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ABSTRACT

Kinematical definitions of deformations with and without microslip are presented.
Transformation properties for such deformations are shown to follow directly from their
definitions, and Burgers vector is related to the deformation without microslip. A limit
procedure provides a concept of stress without microslip and leads to a natural concept of
elastic response. Various decompositions of local deformation into elastic and plastic parts
proposed in the literature are shown to be compatible with this kinematical setting.

INTRODUCTION

One of the principal methods for incorporating the inelastic behavior of metals into
continuum models of materials is to employ classical notions of deformation and stress in
describing the kinematics and dynamics of an inelastic body, but to introduce additional
measures of deformation, usually called elastic and plastic deformation, into the constitutive
equations for the material under consideration. Although generally successful, this approach
has drawbacks that merit consideration: 1) The variety ol possible choices of elastic and
plastic deformation and the difficulty in comparing models based on different choices has led to
a lingering controversy in the literature; 2) the underlying classical kinematics does not
directly incorporate the physical processes of slip at the microscopic level.

My goal in this paper is to present a different method for incorporating the inelastic
behavior of metals into a continuum model that is not subject to these drawbacks. This utilizes
the research still in progress of Del Piero and Owen (forthcoming) on the kinematics of
fractured continua in which classes of deformations broad enough to include explicitly slip at
the microscopic level are defined and developed.

In the second and third sections I describe a collection of deformations called invertible
structured deformations that includes classical deformations, and I show how the results of Del
Piero and Owen (forthcoming) lead to natural notions of deformation without microslip and
deformation due to microslip. All of the considerations in the second and third sections are
purely kinematical, so that these new notions of deformation are not variables that appear for .
the first time in constitutive equations. Among the kinematical properties of invertible
structured deformations summarized in the second section is the Approximation Theorem,
which shows that each invertible structured deformation is a limit of "piecewise classical
deformations", or "simple deformations". It is this property of invertible structured
deformations that permits one to interpret their effect on a body in terms of complicated slip
mechanisms occurring in the approximating simple deformations. The other results in the
second section motivate and justify not only multiplicative, but also additive decompositions of
local deformation into parts without microslip and parts due to microslip. All of the terms and
factors in these decompositions have definite transformation properties under changes in
observer and reference configuration that are direct consequences of the kinematical definitions.

In the fourth section, new results are given that lead to a notion of stress without
microslip for an invertible structured deformation, This stress takes into account differences
between a given element of surface area in the deformed configuration and a corresponding
element of surface generated by an approximation to the given invertible structured
deformation. A passage to the limit yields a simple formula for the stress without microslip in
terms of the Cauchy stress and the left microslip tensor introduced in the third section.

The discussion in the fifth section shows how the availability of both deformation
without microslip aiid stress without microslip provides a natural concept of elastic response for
a body undergoing invertible structured deformations: the stress without microslip is a



function of deformation without microslip. If the body undergoes a classical deformation and,
in particular, undergoes no microslip, then the elastic response reduces to the classical relation:
the Cauchy stress is a function of the deformation gradient. The relation between stress
without microslip and deformation without microslip is equivalent to an equation that gives the
Cauchy stress as a function of deformation without microslip and of deformation due to
microslip in which the dependence on deformation due to microslip enters through a
multiplicative factor (the transpose of the left microslip tensor).

The final section of the paper is devoted to showing how various decompositions of
deformation into elastic and plastic parts that have been proposed in the literature (Lee and
Liu, 1967), (Clifton, 1972), (Nemat-Nasser, 1979), (Green and Naghdi, 1965) fit naturally into
the present tramework of invertible structed deformations. If for each proposed decomposition
the elastic deformation in that decomposition is identified as deformation without microslip,
then the plastic deformation in that decomposition is easily related to one of the measures of
deformation due to microslip introduced in the third section, and the transformation properties
of both elastic and plastic deformation immediately follow. Thus, in the setting of invertible
structured deformations, all the decompositions considered in the last section are consistent
with one another: none has any special status, and each one identifies a particular measure of
deformation due to microslip in the present theory.

The present approach has some connections with theories of continuous distributions of
dislocations and theories of defective crystals. The emergence in a natural way of Burgers
vector, as shown in relation (10), shows that important physical ideas incorporated into
theories of continuous distribution of dislocations (Kroner, 1958) have counterparts in the
kinematics of fractured continua (Del Piero and Owen, forthcoming). Within the class of
invertible structured deformations described here one can identify a smaller collection of
deformations, the neutral deformations discussed by (Davini and Parry, 1991) (Fonseca and
Parry, forthcoming): these correspond in the present theory to, the invertible structured
deformations whose right microslip tensor is the gradient of a vector field.

INVERTIBLE STRUCTURED DEFORMATIONS

Let a region <A in space represent a reference configuration for a body. An invertible
structured deformation from *A is specified by giving a deformation g and a tensor field G.
The fields g and G are required to satisfy

detG = detVg (1)

throughout *A, where det denotes the determinant and v the gradient. For reasons to be
discussed in detail in the next section g is called the macroscopic deformation, G is called
the local deformation without microslip, and (1) then has the interpretation: local volume
changes associated with macroscopic deformation are accounted for entirely by local volume
changes without microslip.

Let s denote a simple shear of a rectangular block 31 with unit height; in Cartesian
coordinates,

= (xx + a x3, Xg, x3) (2)



with a > 0, and consider two invertible structured deformations: (s, vs), called a classical
simple shear, and (s, I), called a simple shear due to microslip. Here, I is the identity tensor.
Results presented below justify the following description: the simple shear due to microslip is
accomplished as if the body were sliced into infinitely many, infinitely thin parallel slabs, each
of which is rigidly displaced an infinitesimal amount parallel to itself, whereas the classical
simple shear is accomplished by smooth deformation without slicing.

The collection of invertible structured represents a broadening of the collection of
classical deformations used in continuum mechanics. In fact, classical deformations are
invertible structured deformations of the form (g, vg), i.e., deformations in which the local
deformation vg is the same as the deformation without microslip G. Invertible structured
deformations were introduced by Del Piero and Owen (forthcoming). We here need only
consider a few of the principal results of that study.

Approximation Theorem: Every invertible structured deformation is a limit of simple
deformations.

A simple deformation is determined by giving a "piecewise classical deformation" f which
fractures the body into pieces along crack sites K in ji and then deforms each piece via a
classical deformation. For example, the rectangular block 9t undergoes a simple deformation
(a , s ) if it is sliced into m slabs by m—1 equally spaced parallel planes with the slabs

then displaced by parallel translations giving relative displacement of magnitude c / m t o
adjacent slabs. Here, the crack site c is the union of the slicing planes, and the mapping s

displaces each slab by a translation. It is natural to think of s as a shearing displacement of

a deck of cards, where each card represents one of the m slabs. The term "limit of simple
deformations" in the statement of the Approximation Theorem means that there is a sequence
m i—• (K , f ) of simple deformations such that the given invertible structured

deformations (g, G) satisfies

g = l i m fm (3)

G = 1 im vfm (4)

along with the following condition on the sequence of crack sites m i—• K : no point

x in ji occurs in all the crack sites K. for all j > m for some m = m(x). The limits in

(3) and (4) are taken in the sense of Lw — convergence of deformations and tensor fields.
Relation (3) means that the sequence m »—• f of piecewise classical deformations

approximates the macroscopic deformation g to within any desired accuracy, and relation (4)
means that the gradients vfm (away from the crack sites * m ) approximate the local
deformation without microslip G as accurately as desired. For example, the deck of cards



sequence m •—• (<rm, s ) satisfies
m' m'

and

s m = s (5)

1 im v s m = I, (6)

the latter because vs = I for all m. In fact, the simple shear due to microslip (s, I) is the

limit of the " deck of cards" sequence m i—• (trm, sm) of simple deformations. This

conclusion justifies our earlier description of (s, I) in terms of an "infinite deck of
infinitesimally thin cards."

It is important to realize that no crack sites are present in the description of an
invertible structured deformation (g, G), even though crack sites do occur in the description
of the approximating simple deformations (/cm, fm). This fact is mathematically accounted for

by the condition on m *—• /em described above, and it is best understood by regarding the

crack sites K as vehicles for implementing slip at the microscopic level: the vehicles K

leave no macroscopic trace as fractures but do leave a macroscopic trace through the difference

vg - G = v l i m f m - l i m v f m , (7)
!&"• GD m ^

when this difference is non-sero. This fact is expressed by the following result from
(Del Piero and Owen, forthcoming).

Characterization of the zone without microslip: the relation vg = G holds throughout a given
region 3 in J6 if and only if the invertible structured deformation (g, G) is a limit of a
sequence m i—• (* , fm) of simple deformations whose crack sites * m all are disjoint from

the given region 3L

The largest region in *A on which Vg = G holds is called the zone without microslip for (g,
G), and (7) tells us that this region is characterized by the relation

l imVf m = V l i m f m . (8)
m~* CD

For the classical simple shear (s, Vs) of 9t, the zone without microslip is all of 9L, while for
the simple shear due to microslip (s, I), the zone without microslip is empty.



The next result from (Del Piero and Owen, forthcoming) gives a further relation
between Vg - G and the presence of crack sites.

Fundamental Theorem of Calculus for Structured Deformations: On line segments
[ ]

* 2
( v g ( x ) - G ( x ) ) d x = l i m E » ( « ) ] ( 9 )

where the integral is a line integral over the segment [xp X2] and the sum E Pm( z
m) l **

zm
(finite) sum of the jumps of the deformation fm at points z m in [x^ X2] where fm is

discontinuous.

Each jump [f (z )] occurs only when the crack site K intersects the segment [x^ x2], so

the line integral in (9) provides a further trace of the crack sites m •-—• K . When (9) is

applied to a closed polygonal path p, the line integral of vg vanishes and one obtains

-<fG(x)dx = l i m £ [ f m ( z m ) ] . (10)
m-B zp m - B z m

This relation identifies — d) G(x)dx as an analogue of the Burgers vector employed in materials

p
science and in theories of continuous distributions of dislocations in continua (Kroner, 1958).

DEFORMATION WITH AND WITHOUT MICROSLIP

The Approximation Theorem discussed above tells us that, for each invertible structured
deformation (g, G), there is a sequence m 1—• (*;m, f ) of simple deformations

satisfying (3) and (4). The latter relation tells us that G is a limit of deformation gradients
Vfm computed away from the crack sites * m and, hence, not affected by the jumps in f

that can occur only across the crack sites. For example, each card of the "deck of cards"
example, translates rigidly relative to the others, so that Vfm = I and G = l i m Vf = I;

in-*©
thus, G is not affected by the relative slip between the cards in the deck at any stage in the
approximations as m —>©. For these reasons we earlier have described G as {local)



deformation without microslip.

Because G is a limit of deformation gradients Vf , the following transformation laws

for G are immediate consequences of those for Vf :

Transformation law for G under change in observer.

G —i QG (11)

where Q is the orthogonal tensor associated with the change in observer.

Transformation law for G under change in reference configuration:

G —i GH (12)

where H is the tensor associated with the change in reference configuration.

The deformation g = 1 im f will be called the macroscopic deformation, and Vg

will be called (macroscopic) local deformation associated with (g, G). Relations (11), (12), and
the usual transformation laws for deformation gradients tell us that the local deformation Vg
and the local deformation without microslip G transform in the same way under changes in
observer and under changes in reference configuration.

It is important to use both the local deformation Vg and the local deformation without
microslip G associated with (g, G) to define and study various measures of "deformation due
to microslip". We here shall consider three such measures M *, M , and M defined in terms

of Vg and G via the relations

Vg = M^ G (13)

Vg = G Mr (14)

and

Vg = G + M. (15).

Although the relation (15) is an additive, rather than a multiplicative relation of the
type (13) and (14), relation (15) is a natural decomposition of local deformation for two
reasons. First of all, because M = Vg — G and because Vg and G have the same
transformation laws, it follows that Vg, G, and M dU transform in the same way under
changes in observer and under changes in reference configuration. Second of all, the relations



(9) and (15) yield the formula

*2
f M(x)dx = l i m S [ f j z j ] (16)

J x , m-*m z_1 *" "" 'm

and we recall that l i m £ [f ( z , l is the limit of the sum of the jumps in f on the li
1 m m m

zmsegment [xj, Xg]. Therefore, integrating (15) from x1 to Xg along [x.^ Xj] yields the relation

g ( x 2 ) - g ( x 1 ) = | G(x)dx + | M(x)dx, (17)

f2
and (16) then tells us that M(x)dx represents the portion of the relative deformation
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g(x2) — g(x^) that is due to microslip. Consequently, we are led to call M the (local)

deformation due to microslip.

We turn now to the multiplicative relations (13) and (14) that define M^ and Mr:

Mr = G^1 Vg. (19)

The tensors M^ and Mr will be called the left—microslip tensor and the right—microslip

tensor, respectively, for (g, G). They arise naturally in the following decompositions for the
given invertible structured deformation (g, G):

(g, G) = (i, M^1) o (g, Vg) (20)

(g, G) = (g, Vg) o (i, M ; 1 ) (21)



Relation (20) depicts (g, G) as being carried out first by performing the classical deformation

(g, Vg), followed by the invertible structured deformation (i, M^ ), where i denotes the

identity deformation: i(x) = x, for all points x. The invertible structured deformation

(i, MT ) is called a pure microslip, because no material points are moved, and yet, for

(i, MT ), the deformation due to microslip need not be zero. Similarly, the invertible

structured deformation (i, M~ ) in (21) that precedes the classical deformation (g, Vg) is .

also a pure microslip. Thus, we see that the microslip tensors M^ and Mr determine the

pure microslips that occur in relations (20) and (21). Moreover, there are simple
transformation laws for M, and Mr that follow from those for Vg and G:

Transformation laws for M * and M under changes in observer.

M ^ Q M ^ QT (22)

Mr - Mr. (23)

Transformation laws for M» and M under changes in reference configuration:

M^ —»M^ (24)

Mr —» H^MjH (25)

It is worth recording here the microslip tensors M«, M and the deformation due to microslip

M for (s, I), the simple shear due to microslip:

M^ = Mr = Vs (26)

M = V s - I . . (27)

Finally, we note the following consequence of (1), (18) and (19):

det Mr = det M^ = 1, (28)



so that there is no volume change associated with the pure microslips (i, M^ ) and

(i, M~*) in (20) and (21). Indeed, this justifies our use of the term "microslip" in place of the

term "microfracture" used in the discussion of general structured deformations
(Del Piero and Owen, forthcoming).

STRESSES WITH AND WITHOUT MICROSLIP

We wish now to explore how the microslip that is included in the kinematics of
invertible structured deformations can affect the measures of stress that enter into constitutive
equations that describe the inelastic behavior of materials. The following simple consideration
suggests that stresses do need to be reexamined when microslip occurs. Imagine slicing by a
plane x. = constant the image s(&) of the rectangular block 31 under the simple shear due

to microslip (s, I), with s given by (2). The smooth surface df in s(#) so obtained is a

rectangular region in a plane x. = constant whose preimagine s~" {df) is a slanted

rectangular region in a plane no longer parallel to df. To examine the effects of microslip, we
approximate (s, I) by a piecewise—rigid deformation (<r , sm) (the shearing of a deck of

cards). Within the j card, s (<f) determines a smaller slanted rectangular region which,
under the piecewise rigid deformation s , remains slanted, i.e., not parallel to the plane

x. = constant. Thus, the image under s of the slanted rectangular region s"~ {df) is a

parallel collection of m smaller, slanted rectangular regions that approximate the rectangular
region G/, much as the parallel slanted slats of a partially opened Venetian blind approximate
the flat, vertical rectangular region defined by the outside border of the blinds. Moreover, the
angle of slant is independent of m, and so represents a correction to the normal of df due to
the presence of microslip. Thus, away from the slip planes, i.e., within one of the cards, the

contact surface s (s~" {df)) would differ from df.

These considerations lead to the following problem: given an invertible structured
deformation (g, G), and a smooth surface df in %{ji) with normal vector field n, determine

how the contact force T(y)n(y)da associated with a given (Cauchy) stress field T
*df y

should be corrected for the presence of microslip. A natural outgrowth of the considerations in
the previous paragraph is the following solution to this problem: find a sequence
m •—• (K , f ) of simple deformations that approximate (g, G) and use the following limit

l i m L , - 1 T(z)N (z)cU (29)(
m
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as a correction to | T(y)n(y)da . The surface fm(g \&) \ /cm) represents the material

points g (G/) that are away from the crack site * m , placed in the positions determined by

the deformation f that approximates g. Thus, each point z in fm(g~ {&) \ * m ) is away

from the images of the crack sites, and the corresponding normal vector N (z) to

f (g (G/) \ K ) will differ from the normal vector n(y) to <2f at y, with y and z

related by

»= ijf\y))- (so)

This relation tells us that

N m( z ) d A z = d e t(V( fm ° S~1)(y))(V(fm o g- 1)rT(y)n(y)da y (31)

where we have used the transformation law for elements of area. By using the chain rule we

obtain from (31), with x = g"~ (y),

= det (Wm(g-1(y))(Vg)-1(y))(Vfm(g-1(y))(Vg)-1(y))-Tn(y)day

as m —> GD. This relation, together with (1) and (18), tells us that

1 im (Nm(z)dA2) = M^(g-1(y))n(y)da (32)
m» J
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so that
< J ( g - 1

1 im f t T(z)N_(z)dA = f T(y)M<J(g-1(y))n(y)da (33)

We may now identify the tensor field

^ o g"1) (34)

as the stress without microslip for the invertible structured deformation (g, G) and stress field

T. It is convenient to omit the compositional factor g~ in (34) and write more briefly

'J, (35)

T

with the understanding that, when T is evaluated at a point y in g ( ^ ) , ^£ *s t 0 be

evaluated at the corresponding point x = g~ (y) in ji.

Of course, the relation (32) also permits us to identify

(nda)v : = M'J nda (36)

(with the same understanding about evaluation) as the element of area without microslip for a
surface df in g ( ^ ) , where in (36) nda is the actual element of area for df.

The relation (33) and the definition (34) permit us to regard T; and (nda)i as the

stress field and element of area that would be felt if one could isolate a material element from
the microslip that generally occurs throughout the body. We note that the actual
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element of area nda agrees with (nda)> if and only if

<=» (M^ - I ) T n = 0 <=> G"TMT n = 0

<=» M T n = 0, (37)

where we have used the relation

M^G = G + M

Tand the invertibility of G in the last two steps of the above argument. For M n = 0 to
hold, it is equivalent to have

n • Mv = 0 (38)

for all vectors v which means that the relative deformation Mv due to microslip for line
elements parallel to v has zero component in the direction n. Thus, a surface with normal n
satisfies

(nda)v = nda (39)

if and only if the relative deformation due to microslip is perpendicular to n. t.c, is tangent to
the given surface. For the simple shear due to microslip (s,I), relations (27) and (37) easily
yield the conclusion: (39) holds if and only if n • e.. = 0, with e^ the unit vector in the

positive x« — direction. In particular, if c/ is any plane parallel to the x^ — axis, then

relation (39) holds on <=/.

It is natural to define the stress due to microslip

In general, T\ and T m need not be symmetric, but there are important situations for
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applications in which one can deduce the symmetry of T m and Ti as noted in the next

section. In spite of the lack of symmetry of T m and T\ , relations (22), (24) and (35) tell us

that each transforms in the same way as T under changes in observer and changes in reference
configuration:

and

,T

T̂
(41)

m

(42)

A DEFINITION OF ELASTIC RESPONSE

In classical continuum mechanics, the notions of an elastic material and of elastic
response are direct generalizations of Hooke's Law that allow for non-linear and anisotropic
response. Thus, for a classical deformation (g, vg), elastic response is defined by the
constitutive equation

T = (43)

relating the Cauchy stress T and the macroscopic local deformation vg. In the present
non-classical setting of invertible structured deformations (g, G), a natural definition of
elastic response emerges immediately:

(44)

This relation gives the stress without microslip as a function of the deformation without
microslip. We call y% the response without microslip: 5T\ is a function that can be
determined by subjecting the body to classical deformations
l i l d f t i h h l d G h M

alone, because, for
T Tclassical deformations, there holds G = vg, so that M^ = I and Tv = T.
A
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The transformation laws (41), (42) for T» and (11), (12) for G permit us to write the
condition of independence of observer for the response without microslip as:

(45)

for all orthogonal tensors Q and all G, and permit us to write the condition that H be a
symmetry transformation for the response without microslip as

(46)

for all G. In particular, we say that the response without microslip is isotropic if (46) holds for
all orthogonal tensors H.

Let us suppose that the response without microslip is isotropic. Relations (45) and (46)
then tell us that

^ ^ (47)

where G = V* Ri is the polar decomposition of G, and also that

T T (48)

for all orthogonal tensors Q. It is not difficult to show from (48) that ,9\ is
symmetric—valued, i.e., «9\(G) is a symmetric tensor for all choices of G, and we may
conclude that the stress without microslip is symmetric when the response without microslip is
isotropic:

T ( = T y (49)

In addition, (35), (49) and the symmetry of the Cauchy stress then yield

^ = M^T. (50)
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In the case of isotropic response without microslip, relations (35), (44), (47), and (50) then
imply

T = Uf ^(V^) = ^ ( V ^ T , (51)

where £\ satisfies the condition (48).
Even in the case of anisotropic response without microslip, relations (44) and (35)

permit us to relate T, G, and M :̂

T = ^(G)MJ T . (52)

Thus, when the body has elastic response in the sense o/(44), the Cauchy stress is given explicitly
as a Junction of the deformation without microslip and the left microslip tensor. Using relations
(13) — (15) we may rewrite (52) in the equivalent forms

T = jr (G) (GM"1 G"1)1 (53)

and

T = jr (G) (MG"4 + I )~ T . (54)

RELATIONSHIP TO PHENOMENOLOGICAL THEORIES OF PLASTICITY

When classical notions of deformation and stresses are employed to describe the inelastic
behavior of materials, it is necessary to introduce additional "interval variables" into
constitutive relations in order to describe deviations from elastic behavior. Such variables can
be introduced in a variety of ways, many of which give a natural physical interpretation that
facilitates their use in detailed models of elastic—plastic behavior. Nevertheless, the variety of
possible choices of variables such as "elastic deformation" and "plastic deformation" has
created a lingering controversy in the literature over the choice of internal variables and over
the choice of transformation laws for such variables. One reason that this controversy persists
lies in the magnitude of the task of using each choice of variables to give detailed quantitative
and qualitative predictions for specific materials and of comparing the different predictions that
arise from different choices of the variables.

I believe that the conceptual framework described here can contribute to settling this
controversy by offering a natural choice of the variable used to describe "elastic deformation".
Thus, I propose to use invertible structured deformations (g, G) to describe the deformations
possible in elastic—plastic bodies and to identify vg as the macroscopic deformation gradient
and G as the elastic deformation. The advantages of doing so rest
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not only on the results from Sections 2 and 3, which show that G has the definite, purely
kinematical identity of deformation without microslip and has definite transformation laws, but
also on the fact that, once a common notion of elastic deformation has been identified, apparent
conflicts among the variety of choices of "plastic deformation" and of transformation laws for
plastic deformation disappear.

To illustrate this last advantage, let us indicate how a variety of proposed
decompositions of deformation into elastic and plastic parts all can be expressed within the
framework of invertible structured deformations.

The decomposition of Lee and Liu (1967)

If we put F e := G, F := vg, then the relation

F = F eF p (55)

proposed by Lee and Liu implies that

F p = Mr, (56)

i.e., the plastic deformation F p equals the right microslip tensor defined in (19), and the
transformation laws for F p become those for M :

F —» QF =» F p —» F p (57)

F —. FH =» F p —. H"1 FPH. (58)

The decomposition of Clifton (1972)

If we put F e := G, F := vg, then the relation

F = F p F e (59)
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proposed by Clifton implies that

f" = M,, (60)

i.e., the plastic deformation F p equals the left microslip tensor defined in (18), and the

transformation laws for F p become those for M :̂

F —. QF =» F p —• Q F p Q T (61)

F —• FH =» F p —i Fp . (62)

The decomposition of Green and Naghdi (1965)

If we put E e := ^ (GT G - 1 ) and E := ^ (vgT vg - 1 ) , then the relation

E = E e + E p (63)

proposed by Green and Naghdi implies that

EP =

and yields the transformation laws

F — QF =» E p — E p (65)

F - 4 FH =* E p —i H T E p H. (66)



18

The decomposition of Nemat—Nasser (1979)

If we put F e := G, F := vg, then the relation

F = F e + F p - I (67)

arising from Nemat—Nasser's considerations implies that

F p = M + I (68)

i.e., the plastic deformation F p equals the deformation due to microslip plus the identity and
yields the transformation laws

F —i QF => F p —i Q F p (69)

F —• FH => F p —i F p H, (70)

It should be emphasized that the main step in including within one framework all of the
above decompositions is that of identifying the usual deformation gradient with vg and
identifying elastic deformation with G, the deformation without microslip. Of course, the
more difficult task of deciding which relations between stress and elastic and plastic
deformations are most appropriate in specific contexts has been the subject of a large body of
research and cannot be settled once and for all simply by writing down one set of constitutive
assumptions. However, the definition of elastic response given in the previous section and its
consequence (52) may provide a useful addition to the many proposals already under
consideration, because it is closely related to the more restrictive constitutive assumption

T = f (G) (71)

used by many authors and yet provides for an explicit and simple dependence of the Cauchy
stress on deformation due to microslip.
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