined

by Z5t = ip(z€). In view of the choice of t/% it is clear that — 1 < uje < 0, i.e.

ZJC is bounded. Next we define

w*(x,/) = limsup Loe(x,s)\

w* is well-defined and W = —1 if zm = —oo,tIT = xp(zm) if z* € (—oo,0)

and W = 0 if z* > 0. Combining the above with arguments from the proof

of Theorem 5.1, it can be shown that W is a subsolution of the two sided

variational inequality

/ ( D 2 w D w \ D w ) \ A l r . lxx „
max(tr,min(u; + 1,wt - \Lw - * r ^ ^ LJ + 2fi\Dw\)) = 0.

A direct modification of the usual comparison results yields

uT <tl>(u) in RN x (0,oo),
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where u is the solution of (9.4) with a = —2/z. Argueing in exactly the same
way with xx^. = — \f)(—ze), we find

tx_M) > -ip{-u) in JRN x (0,oo).

We conclude as follows: Let f* = sup{i > 0: there exists x G 1RN such that
u(x,*) > 0}. Iff < f% the sets {u > 0} and {u < 0} and, therefore, {z* < 0}
and {z. < 0} are nonempty. Then there exists points in a bounded region of
MN (depending only on u) such that zm < 0 and z. > 0. The local uniform
bound then follows from (10.5) for all T < t\ If t > f, then zm < 0 and
therefore <£* —* — 1 at any such points.

D

10.2 The (x, t)-dependent case

We now study (6.3) and (6.4) in the case where fc is given by (6.6), (6.7) and
(6.8). We only give the proof for (6.4) for fe given by (6.6); the other cases
can be treated similarly. First we recall that the traveling wave qc associated
with (6.6) is still q€ = q = tanh. As before we perform the change <}>€ = 9(7-)
and find the zc satisfies

(10.7) 4 - A z c + 2/Ka:,0 + - 9 ( - ) ( | ^ e | 2 - l ) = 0 in RN x(0,oo)

with

re(.T,0) = <f(x,ro) on RN.

The main difference between this case and the (x,t)-independent one is that
(10.7) is not translation invariant with respect to x. Instead of (10.5) here
we have

(10.8) \Dze\<eCt in JRNx(0,oo),

where C is the Lipschitz constant of 2/* with respect to x.
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Next we introduce the function z* defined by

where 77 6 C2 is such that: 17(0) = 0,?/ > 1 in (0,oo),t/ < 1 in (—00,0) and
/? > 77" > 0 and 17 > — Z?""1 on 2R for some /? > 0. Since TJ is bounded from
below, it is clear that that infimum in the definition of £c is achieved for some
ye{x)]y* also depends on t but we suppress this here. We now perform the
usual arguments for this type of inf-con volution. If yc{x) ̂  z, then

* ~

hence

(10.9) 9(—)(|Dze|2 - 1) = q(—)( \ - 1) < 0 at (yc(x),t).

On the other hand, if y'(x) = x and ze{x,t) > 0, then \Dze{x,t)\ < 1 and

(10.10) q(—){\Dze\7-\)<0.

Combining the last two inequalities we obtain

(10.11) 4 - Azf + p\Dz<\2 + 2iL(y'(x),t) > 0 in {zf > 0}.

As in the previous section we assume that the 2ff's (and therefore the z*'

are locally uniformly bounded in FLN x (0,oo) and we consider

zm(x,t) = liminf ze(x,s) and z(x,t) = liminf^c(x,s).
*—t

Letting e —• 0 in (10.7) we get

(10.12) sgn (z.)(\Dzm\ - 1) > 0 in RN x (0,oo).
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We also need to send e -> 0 in (10.11). To do so we assume that ye(x) - • y(x)

for some y(x) as e -> 0 (since the family (y*{x))e is bounded, yen(x) - • y(x)

for some y(x) at least along some subsequence); hence

\] ((),t)>0 in {z

Now we remark that

the definitions of zc and z together with (10.9), (10.10) and (10.12) and the

properties of rj yield zm(y(x),t) = 0 and, therefore, £(z,t) = d(z, {zm = 0}).

We conclude combining the arguments of the previous section and the ones

of the proof of Theorem 5.1 and letting fi —• 0.

10.3 The general case

Unfortunately we cannot prove Theorems 9.1 and 9.2 in the case of general

fc by a direct passage to the limit; one of the main difficulties being the

lack of an explicit formula for the traveling wave qe and its speed <f. Here

we will proceed by constructing sub- and super-solutions for (6.3) and (6.4)

following ideas introduced in Evans, Soner and Souganidis [ESS]. As before

we will only present the proof of Theorem 9.2; Theorem 9.1 is proved in

a similar way with some modifications noted below. We begin with some

preliminary facts.

For fixed 6, a > 0, let U6A be the solution of

(10.13)

where

(xtt,ptX) = -tr(X) + ^ ^ - a(x,t)\p\

45



If

ds<a(x,t) = d(x,{y.us>°(y,t)

Theorem 3.1 yields that

(10.14) 4 ' ° - Ad 5 > a - a(x - ds*Dds'\ t,a)>0 in

Following the proof of Lemma 3.1 of [ESS], we define

(10.15) w6'a(x,t) = rls(d
s<a(x,t)),

where, as in [ESS], tfa : M —* JR is a smooth function satisfying

vs(z) = -6 if z < 6/A,

Vs(z) = z - 6 if z > 6/2,

0}.

(10.16)
Vs(z) < - f if z < (5/2,

0 < rj's < C and |jfo| < C6 on

where C > 0 is independent of 6. A straightforward modification of Lemma

3.1 of [ESS] together with (10.15) yields the following Lemma.

Lemma 10.1: There exists a constant C, independent of 6 and a, such that

(i) w\'a - Aws<a - a{x,t,a)\Dws-a\ > - f in RN x [0,T),

(ti) w\'a - Aws'a - a(x - ws'aDws<a,t,a) > 0 on {ds>a > f } ,

and

(10.18) \Dws'°\ = 1 in

where t* is the extinction time of{us'a = 0}.
D

2'
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Finally, we define

(10.19) $ c ( z , 0 = < ?
c ( ^ M ) , : r , f , a ) on ^N x [0,oo),

where, for notational simplicity, we do not exhibit the dependence of $e on
6 and a.

Proposition 10.2: Assume that fc satisfies the hypotheses of Theorem 9.2.

Then, for every a > 0 ,$ c is a supersolution of (6.4), if £ < eo(6,a) and

6<60(a).

The proof of the proposition is similar to the one of Theorem 3.2 of [ESS].
The form, however, of $r is different than the one used in [ESS]. As usual we
will present the proof as if w6*a has actual derivatives, keeping in mind that
actually everything has to be checked in the viscosity sense; we will leave it
up to the reader to do so.

Proof: We need to show that

for e < So(6,a) and S < 60(a). Using the equation for g*(f,:r,t,a), we
calculate:

-t e7 e e7 ''
(10.22)

where <fT and <frT are evaluated at ( ^ , a : , f , a ) , with

J'(x, t) = (q't + -Dq;

In view of its definition, it is immediate that |DuAa| < C for some C > 0.

Therefore, by (S.9)(ii),

(10.23) Je = -^ as £ —» 0 uniformly in (x,t,6,a).
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We proceed by examining the next three cases.

Case 1: § < d*<a < 28

Using (10.18), the Lipschitz continuity of a with respect to x, the fact

that ds'a < 28 and the form of rjs, we get

ws
t'

a - Aws'a - a(x,t,a) > -C6 and \Dw6'a\ = 1.

Substituting in (10.22) and employing (10.23) we obtain

(10.24)

^ to(C6+ C ' ( J^Q ) + a(x,t,a)) + a +

where again qe
T is evaluated at ( 2 £ ^,x , t ,a ) . Since e"lc€(x^t^a) —* —a(a:,t,a)

as e —* 0, uniformly in (a:, f, fl), we see that the right side of (10.24) is positive

if e and 6 are sufficiently small.

Case 2: ds<a < 6/2

In this case the choice of 7]$ yields

uM < -6/2.

Consequently, (8.9)(iii) yields that

-|«J( — i ^ « i f l ) l + 7jl9rr( — , * i M ) l < AC «

for some appropriate constant K. Using that |Z)uAa| < C as well as (10.17)

in (10.22) we obtain

&t - A$c + l/«(x,*,*e) > / f c - ^ I - l - c] + o(l) + - , as £ -> 0;

for £ small enough the right hand side of the above inequality is again positive.

Case 3. d6* > 26.
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In this case we have w6'* > 6. Using (10.17) and (8.9)(iii) we conclude as

in the previous case.
D

We are now ready to give the proof of Theorem 9.2.

Proof of Theorem 9.2: Fix (zo,*o) € RN x [0,f) such that u(xo,to) =
—/? < 0. The stability of solutions of the geometric pde's yields that us'a —> tx,
as 6, a —* 0, uniformly in (x,f). We choose, therefore, sufficiently small a and
6 so that

(10.25) ii6'a(xo,to)<-7;<0.

Let $ e be given by (10.19). In addition to being a supersolution of (6.4) for

sufficiently small e > 0, $ff satisfies

on

where the last inequality follows from the fact that

It follows by the standard comparison theorem for viscosity solutions and

(8.10) that

$ e >4>c in 2RA'x[0,r).

On the other hand, (10.25) yields ds'a(x0,t0) < 0; hence

p(z o >*o) < limsup$e(xo,<o) = h-(xo,to).
e—0 e—0

To prove the reverse inequality we consider $(x,f) = h-(x,t) — 7 for some

7 > 0. Since fc. € C2 ' \

1
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By (8.1), the right hand side is negative for small e and 7. Hence by the
maximum principle

liminf^e(x,f) > / i . (x ,< ) -7 for all (z,*) and 7 > 0.
e—0

We conclude by letting 7 —• 0. A simple modification of the above arguments

yields that (f>€ —• /i_ locally uniformly in {u < 0}.

The fact that <f>e —• /i+ in {u > 0} follows in a similar way, provided we

construct a subsolution of (6.4).

To prove Theorem 9.1 we need to consider the traveling waves associated

by fc — a and to argue about a lower bound on — eAwa*6. The latter follows

from the facts that wa<6 ̂  0 iff da<6 > £ and Ada>6 > - ^ in {da>6 > 0}.

D

11 Possible applications

In this section we briefly discuss two applications where (6.4) arises naturally,

with fe of the form

(11.1) f€(z,t,q) = 2q{q7 - 1) - £0c(x,t),

which in view of the discussion in Section 8 satisfies the desired properties,

provided (6£)€ is bounded in C2'1. On the other hand, we do not know

whether (6e)c satisfies this necessary condition.

Example 1: Volume constraint

Let ft be a bounded domain in 1RN with an outward normal vector

n(x),x € dCt and consider the reaction-diffusion equation

(11.2)

- W + $<t><{{<t><? - 1) = a'(t) in ft,

— • = 0 on
dn

50



where

(11.3) «•(.) = * •« ' ( ,< ) ) = JJ

If we set

(8.13) reduces to

lim£2su

We do not know whether this estimate holds. Formally the limiting equation

is

V = mean curvature + a(f) in ft,

with Neumann boundary condition on #ft (see Giga, Sato [GS]). If Tt is a

solution of this equation, then

Volume enclosed by Tt = / dx = - lim / \<j>€{x,i) + \)dx.
J{u{-,t)>o} 2 do Jn

Moreover,

| jT (^ + l)dx = / J A ^ - i / 0 (^ ) + \<}dx = 0,

i.e. the volume of the region enclosed by Tt is constant in time. For a formal

detailed analysis of this problem be refer to Rubinstein and Sternberg [RS].

The pair (F t,a(f)) is called a volume preserving mean curvature flow.

The associated geometric pde in 1RN is

When ^ = 2, Lagrange multipler Q(<) is given by the explicit formula

a(t) = 2xN(t)/L(t),

where N(t) is the number of disjoint of connected parts of T(t) and L{i) is

the length of F t. This formula indicates that the Lagrange multiplier may
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in general be discontinuous in time. If however we do not insist that Tt

is the boundary of a region and replace a(t) by the above formula, then a

complete theory is available. In this framework the solution may develop

self-intersections, which are not desirable in a physical problem.

In Section 4 we presented an example of nonuniqueness for the volume

preserving flow by mean curvature.

Example 2: Supercooled Stefan Problem.

We consider the problem of a melting or growing crystal in a melt. Let

6(x, t) be the appropriately scaled temperature and C{t) C RN be the region

occupied by the crystal. Gurtin [Gu] derived the equation

(11.5) %j\0{x,t) + aCit){x)) = A0(z,*) in (0,oo) x JRN,

with the free boundary condition

(11.6) normal velocity of Tt = curvature —6(x,t) on Tt,

where the latent heat t > 0 is a given quantity and ^c(t) is the characteristic

function of the set C(t). In general anisotropic versions of the above equation

are more appropriate and we refer to Gurtin-Soner [GuS] for a discussion of

the generalizations of (11.5)-(11.6), as well as appropriate notion of solution

and the underlying physics. Luckhaus [Lu] and Almgren, Wang [A1W] also

studied a similar problem in which (11.6) is replaced by the Gibbs-Thompson

relation

0 = curvature — 0 on Tt.

The system (11.5) and (11.6) can be approximated by the reaction diffu-

sion equations

(11.7) 0; + ^# = A0r in RN x (0,oo),
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and

(11.8) # _ A ^ + 1 [ / O ( ^ ) - | f#) = 0 in 2RNx(0,oo).

The above approximation was first proposed by Caginalp [Cal,2,3]. The
convergence of this system was proved by Caginalp-Chen [CC] in the radial
case by a method based on knowing that the limiting motion is classical.
Indeed in the radial case the interface Tt is a sphere and (11.6) reduces to an
ordinary differential equation. In general, we do not expect I\ to be a smooth,
classical solution of (11.6). The convergence of the system (11.7)-(11.8) is an
open problem.
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