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INTRODUCTION

In this paper we study the Dirichlet problem for a class of semilinear elliptic equations

involving indefinite nonlinearities. More precisely, given ft C R^ a bounded open set with

smooth boundary dQ, we seek solutions for:

- Au - Xu = W(x)f(u) in
(*A)

( -Au-;

U|so=0

where W € C(ft) changes sign in 17 and / is a nonlinear function with superquadratic

growth both at zero and at infinity.

The case where A < Ai is somewhat less interesting, since it is indifferent to the fact that

the weight function W changes sign. A (positive) solution in this case can be obtained by

rather standard variational techniques, provided that the Palais-Smale (PS) condition is

satisfied. It should be noted, however, that the (PS) condition is a nontrivial issue here

and it will be discussed below.

A similar remark applies for A > > Ai and multiple solutions for (*A) can be established

if, for instance, / is even (see section 3). Still some delicate analysis is needed to obtain

existence for (*A), A large, when / is not even, and we believe that this case already offers

a wealth of interesting questions to be addressed. But even more appealing is the case

where A > Ai but close to Ai. There the problem becomes affected by the negative part

of W which contributes to push up the spectrum of the linearized problem and possibly

create a "ground state" solution. Therefore, for A in a right neighborhood of Ai a more

interesting problem is the study of positive solutions for (*A). AS we shall see in section

2, for / behaving like |u|g~2u near zero with 2 < q < -ĵ z ,̂ N > 3, the influence of the

negative part of W is displayed in the following condition:

(**) / W{x)t\ < 0
Jn

with t\ the first positive eigenfunction for —A in HQ(Q). AS it turns out, condition (•*) is

very important, since it is also necessary when / is homogeneous, ie, f(u) = |u|9""2tx (see

appendix).

Condition (**) was inspired by a corresponding necessary condition derived in [B-P-

T] for a Neumann problem. It appears however, that in the context of the Neumann



problem, conditions of the same type were already introduced by Kazdan and Warner

[KW] as an obstruction to the solvability of the prescribed scalar curvature problem for

compact Riemannian manifolds. See also [E-S].

We have also learned recently from L. Nirenberg that in [B-CD-N] condition (**) was

derived as a necessary and sufficient condition for the solvability of (*A=AJ with- u > 0

and f(u) = |u|*-2u. See also our Corollary 1.2 and Corollary 2.8.

Surprisingly enough, the same condition appears also for more general /, and yields

THEOREM. Assume that f € CX(K) satisfies

(iii) |/(u)u - p F ( u ) | < d|u|2 + c2, CUC2 > 0

(iv) |/'(u)|<C3|ur2 + C4, C3,C4>0

IfW changes sign in Q and (**) holds, then there exists A > Ai such that

(a) For every A € (Ai, A), (*A) admits at least two positive solutions.

(b) For A = Ai and A = A, problem (*A) admits at least one positive solution.

(c) For A > A problem (*A) does not admit any positive solutions.

The case A < Ai does not require (**) and the existence of a positive solution can be

established only under the assumptions (i)-(iv) above.

The critical case p = q = - j ^ ^ *s a^so treated, and an analogous result is established (see

Theorem 4.1). We also point out that condition (iii) may be dropped in case

{x € n : W(x) > 0} n {x € « : W(x) < 0} = 0

and we refer to Lemma 1.5 for a more precise statement.

The Theorem stated above was prompted by an analogous result obtained by Ouyang

(see [Ou]) for A > Ai (but not too far from Ai) and for f(u) = |u|p~2ix. However, it

must be said that while the approach of Ouyang motivated ours, there are considerable

differences between the case of homogeneous nonlinearities and the more general case. In



particular, in the homogeneous case one can use a variety of minimization problems to

obtain solutions of (*A) after rescaling. Also the fact that, in this situation, it is possible

to relate the nonlinear term with its derivatives allows one to perform explicit calculations

which yield rather precise information about the solutions of (*A)- For more general /

this is no longer possible and even the (PS) condition becomes a delicate issue, since any

inequality which relates F(u) with Ff(u) = f(u) will not be of much help when W changes

sign. In practice one faces the problem that the vanishing of W could balance the difference

in homogeneity (at infinity, say) which is at the heart of any (PS) condition for problems

of this type (cf [R], [St]). Here we have managed to obtain (PS) under some restrictions

on / or W (see Lemma 1.5).

The paper is organized as follows: the first two sections deal with the existence of positive

solutions for A = Ai and A > Ai respectively. The third section treats the existence of (pos-

sibly changing-sign) solutions for any A and corresponding multiplicity results. The fourth

section is concerned with nonlinearities having critical Sobolev growth and it contains the

extension of the above theorem to this case.

Finally, we conclude by observing that our methods could be generalized to obtain

analogous results for the Neumann problem corresponding to (*A) (in which case Ai = 0)

as well as to equations on compact Riemannian manifolds. Also the Laplace operator

in the above equation can be replaced by any general second order, positive semidefinite

elliptic operator, in which case the role of Ai should be adjusted accordingly.

Acknowledgements. This work was supported by the Army Research Office and the

National Science Foundation throught the Center for Nonlinear Analysis.



1. POSITIVE SOLUTIONS IN THE CASE A = Ai

We first establish some definitions and notations. Throughout the paper we assume that

Q is an open, bounded domain in KN with smooth boundary dSl and that W €

(0 < 0 < 1) is a given function which changes sign in ft. So, if we define

= {*€ ft: W(x)>0}

= {xeQ: W(x)<0}

ft0 =

we have

ft+ ^ 0, fi" ^ 0

Consider also a function F such that

F € C2(R), ^ ( u ) = / (u) > 0 for u > 0

(1.1) F(0) = /(0) = /'(0) = 0,

•F*(w) ^ A + B|u|p

for constants A, J9 > 0 and 2 < p < 2*, where, as usual, we denote

2* = < ^ ^ ' ^
I + o o , ifJV = l ,2

Let Ai < A2 < . . . be the sequence of eigenvalues of —A on #o(fl), and denote by

t\, e2, . . . the associated eigenfunctions normalized so that JQ |Vej|2 = 1, j = 1,2, . . . and

ei > 0 in fi.

a) The constrained case. In this section, we consider some constrained problems which

give rise to the nonlinear eigenvalue equation,

- Au - Aiu = 7 ^ ( i ) / ( u ) in SI
(1.2) { — Au — J

ti|an = 0

with 7 € R. The method we use is inspired by techniques introduced by Fleckinger-Pelle

[FP] and Geztesy and Simon [GS] in solving linear eigenvalue problems with indefinite



weight functions. Basically, the idea is to separate the positive and negative parts of W,

and introduce a one parameter family of equations,

(1.3) -An - Xm + ii(W~(x) + a)f(u) = *r(ii)(W+(x) + a)/(ti)

where /x 6 R and a > 0 is a fixed number. In order to solve (1.2), we then need to show

that (1.3) can be solved with 7(/i) = //.

THEOREM 1.1. Suppose that F satisfies

(1.4) F(tu) > < ) [
y J I t*F(u), ift < 1

with 2 < p, q < 2*. If for some to > 0 we .have

(1.5) f W(x)F(tQel)<0,

then there exists a solution pair (w,7) to (1.2) with u > 0 and 7 > 0.

Before going into the proof, let us mention an interesting consequence of Theorem 1.1.

COROLLARY 1.2. Let 2 < q < 2*. Then the problem

- AM - Am = W{x)uq~l in ft

(1.6) u\dQ = 0

u > 0 inQ,

admits a solution if and only if

(1.7) / W{x)e\ < 0
Jn

The proof of the corollary follows in one direction from Theorem 1.1 (after a suitable

scaling of the solution) and in the other direction as a consequence of the following neces-

sary condition which is particular to homogeneous nonlinearities:

LEMMA 1.3. Suppose there exists a positive solution u € HQ(Q.) to

- A M - AM =

6



for q > 2 and A > Ai. Tien necessarily (1.7) must hold.

The proof is technical and is deferred to an appendix.

As already mentioned, the result of Corollary 1.2 was also derived in [B-CD-N] via a

different minimization problem. Also, a similar necessary condition for the corresponding

Neumann problem can be found in [B-P-T]; see also [E-S], [K-W]. We shall see how (1.7)

plays a crucial role also in the study of (1.6) with more general nonlinearities and A > Ai.

PROOF: Fix K > 0 such that W = ±W satisfies

/ W^(x)F(toe1) = \
Jn 2

Now fix a > 0 so that

(1.8) /
Jn

Clearly, it is sufficient to solve (1.2) with W replaced by W, as the same u will solve the

original (1.2) with \x replaced by \\i. So without loss of generality, we drop the tilda and

assume that (1.8) holds for the original W.

Define the constraint set

5 = {u e H^Sl): f(W+(x) + a)F(u) = 1}
Jn

and a family of functionals

M*) = ^IIVulli-AjIM!!) + M Jj<W-(x) + a)F(u)

Set

M ( )

Note that if u is a minimizer for (1.9M) then it satisfies

(1.10) M.}VU}} ^ j y (-Au - AXtt) + njW-(x) + o)/(u) = u(MW+{x) + a)f(u)

for some Lagrange miiltiplier v(n). This would yield a solution for our problem provided

that we find \i with u(fi) = fi (note that in this case necessarily || Vu||2 > Ai ||it||2)- However,



very little can be said about the function ^(jx). Even its continuity is not apparent, unless

F is homogeneous, in which case i/(/x) would essentially be the same as 7(AO- Nevertheless,

under the more general assumption (1.4) and with the help of an auxilliary functional, we

still manage to show that for fi = 7(/i) the minimizer of (1.9M) solves (1.10) with \x = ^(//).

To this end we start by showing that for each /x > 0, 7(/x) is attained at (at least) one

function rM € 5. Indeed, fixing \x > 0 and choosing a minimizing sequence un = uUifi > 0

for 7(/J) , we clearly have

(1.11) 0 < | | V u n | | 2 - A 1 | | u B | g < C

for suitable constant C > 0. Now, applying (1.4),

/

/
{un(x)>l)

(1-12) < - ^ r r / (W+ + a)F(un)
aF{l) J

Putting together (1.11) and (1.12), we see that ||un||#l(n) < C so extracting a subsequence

Un —* v^ in HQ(Q,). AS F has subcritical growth, vM € S and hence v^ ^ 0. Also

so

(1.13) MVP) ^ Hminf JM(uB) =

Now it is easy to verify that:

(1.14) 7(0) = 0

(1.15) 7(/i) is strictly increasing for fi > 0

(1.16) 7(/x) is Lipschitz continuous for /x € [0,oo)

Our next task is to show that there exists //* > 0 with 7(/i*) =

8



First, we claim that there exists \i > 0 so that

(1.17) 7(JI) < \i for all \i > p.

To see this, choose any tp € Co°(fl) with

v(*) > 05 supp^C

/(W+(3:) +
in

Then,

700 < Jy(fp) <C + fi f (W-(x) + a)F(<p)

= C + ti (l - J^ W{x)F{<p)}

But, as suppy> C £2+ we have

/ W(x)F(tp) > 0
n

and

_ /

Note that when /x = 0 the unique positive minimizer is VQ = <ô i with to ^^ in (1.5). In

fact, as /i -f 0, it is clear from (1.11), (1.12), and (1.13) that rM -+ i>0 strongly in U^(fi).

In order to show that 7(/i) = /x has a solution, we will show that the curve 7(AO li

above the diagonal 7 = /x for // near zero. Indeed,

> 1 - /

(1.18) - ^ * 1 - / W(x)F(vo)

where we have used (1.5) and the fact uo =

Now by putting together (1.16), (1.17), and (1.18) there exists /x* > 0 with

*)= f

9



Denote by t?* € 5 the corresponding minimizer for (1.9M=/i»).

Next we introduce an auxilliary functional in order to show that v* actually solves

equation (1.2). Let

(1.19) J(u) = F{yJ\\u\\\ - AxHIl) -f J W(x)F(u), u € H^il)

Note that

J(u) = JM»(w) — //*, for all u € 5

We will show that r* is the global minimizer for J in HQ(SI). Clearly J(v*) = 0, so it

suffices to show that J(u) > 0 for all u € HQ(Q).

Let w € if^(ft), u ̂  0, be fixed. As the function ^(i) = / n ( ^ + + a)F(tu) is continuous

with ^(0) = 0 and

*l>(t) >tp I (W+ + a)F(u)
Jn

for all < > 1 (by (1.4)), there exists t = t(u) > 0 such that V(*(u)) = !' t h a t i s

(1.20) t(u)ti € 5

For such f, (1.4) implies that

(1.21) / (W+ + a)F(u) < min{t(u)"p,t(u)~q}

and hence

J(u) = F (^>/||V(t(u)ti)||i-A1||«(tt)u||l) - if j W(x)F(u)

- / 0

via (1.4), (1.19), (1.20), and (1.21).

Hence v* is a nontrivial critical point of J, and therefore it satisfies

(1.22) a(-Av* - \lV
m) = n*W(x)f(v*)

10



where

Clearly a = 0 only when v* = io^i for to as in (1.5). However, if this were the case, (1.22)

would imply that n*W(x)f(toei) = 0, which is impossible as /x* > 0, ei > 0, and W ^ 0.

Hence, (v*,—) solves (1.2). |
a

b) The unconstrained case. Here we handle the more general problem

' - Au - Aiti = W(x)f(u) in ft

(1.23)

> u > 0 in ft

In the following we shall assume that / is extended as an odd function for u < 0 and let

[
o

Note that F(u) = -F(M). We seek critical points for the (even) functional

(1.24) / A » = \ (||Vu||22 - Aajltxlll) - / W(x)F(u), u € ^
^ Jn

As usual for this setting, the variational techniques are helpful only if suitable information

on the nonlinearity near zero and near infinity are available. So we will impose the following

conditions:

for some 2 <p,q < 2*.

LEMMA 1.4. Iff satisfies (1.25) and (1.26) and in addition

(1.27) J W(x)e\ < 0

then UQ = 0 is a strict local minimum for the functional I\x.

PROOF: Set

A = - I W(x)t\ > 0
Jn

11



via (1.27). Decompose u € #d(fi) as u = ttx + v for t € R and /vei = 0. Suppose that

"ll2 < Torar- Then, clearly \t\ < j ^ . Now

/ v)

2 A2 Ju
_ 1 Ai

where the remainder term R is

/ W{x

(1.28) = / W(x

using (1.25). Now to estimate the remaining term in (1.28), we have for each v,tyx a

number 8 = 0(v^t,x) with 0 < 8 < 1 so that

(1.29) Fijtexix)) - F(tex(x) + v(x)) = f(ttx{x) + $v(x))v(x)

Putting together (1.25), (1.26), / satisfies the bound

with some constant C > 0. Fixing v,t for now, we consider two cases. First if x is such

that |ti(x)| = \tei(x) + dv(x)\ > 1, we have (recalling |t| < io|filC") t h a t l^(x)l

so applying (1.30) we see:

(x) + $v(x))v(x)\ < C|<ei(x) + flKx)!!'-1 • \v(x)\

(1.31) < ^C\v(xW

On the other hand, if x is such that |u(x)| = (ie^x) + Bv(x)\ < 1, then let 0 < e < — and

apply (1.30) again to obtain

\W{x)\ | / ( < c a ( x ) + 9v(x))v(x)\ < C \ t e i ( x ) + O W 1

(1.32) <

12



Plugging (1.29), (1.31) and (1.32) into (1.28) (and using 2 <p,q < 2*,) we see that

hM > ^(1 " ^)||V»|g + |<* + o(t«) + O(\\Vv\\>) + O(||Vv|iI)

As p, q > 2, we're done. |

Note that for <p € C£°(fi+) it is clear that

I\x(s(p) —• oo as s —• oo

So, if in addition I\x satisfied the (PS) condition we would be able to solve (1.23) via

the mountain-pass lemma (cf [A-R]). Here we state some conditions on / and W which

guarantee the (PS) condition for the family of functionals

h(u) = \ {\\Vu\\\ - A|M© - / W{x)F{u), u € HliSl)1 Ja

As the proofs are technical, we will present them in the appendix. Denote by cr(fi°) the

collection of eigenvalues of —A in HQ(CI°). (In case £2° = 0, then take cr(fi°) = 0 also.)

LEMMA 1.5. Suppose A £ cr(Q°), and / satisfies (1.26) with 2 < p < 2* and the estimate

(1.33) |/'(u)|<A|ur2+J9

for suitable constants A, B > 0. Then I\ satis£es (PS) if either of the following conditions

hold:

(a) ?FnTF=0
(b) There exist constants c\,C2 > 0 and 2 < p < 2* such that for all u € R

\f(u)u-PF(u)\<c1\u\2 + c2

REMARK: We believe that (PS) should in fact hold only under the assumption (1.26) with

2 < p < 2 * .

Note that by domain monotonicity we have Ai < mina(£2°). Now we may use the

mountain pass theorem to obtain solutions to (1.23) in the subcritical case. The critical

case f(u) = u2*"1 will be treated separately in section 4.

13



THEOREM 1.6. Assume that (1.25), (1.26), and (1.33) hold. If either of the conditions (a)

or (b) in Lemma 1.5 is satisfied, then there exists a positive solution to (1.23).

PROOF: In view of the above remarks, the value

c = inf max JAI(T(*)) > °

V = {7 € C([0f 1]; JToW : 7(0) = 0, IxMV) < 0}

defines a critical value for I\x. The positivity for the corresponding (nontrivial) critical

point follows from the observation that if 7 € V then |-y 1 € V

for all <€ [0,1]

We leave the details to the interested reader.

2. POSITIVE SOLUTIONS IN THE CASE A >

In this section we study positive solutions to the problem

( - Au - Xu = W(x)f(u) in ft

(2.U)

I u > 0 in

We follow Ouyang [Ou], and base the first part of our arguments upon Perron's method

of sub- and super-solutions. In fact, the existence of subsolutions for (2.1A) follows with

only a simple hypothesis on the nonlinear term / :

LEMMA 2.1. Suppose that there exist constants 77, C > 0 and q > 2 so that

0 < /(u) < Cuq~l

for all 0 < u < 77. Then for every t which satisfies

(2'2) 0<t<w
14



t ie function u = tt\ is a subsolution for (2.1\), A > Ax.

PROOF: Let t> 0, <p € C£°(ft) with ip(x) > 0. Then,

t I Vei • V<p - Xt I enp- I W(x)f(te!)ip
Jn Jn Jn .

= -(A - Aj)t / a<p - I W{x)f(ttx)v
Jn Jn

< I W-(x)f(te1)iP-(X-X1)t f eiip
Jn Jn

< [ll^-lloollexll^t'-2 - (A - X1)] t f elV> < 0

and we see that tt\ is a subsolution when (2.2) holds. |

Our next observation is that positive solutions of (2.1A), X > Xi cannot exist for A too

large, as the following simple calculation shows:

LEMMA 2.2. There exist X > X\ so that (2.1 \) does not admit a positive solution for any

X>X

PROOF: This fact has already been observed in [Ou], where it is shown that it is enough

to take A = Ai(£2*) where f2* = fl\fi^. In fact, let tp > 0 be the first eigenfunction of the

Dirichlet Laplacian on 17*. Multiply (2.1A) by T/>, and integrate by parts to obtain:

u—- < 0
an* ®v

(2.3) / u?£-(\-X) [ w/>- [ W+(x)f(u)t/> = 0
Jan* du Jn* Jn* y

On the other hand,

/ .

so (2.3) cannot hold for A > A. |

Define

(2.4) A = sup{A > Ai : (2.1A) admits a positive solution}

LEMMA 2.3. Suppose that f € Cl(R) and there exists p,q with 2 < p,q < 2* and

15



constants A,B > 0 so that:

(2.5) lim ^ 1 = a > 0

(2.6) / W(x)eJ < 0
Jn

(2.7) I/^I^

Tien A > A^

PROOF: Following [Ou], we shall use bifurcation theory to show that (2.1A) admits positive

solutions for A > Ai near X\. To this purpose, we define T: HQ(£1) x R - • H~l by

?(u, A) = -Au - \u - W(x)f(u)

From (2.5), / (0) = 0, and so ^"(0, A) = 0 for all A. Moreover, (2.5) also implies that

/'(0) = 0, and so .Ftt(0, Aj)r = -Sv - Xiv. Hence,

O,Ai)) = span{ei}, codimi?(J"u(0, AX)) = 1,

and 5A,«(0,Ai)ei = -tx

Consequently, (0, Ai) is a bifurcation point for T (cf. [C-R]) So if we decompose

(here Z = span{ei}J-) then by the bifurcation theorem of [C-R] we obtain a neighborhood

U of (0, Ai) in HQ(SI) X R, continuous functions <p : (—a,a) —» R, if> : (—a,a) —* Z with

(p(0) = Ai, ^(0) = 0 and

1(0)r\U = {(ae1+arl>(a),ip(<*)): a € (-a,a)} U {(0, A): (0,A)€tf}

Set u a = aej + a%l>(a).

CLAIM: tl>(a) -» 0 in Clifi(P) as a - • 0.

This claim follows by standard elliptic regularity theory and the fact that (by continuity)

V>(a) —• 0 in HQ(Q.) as a —• 0. For the reader's convenience, we reserve the proof of the

Claim for the end of the lemma.

16



Note that the Claim guarantees that ua > 0 in fi for all a sufficiently small.

Next we show that <p(a) > Ai for all sufficiently small positive a. To this purpose, note

that

—^- / W(x)f(ua)e1 - ^ > a I W(x)e\
a'"1 Jo Jn

In fact, as (̂<*) —• 0 uniformly as a —* 0, (2.5) yields

f(<*ei (*) + atP(a)(x)) a-o ^

uniformly in Q, and

- ^ a / W(x)e\
Jn

The desired result ip(a) > X\ now follows easily with an argument by contradiction. In

fact suppose that there is a sequence of an —> 0+ with <^(an) < Ai. Denote un = t*an,

which axe positive solutions to (2.1^(Qn)). We have

aq
n ah

/ W(x)t\ < 0
Jn

(via (2.6)) which is clearly impossible.

It remains to prove the Claim. Note first that (2.5) and (2.7) imply that there exist

constants A\, A2 > 0 with

(2.8) \f(u)\ < AM*-* + A2\ur>

Also, as ua satisfies (2.1^(a)), tf>(a) itself satisfies the equation

(2.9)

Estimate (2.8) shows that the right hand side of (2.9) converges to zero as a -» 0 in 2/(

for s = 2*/[max(p,g) ~ ! ] • K p,q are subcritical, then s > 2*/(2* — 1) and standard

bootstrap arguments guarantee that

17



In the critical case, the same conclusion follows provided that we show that ||V*(a)||r ~* 0

for some r > 2*. To this end, we use Moser's iteration scheme as presented in [B-K]. Writing

(2.9) as

(2.10) -Atf(a) = w(a)rj>(a) + Xxj;(a)

we have w(a) € LN/2(fi) and ||u>(a)||N/2 -» 0, ||^(a)||2» - • 0 as a -* 0. For fixed s > 0

such that 2(s + 1) = 2*, and L > 1 set

<pL(x) = V(a)min{|V(a)|2M2} 6 H&tl)

Using v>x, as a test function for equation (2.10), we obtain

A / / /

+ 2s

This calculation yields:

/

<X f |V(a)|2(i

(2.11) [
Q

with S the best constant in the Sobolev inequality. Since ||tp(a)|| y —• 0 as a —* 0, we

can find ao > 0 such that

for all a < ao- Thus we can absorb the second term of the right hand side of (2.11) to

obtain

/

Letting L -> +00, we see that |V>(a)|*V>(a) € Hl(Q) and

I |V(V(a)|V(a)|'
JQ

18



In turn, the Sobolev inequality then implies that

and so (as s > 0), we can proceed as in the subcritical case. This concludes the proof of

Lemma 2.3. |

COROLLARY 2.4. For each A € (Ai, A) problem (2.1 \) admits a minimal positive solution

u\. Furthermore, the map A —» u\ is strictly monotone increasing, that is, if A < // then

u\(x) < u^(x) for all x £ fi.

PROOF: Let A € (Ai, A) be fixed. By the definition of A there exists a Ao € (A, A) such

that the problem (2.1 \Q) admits a positive solution ti+. It is easy to verify that u+ is a

supersolution to (2.1A). Indeed for any tp € HQ(£1) with tp > 0 in fi,

/ Vix+ • Vip - A / u+v - / W(x)f(u+)tp = (Ao - A) / u+<p > 0

Furthermore, since - A u + > 0 in a small neighborhood of dfi, by the Hopf Lemma we

conclude that ^ ^ < —c on d£l for a suitable constant c > 0. This allows us to take t > 0

sufficiently small to have tz_ = tt\ as a subsolution for (2.1A) with u_ < u+ in fl. The

sub- and supersolution method now guarantees a solution u of (2.1A) with u_ < u < u+.

To show that there is in fact a minimal solution for each A we rely upon the information

near u = 0 for A near Ai as given by the Bifurcation Theorem and the fact that we can

construct subsolutions for (2.1A) with A > Ai as small as required (see Lemma 2.1). Define

(2.27) tx+(x) = inf{w(x) : u positive solution for (2 .1A)} , X € ft

First, we claim that u + ^ 0. Indeed, note that the minimum of any two positive solutions of

(2.1A) furnishes a supersolution for (2.1A). Hence we can construct a monotone decreasing

sequence u+ of positive supersolutions for (2.1A) with u+ —* u + uniformly in ft. If u + = 0

then there would be a supersolution (and hence a solution) of (2.lA=^(a)) as close to zero

as desired, for each a > 0 with Ai < <p(a) < A. This is impossible in view of the bifurcation

theorem. Hence, tx+ ^ 0.
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Thus, as above, we can find a sufficiently small t > 0 such that it- = it\ will be a

subsolution for (2.1A) with u_ < tx+. The usual sub- and supersolution method now yields

a positive solution u\ which is minimal (it is clearly just u* itself). A similar sub- and

supersolution argument also shows the strict monotonicity of the minimal solution family

We now explore some properties of the minimal solution family UA, Ai < A < A. We

would like to know whether or not these minimal solutions are actually (strict) local minima

of the functional associated with (2.1A),

h(u)=Ki»|Vu|2"Au2) ~ L
where F(u) = JQ

U f(v) dv. That this is the case has been shown by Ouyang in [Ou] in the

special case of homogeneous nonlinearities (ie, F(u) = ^|w|p). There, explicit calculations

can be carried out which are no longer possible for more general F's. In fact, in the

general case it is reasonable to expect discontinuities for the map A —• ux which would

naturally cause some degeneracies. However, it is still possible to provide some (second

order) information on ux (see Lemma 2.5) which together with a continuation argument

of [C-R] will enable us to identify certain solutions ELS strict local minima (for almost all

A).

To this purpose, we consider the variational formulation of Perron's method (see [St]).

Namely, if there exist u_ a subsolution and u+ a supersolution to (2.1A) with the property

that ix-(x) < t/+(z) for each x € ft, then one obtains a solution u*, u_ < u* < tx+, to

(2.1A) by solving the minimization problem:

(2.12) inf Ix(u)
tt_<tl<tt +

The advantage of this characterization of um is that it yields the additional information

(I"(u*)<p,<p) > 0 for all ip e HQ(£1) (unless um = tz_ or u* = u+.) This justifies the

following:

LEMMA 2.5. If ux is the minimal solution, then

(2.13)

20



for all <p €

PROOF: Choose a sequence An /* A and denote by un = u\n the corresponding minimal

solutions. Clearly un < u\ and

supixn = limixn = txA

Take another sequence /in, An < fxn < A, and apply Perron's method to find a sequence of

solutions vn to (2.1Mn) with un < vn < u\ and

n—•oo
This readily gives (I"(vn)(p,<p) > 0 for all 9 € HQ(SI). AS vn • u\ strongly, in the

limit we arrive at (2.13). |

More generally, property (2.13) is inherited also by the right limit of minimal solutions

(which need not be minimal).

LEMMA 2.6. Suppose Ao € (Ai,A). Set

u+ = inf u\ > 0
A>A0

Then u* is a solution for (2.1\0) which satisfies (/^'(u*)^,<p) > 0 for all <p € HQ(Q).

PROOF: First of all, note that u\Q < u*. If u\0 = tx*, then the conclusion follows from our

previous lemma. Hence, assume that in fact u\0 < u*.

Define

(2.14) u(x) = supv(x)
vev

With

V = {v > 0 subsolutions for (2.1Ao) with v < tx*, (I"{v)<p,ip) > 0 Vy? € ^ ( f l ) }

Note that IXA0 € V, and tx < tx*. Now, since the supremum of two solutions for (2.1A0)
 IS

a subsolution for (2.1AO)5 using IXA as a supersolution and passing to the limit as A \ Ao,
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we construct a monotone increasing sequence of solutions WJ of (2.1A0) with Wj 6 V and

sup Wj = u. Clearly Wj -• u in 2?o(fi), so ix is a solution for (2.1A0) with

(2.15) ( I " ( i i ) ^ ) > 0

and u < um.

We now claim that u = u». Suppose that in fact u < u*. By (2.15), the first eigenvalue

6 of the linearized problem at (u, Ao),

Aoy> — W{x)f{u)ip = Sip

is non-negative. Since u < u+ = inf A>A0
 UX and u\ are minimal, the solution set of ̂ "(u, A)

near (ti, Ao) can only cover a left neighborhood of Ao This implies that, necessarily 6 = 0.

So we may apply Theorem 3.2 of [C-R] which ensures that the solutions of ,F(u, A) = 0

in a small neighborhood of (tx,Ao) form a single C -̂curve (u(^), A(̂ )) with u(s) > 0 and

\(s) < Ao for all s. In particular, we can find SQ > 0 sufficiently small such that A(so) < Ao

and u < U(SQ) < ti* in Q. Now using (2.12) with U(SQ) as a subsolution and u\0+€ (e > 0)

as a supersolution we obtain (after passing to the limit e —* 0) a solution u £ V with u > u.

This contradicts (2.14), and so we must have u = it*. Hence u* € V, and the lemma is

finished. |

Now that we have solutions to (2.1A) for A G (Ai, A) which are (almost) local minima,

we may construct a second solution via a mountain pass.

THEOREM 2.7. Suppose f € Ca(R) satis£es the hypotheses of Lemma 2.3 and Lemma

1.5, and A is as in (2.4). Then:

(a) For every A € (Ai, A), (2.1\) admits at least two positive solutions.

(b) For A = Ai and A = A, problem (2.1 \) admits at least one positive solution.

(c) For A > A probJem (2.1A) admits no positive solutions.

REMARK: If A < AI more standard variational techniques of mountain- pass type apply

and the existence for a positive solution can be established under all the hypotheses above
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except condition (2.6) which is no longer necessary for the existence of positive solutions

for (2.1A) when A < Ai. We leave the details to the interested reader.

PROOF: (a) Fix A e (A2, A) and let u*x be the solution of (2.1A) given by Lemma 2.6,

with

( J " « ) < ^ ) > 0 for all <p € Hl(Q)

In the case that I"(u\) is in fact positive definite, (ie, there exists 6(X) > 0 such that

(J"(ii£)<£>,<£>) > £(A)||<£>||2,) then u£ is a strict local minimum for I\ and a second solution

would follow using a Mountain-Pass procedure as shown below. So we focus on the more

delicate case where 6{X) = 0 is the first eigenvalue for J"(u£), and we denote by <p > 0

the corresponding eigenfunction. In this situation, the continuation theorem of [C-R] gives

that the solution set of ^(u, A) = 0 in a sufficiently small neighborhood of (u£, A) defines a

C1 curve (u(s), A(s)), s € (-€, c), c> 0, with u(0) = u0, u(0) = <̂>, A(0) = A, and A(0) = 0.

In particular, we can always assume that u(s) > 0 for s 6 (—6, c).

By construction, there are minimal solutions for ^*(w,A) = 0 near u£ in any right

neighborhood of Ao. Hence, A(s) < A for s < 0 and we can find SQ € (0, e) with A(so) > A.

In particular, the range of A(,s), s € [O,6o] must contain the interval [A, A(so)].

Set

S = {fx € R : there exists s € [0, s0] with A(s) = /i, A(s) = 0};

by Sard's Theorem, we know that the Lebesgue measure of 5, |5 | = 0. For all /i €

(A,\(so))\S define

Sp = max{6 € [0, s0] : X(s) = fi}

Note that 0 < s^ < s0. Furthermore,

A ^ ) > 0

Indeed, since // ^ 5 clearly A ^ ) ^ 0. If A(6M) < 0, then there would exist si 6 (S^^SQ)

with A(^i) < /i < A(«s0). The continuity of X(s) would then yield yet another value s2 > s^

with A(̂ 2) ==: /̂ ? which would contradict the maximality of sM.

Now, u(6M) satisfies

(2.16)
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Denote by (6^ , ^ ) the first eigenpair for the linearized problem

with (fip > 0 in ft. Combining (2.16) and (2.17), we obtain

f f

that is,

(2.18) ^ > 0

This information will enable us to construct a second solution iuM for (2.1 M) for all \i £ 5,

which will not lie in the curve u(s) for s € (O,so).

To this purpose, fix \i G (A, \(SQ))\S. We seek a solution to (2.1M) of the form w = u^ + v

with v > 0 and u^ = t/(,sM). Direct calculations show that v can be characterized as a

critical point for the functional

1

where v+(x) = max[t;(a:),0] and

Next we show that, in virtue of (2.18), v = 0 is a strict local minimum for JM(v). Indeed,

for a suitable constant C, whenever |M|jfi(n) is small. Hence v = 0 is a (strict) local

minimum.
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On the other hand, let v0 € C£°(ft+), v0 > 0, and evaluate

(2.19) J,(tv0) = \t2 (IIVvolU - n\\vo\\
2

2) - / Gfa

But for large positive i,

1 G,(

(2.20) = — / W+(x)vp
0 + o{t*~2)

P Ja

via (2.5), (2.7) and the dominated convergence theorem. Putting together (2.19), (2.20),

we derive:

tv0) = - - I W+(xX + <>(?) -» -oo
P Jn

as t —* oo large.

Thus, the mountain-pass lemma (cf [A-R]) applies to JM(v), and gives a candidate for a

critical value

V = {7 € C([0,1]; H\im - 7(0) = 0, ^(7(1)) < 0}

Since for any 7 € V we have JM(7+) < ^ ( 7 ) , it follows that 7+ 6 P, and we derive the

existence of a sequence Vk with

Jn(t>*)-> c > 0 , ||J'(v*)||->0, v * > 0 .

On the other hand, Wk = tiM + v* satisfies:

111^(^)11 = llJ^(fi^)H + li J > * ) H = II JM(VOII -• 0

as fc —> 00. Here we denote cM = //x(&M). Hence, we see that Wk is a Palais-Smale sequence

for the original functional 7M. On the other hand, since /1 < A < Ai(fi°) (see Lemma
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2.2), by Lemma 1.5 {wk} possesses a strongly convergent subsequence, Vk —* vM in

Since JM(t>M) = c > 0, vM is a non-trivial critical point of JM and v^ > 0. In particular,

= 0

for all ip € ifo(^)- So, by the strong maximum principle, we must have vM > 0 in SI and

Wfi = tiM + v M > t i M i s a second positive solution to (2.1M).

Now, the maximality of s^ and the fact that tiM < w^ guarantee that w^ cannot belong

to the solution curve {u(s) : 6 € [—«so,3o]}. ^ particular, for a small neighborhood U of

u\ we have w^ £ U. We now conclude by an approximation argument. Indeed since the

Lebesgue measure of 5 , \S\ = 0, we can certainly pick a sequence /in € (A, \(SQ))\S with

^n —* A. Denote by tx;n = iy/in, un = tiMn, vn = i;̂ ,̂ , and Jn = JMn. The mountain-pass

construction for Jn yields that /Mn(i^n) are uniformly bounded. Indeed, letting t>o be as

in (2.19),

Jn(vn) <maxJn(tv0)

Since u^ < un < U(SQ) we derive that ||Vun||2 < C and

IA(ti;n) = IMn(un) + Jn{vn) + (fln - X)\\wn\\l

(2.21) < C + (/in

Similarly,

(2.22) (lUt**), v) = (Ji.CtDn)^) + (/in - A) / u>nV = (/in - A) /

Jn JQ

So, as /in —> A, it;n is almost (but not quite) a Palais-Smale sequence for I\. However,

by returning to the proof of Lemma 1.5, we see that (2.21) and (2.22) are sufficient to

conclude that wn —* w\ strongly in HQ(Q,). Clearly, tv\ is a positive solution to (2.1A)

with w\ > ti£ > 0 Furthurmore, since wn ^ 17 we have that w^ £U and w^ > u\.
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Note that in case ixj > u\ (ie, A is a point of discontinuity for the map A —* u\) this

would yield a third positive solution for (2.1A).

This ends the proof of part (a).

(b) The existence of a positive solution at A = A* has already been proven in Theorem

1.6. For the case A = A, choose a sequence An /* A and construct a sequence of solutions

un to (2.lAn) via (2.12), with subsolution u~ = tt\ and supersolution uM with An < /i < A.

Using as a test-function the subsolution u~ = tt\ for t > 0 chosen suffiently small, we see

that

and hence

(2.23) IA(un) < 0

Also, we have

(rA(unU) = (/;>„),*>) - (A - An) / Un<f
Jn

(2.24) = - (A - An) / un<p
Jn

Again, un is almost a Palais-Smale sequence for 7A, in the sense that conditions (2.23)

and (2.24) are sufficient to follow the argument in Lemma 1.5 and obtain a convergent

subsequence whose limit UA will solve (2.1A) with u\ > u\ for each Ai < A < A.

(c) This is just Lemma 2.2 plus the definition (2.4). |

Putting together the results of section 1 and section 2 we derive the following:

COROLLARY 2.8. Let 2 < q < 2*. Then problem

- Au - Xu = W{x)uq^ in fi

u > 0 inQ,

admits a solution if and only if X € [Ai, A] and (2.6) holds.

A similar result will be obtained for p = 2*: see Theorem 4.1.
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3. MULTIPLE SOLUTIONS

Here we study multiplicity for the problem

— Au — Au = W(x)f(u) in
(3.U)

( -Au-

U|cK2=0

with A € R and / satisfying (1.26) with 2 < p < 2*. We are going to use standard min-max

methods and therefore assume that / is odd. We have:

THEOREM 3.1. Let X £ a(Q°) and suppose that the assumptions of Lemma 1.5 hold.

Then (3.1 \) possesses infinitely many pairs of nontrivial solutions.

As in (1.24), introduce

Ix(u) = I {\\Vu\\l - X\\u\\l) - f W(x)F(u), n € Hl{Q)

Denote by

Sp = {ueHl{Sl): ||Vu||2 = p}

We shall show that the following critical point theorem for even fiinctionals applies to I\.

To this end, let H be a Hilbert space and I € Cl(H, R) be an even functional. Denote by

E = {A C H closed, symmetric; ie, u € A —> — u € A)

As is well known, the Krasnoselski genus gives a well defined map t : E —* N U {+00} (see

[R]). Let H denote the family of odd heomeomorphisms h : H —* H for which both h and

/i*"*1 map bounded sets to bounded sets. Then define the psuedoindex

Afc ft

where Sp = {u € H : ||w|| = p} and p > 0 is fixed. Note that if Y C H is a linear subspace,

then i*(Y) = dimF. Following [Be] it is not difficult to obtain the following:
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THEOREM 3.2. Let I € C^J^R) be an even functional on a Hilbert Space H which

satisfies (PS). Suppose:

(a) There exists a linear subspace X C H with codimX = k0 < +00 and a bounded

symmetric neighborhood UofO such that

inf I\xndU > Co

for some constant CQ.

(b) For every k = 1,2, . . . there exists a linear space Yk C H with dim!* > k and

sup/ < +00
n

Tien for A: > &o t ie numbers

cjk = inf sup I > Co

de&ne critical values for I. In particular, if Co > 1(0), then I admits infinitely many pairs

of critical points.

PROOF OF THEOREM 3.1: Fix A £ cr(Q°). Denote for each j

(3.2) Ej = span{e 1 , . . . ,e i} , Xj = Ef

We now verify the conditions of Theorem 3.2.

First, we claim that for each j > m there exists p = pj and 7̂  > — 00 such that

7j • 00 and

/A(U) > 7j for all u € Xj D 5Pi

Indeed, simple arguments show that for any u € Xj ,

(3.3) H I ; < -j#-||Vu||5

where a = 2 [ | ^ f ] > 2, and S is the best Sobolev constant. Now, (1.1) and (3.3) imply

that

h(u) > I (l - -±-) «Vu||3 - C / |u|» - C2 V A i + i / /n

(3.4) > \ (1 - j ^ - ) ||Vu||i - ^||i ^ H u H S - C
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Taking pj for which the right-hand side of (3.4) is maximized with ||Vu||2 = pj, we obtain

constants A, B > 0 which are independent of j and such that

Clearly 7j • oo, and so the claim holds.

Now, from the claim we see that we may choose j sufficiently large such that condition

(a) of Theorem 3.2 holds with X = X,, p = pj, and c0 > 0 = I\(0).

Next we verify condition (b) of Theorem 3.2. Fix k > 1 and let </?i,..., <£>* 6 Co°(£2+)

be any fixed collection of functions with disjoint supports. Set

Yk =

As the supports are disjoint, dimYlt == &• Now, for u € Yit, u = X)t=i *«̂ «» w e

where we have used the lower bound

F(u) > a\u\? - b

for constants a, b > 0, which is a consequence of (1.26). Thus condition (b) is satisfied.

Note that our hypotheses in Theorem 3,1 guarantee that (PS) is satisfied, via Lemma

1.5. Hence, Theorem 3.2 holds, and we obtain infinitely many pairs of critical points for

(3.U). I

We conclude this section with some remarks concerning the existence of solutions for

problem (3.1A) when / is not necessarily odd.

In this situation one could try a linking argument (cf [R], [St]) to establish existence.

That is, find a manifold whose boundary T links with the sublevel {I\ > e > 0} and for
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which I\\r < 0. While the choice of such a manifold is quite natural when W > 0 (where

it is enough to take care of the positivity of the quadratic part,) in the case where W

changes sign the situation is more delicate since both terms in the functional need to be

insured of a proper sign. We sketch here one possible way of handling this situation, which

is however very much inspired by the case of a fixed-sign W, and therefore requires the

availability of "good" subspaces for both the quadratic and superquadratic parts of the

functional.

To this purpose, let A* < A < A*+1 and suppose that there exists a linear subspace

E C Hl{Si) with dimE = k such that

sup \\Vw\\l = \x < A <

!*JQW(X)F(W) ^ n

inf " r , .— = a > 0

PROPOSITION 3.3. Let A £ cr(Q°) U {Al9 A2 , . . . } and assume that for A 6 (A*, A*+i) there

exists a subspace E, dimE = k, which satisfies (3.5\). Let f satisfy (1.25), the assumptions

of Lemma 1.5, and

(3.6) f{u)u > 0 for u ^ 0.

Then (3.1\) admits at least one nontrivial solution.

REMARK: The most obvious choice of the space E would be E = span{ei, . . . , e*}.

PROOF: We will only deal with the case A > Ai, since for A < Ai the proof will follow by

even easier arguments. We show that a linking argument (see [St]) applies for the functional

Ix. Assume, without loss of generality, that 0 € ft and W(0) > 0. Let (p € Cg°(Bp(0)) with

p > 0 small enough such that Bp(0) C ft+. For e > 0 construct the following mollifiers:

Set

Et = {u = w + ttp(: w € E, t > 0}

where E is the linear subspace as given in (3.5A).
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CLAIM: We can fix e0 > 0 sufficiently small such that for R and T sufficiently large we

have

h\dQ < 0

where

Q = {u = u, + i ^ 0 € £ € 0 : ||VH|2 < H, 0 < * < T}

To obtain the claim we evaluate:

h(w + tft) = \ (||VM|22 - AINU) - / W(x)F(w)

I (Vw • V<t< - Xwip() - I W+(x)[F(w + t<p() - F(w) - F(t<p()}
Jn Jn

(3.7) + ; ;

where, to estimate the nonlinear terms, we have used (1.33) and

(3.8) F(u)>Ci\u\* + C2\u\*

(which is a consequence of (1.25), (1.26), and (3.6)).

On the other hand, by the definition of (p€ we have

Consequently, (3.7) can be estimated by

+ *Vf) < -\ Q - 1 - Sj \\Vw\\l - (Cia - 6)\\w\\l
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Now fix 6 sufficiently small such that - — 1 — 6 > 0 and C\OL — 6 > 0. Subsequently,

choose €o > 0 sufficiently small such that

We conclude that

\l B\\ Vf + %t2 t*>+ t<p€) < -A\\Vw\\l - B\\ Vwf2 + %t2 - -t*> - -t*
2 p q

for suitable positive constants A, £ , C, D, and JS.

Now we check the conditions on dQ. If t = 0 then obviously IA(W) < 0. On the other

hand, for all t > 0

2 p 9 \ 2 p)

Therefore if w € Q and ||Vw\\2 = i2 then

o n / I 1\ C
e) < -(A + BR>-*)& + (2 - - ) 5575=55- < 0

for R sufficiently large. Finally, for T > (f § ) 1 / ( p ~ 2 ) we have

h(w + iv.) < -A||VH8 - *||VHIS + fr2 - - ^ - ~T9 < °

This concludes the proof of the Claim.

On the other hand, standard arguments show that for a suitable po > 0,

Ix(w) > co > 0, for all w € Xk n 5Po

with .Xjk as in (3.2). Moreover, it is not difficult to show that dQ and (Xk H SPo) link.

In fact, let v i , . . . ,v* be an orthonormal basis for 12, and set A = (aij)i,i=i,...,* with

atJ- = JQ ett;j. By (3.5A) and the variational characterization of the eigenvalues of —A in

we have that necessarily det A ^ 0. Define also the vector

z =



Via a degree argument, we will be finished if we show that the system of equations

k

admits a unique solution for Y?i=i *? < &* an<^ * € l°> T\- But t^ i s i s a n e a s v consequence

of the invertibility of A, and so the linking is proven.

Since the given assumptions ensure that (PS) holds, the conclusion of the Theorem

follows fromTheorem 8.4 in [St]. |

4. THE CRITICAL CASE

In this section we would like to extend the results of Theorem 2.7 to include nonlineaxities

with critical growth. In fact, to simplify the technical details, we shall assume that f(u) =

|u|2*"~2u, N > 3. More precisely, we investigate solutions to the problem:

— Aw — Xu = W^x)^2*""1 in

(4.1A) { t/|an = 0

u > 0 in ft

Set

(4.2)
./R

(N(N-

and for W € C2(fi) and y € ft with W(y) ^ 0, let

(4.3) (JT(jr-2))* / (-P2Ty(y)*,aQ
A N U / J ~ 2W(y) 7RN (l + |x|2)^

We have:

THEOREM 4.1. There exist a constant A > Ai such that (4.1\) admits a solution for all

A € (Ai, A] if and only if

(4.4) / W(x)e\' < 0
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In addition, ifWe C2(Q) D C(ft) satisfies

(4.5) max W(x) = W(xQ) > 0 for some x0 € ft

then problem (4.1\) admits:

(i) at least two solutions if X € (Ai, A) and if, for N > 6, the inequality

(4.6) XBN > ^AN(x0)

holds with AN,BN de£ned as in (4.3), (4.2)

(ii) at least one solution if A = Ai and if, for N > 5, (4.6) holds with A = Ai.

REMARK 4.2: It will follow from our arguments that the case A € (0, Ai) can be treated

in a similar fashion without assuming (4.4). So for A € (0, Ai) the existence of a positive

solution can be established provided that, for N > 5, the inequality (4.6) holds. Also notice

that when N = 3 the argument becomes more delicate and one has to follow Lemma 5

of [Br] to show that there exists a 0 < A* < Ai such that for A € (A*,Ai) there exists a

positive solution to (4.1A). We leave the (lengthy) details to the reader.

REMARK 4.3: Condition (4.6) should be compared with the degeneracy conditions (2.1)

and (3.2) of [E-S].

PROOF:

The necessity of the first part of our result just follows from the definition of A,

(4.7) A = sup{A > Ai : (4.1A) admits a solution} > Ai

and Lemma 1.3. For the sufficiency, we know from section 2 that for all Ai < A < A there

exists a minimal solution u\ to (4.1A). Combining the variational formulation of Perron's

method and the fact that the minimal solution tt\ is nondegenerate (see [Ou]), we derive,

for given A_ < A < A+, that

IA(UA)= min Ix(u) < 0
t»_<ti<t*+

with t/_ = t/A- < tz+ = t/A+- Choosing a sequence An / A denote the corresponding

monotone sequence of minimal solutions by un = «An- We have

r JAK) = /A>n)-(A-An)|M|2<o
(4.8) \

I JAK) = I'xnM - (A - A > n = -(A - An)un

35



As in the proof of Lemma 1.5 (see also the analysis shown below for Claim 2), (4.8) is

sufficient to conclude that ||Vun||2 < C and in turn ||un||oo < C Hence UA = supun > 0

gives the desired solution for (4.1A)-

We now move to the second part of Theorem 4.1. Without loss of generality, we assume

that x0 = 0 € n and W(0) = 1.

(i) This result was already claimed in [Ou], but without recourse to condition (4.6) for

N > 6. We believe however that without this condition his argument does not guarantee

that the second solution found therein (as a weak limit of approximate solutions) is different

from the first solution.

Nevertheless, from [Ou], we know that the minimal solutions u\ for (4.1A) (constructed

in section 2) are, in fact, strict local minima for the functional

More precisely, for each A 6 (Ai, A) there exists a 6(X) > 0 such that

(4-9) &

for all <p £ HQ(Q). Ouyang derived this information with a very nice argument which is,

however, limited to homogeneous nonlinearities.

As for Theorem 2.7, we seek a second solution of the form

with ip > 0. This amounts to finding a (positive) critical point for the functional

M<P) = \(\\V<P\\1 - A||^+||
2
2) - ^ J^ W(x)[(ux + V+f - uX - 2 V ;

which, in view of condition (4.9), admits </? = 0 as a strict local minimum. That is,

(4.10) Jx{<f) > co > 0(= JA(0))

for |M!nl(n) = r> some r > 0 sufficiently small.

36



To obtain our candidate for a critical value, we use the mountain-pass procedure, and

define

(4.11) c

(4.12) V = {7 € C([0,l]; JETJCO)) : 7(0) = 0, JA(7(l)) < 0}

(V is non-empty by the structure of J\.) As is well-known for variational problems involv-

ing critical exponents, concentration phenomena can occur and violate the (PS) condition

for certain values c. Therefore, to guarantee that this is not the case for the value con-

structed in (4.11), we will continue as in [B-N] and estimate c from above.

CLAIM 1:

(4.13) c < jfSN'2

with 5 the best constant in the Sobolev embedding.

Define

(4.14) U€(x) =

where c# = (N(N — 2)) 4 , so that U€ satisfies

-AC/^^f"1 inRN.

Fix p > 0 so that Bp(0) C fl+, and pick a function 77 € CQ°(BP(0)) such that 0 < ?7(x) < 1

and ri(x) = 1 for all x € £p / 2(0) . Then set

(4.15) v€ = r] • £76

As usual, to establish (4.13) we will estimate max*>o J\(tv€).

First, we introduce the familiar estimates (see [B-N], [St]):

(4.16) „ ,i2
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where BN is as in (4.2). Then, it is easily verified that for €o > 0 chosen sufficiently small

there exists a (large) R > 0 such that

(4.17) J\(Rv€) < 0

holds for all 0 < c < e0. In other words, the path 7(t) = tRv€, t € [0,1] belongs to V, and

hence

(4.18) c<mvLRJx(tvt)

To take advantage of the "better" error terms involved when estimating (4.18), we

distinguish a few cases according to the dimension N.

CASE N > 7: Let 0 < t < R. Then

tvt) = £ (\\Vv(\\l - X\\vt\\l) ™ jf W(x)v?

+1 I W(*K*-V - ± f tvtf - nX - (tvtf]

CR\\v(\U

(4.19)

N

where we have used the estimates

(4.20) lkl |1=O

On the other hand, using our hypotheses on W, we have

/ W(x)v? = / W(x)U? + 0{eN)
Jn «/B,(O)

(4.21) = SN'2 + e2AN(x0 = 0) + o(e2)
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In the sequel we set AN = AN(XQ = 0). Resuming from (4.19), after applying the estimates

(4.16) and (4.21) we see that

(4.22)

orn*xRJx(tvt) < -

—
N

o(e2)

N

2/2*

2
o ( e 2 ) ]

for e > 0 sufficiently small, using (4.6). The claim is completed in the case N >7.

CASE N = 6: When JV = 6 then 2* = 3 and one can estimate explicitly the above

expression to derive

Uive) = £ (\\Vve\\* - X\\vt\\l) -tf W{x)v\ - 1 2 / W{x)uxvl

Since JQ W(x)u\v2 > 0 we conclude as in (4.22),

max J\(tv€) < -
o<t<R v J 6

for € sufficiently small, under our hypothesis (4.6). Note also that in this case we could

allow equality in (4.6) because we control the sign of the error term, which is also O(e2).
N — 2

CASE JV = 3,4,5: Here we must be more careful with the error terms of order e~5—, as

they represent the first order correction in these dimensions. As above, let 0 < t < R. We

have

tv() = f (||VV<||
2 - \\\vt\\\) - ^ /

n
/

tvtf - uX -

- t; f W{x)v? -

(4.23)
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with Co > 0 a suitable constant. Now, if we call tt the value of t which attains the

maximum of the right-hand side of (4.23) over [0, J2], then

and hence

max Jx(tv() < |

< -
N

for € sufficiently small. This completes Claim 1 in all dimensions.

We are now ready to conclude the proof of part (i). The mountain-pass principle, (4.11),

yields a sequence wn = u\ + ipn € Hl{Q), with <p > 0 and satisfying:

(4.24) Ix(wn) - IA(UA) + c < Ix(ux) + ±

(4.25) ||/A(^n)|| -» 0

CLAIM 2: ||Vwn||2 < C for suitable C > 0.

We argue by contradiction, and assume instead that ||Vu>n||2 —• oo. We begin by observing

that this implies

JWi>c>o
| V | | "

In fact, combining (4.24) and (4.25) we have

which yields
IKlli , i

nil? A

Now, setting vn = | |T7^n
 |( , we have (along some subsequence) vn —̂  v0 ^ 0 in

Then, (4.25) yields

/
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for all if € HQ(Q). Necessarily,

t W(x)v%-lip->0
Jn

that is,

I' W(x)vf~l<p = 0 for all <p € J5Tj(fl)

which implies that v0 = 0 in Q\Q°. In other words, t;0 € iTj(fl0), t;0 ^ 0, and satisfies

—AVQ — \vo = 0

This is clearly impossible, as A < A < Ai(ft+ U Q°) < Ai(ft°), and Claim 2 follows.

Passing to a subsequence, wn —> WQ with WQ € -ffg(fi) a solution to (4.1A). Note that

wo >u\in Q. We now claim that wo is the desired second solution.

CLAIM 3: wQ > u\.

It suffices to show that wo ^ u\. Let us argue by contradiction and assume that WQ = u\.

As wn = u\ + (pn, this would imply that ipn —•*• 0 in iTg (^) anc^ ^n turn:

2' -» c € (0, ^

That is,

(4.26) -L | | V ¥ , n | | ->c€(O, l

and
2*

(4.27)

From (4.26) it follows that ||V^n||2 is bounded away from zero, and hence (4.27) yields

which clearly contradicts (4.26). This completes the proof of (i).

41



(ii) Now A = Ai, and u\x = 0, so J\x(v) = I\x(v). By Lemma 1.4, we have that u = 0 is a

strict local minimum for J\x, and we can proceed as in (4.11), (4.12) to obtain a candidate

for a critical value c via the mountain-pass lemma. To obtain the estimate (4.13) in this

case, we proceed as above. If N > 5 and An = An(xo = 0), corresponding calculations

yield,

Jxx(tv€) = ̂  (||Vi,€||
2
2 - Xl\\v€\\l) - t; jf W{x)v?

•\2/2*

1_ .
JV (cNII A...1 i ~(.2\\2I2*

K JV

provided (4.6) holds at A = Ai and e > 0 is sufficiently small.

When JV = 4, the estimate (4.13) holds without condition (4.6), as

" ~ .\2/2*

\2/2»

JV

J_
< JV

for all c > 0 sufficiently small, where C, C > 0 are constants.

The case JV = 3 is a simple consequence of a result of Brezis-Nirenberg [B-N] where

these type of estimates were first introduced to handle problems with critical exponents.

In this case there is a competition between the "good" error term given by Ai||i;€||
2 and

the "bad" error term as given by the expansion of ||Vut||
2. Thus, as in Lemma 5 of [Br]

one shows that there exists A* € (0, Ai) such that
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for A € (A*,+00), and hence (4.13) follows in our case where A = Ai € (A*, +00).

Now, the convergence part follows exactly as in (i) to provide the solution for A = Ai. |

REMARK: Following the arguments of section 3, we can also derive existence for (4.1A)

when A is large provided that the corresponding assumptions (3.5A) hold. Namely, we

assume that for A ̂  a(17°) and A* < A < A*+i,

(i) there exists a linear subspace E C HQ(SI) with

k, sup
E

()
L W(x)\wf

inf J" f \ ;' ' = a > 0
:n fa M2

Then, exactly as for Proposition 3.3, a linking argument can be utilized by taking <p€(x) =

v€(x) (as defined in (4.15)) to yield a candidate critical value below the threshold -Zf

provided condition (4.6) is satisfied for N > 5.

5. APPENDIX

In this section, we return to some of the technical lemmata from section 1. Our first

concern is the Palais-Smale condition (Lemma 1.5)

PROOF OF LEMMA 1.5: Consider a sequence {un} € #o(^) f°r which

(5.1) I A K ) = |(||Vun||l - AKH!) - / W(x)F(un) <
2 JQ

(5.2) I'xMv = / Vun • V^ - \un<p - W(x)f{un)v = / Vzn
JQ JQ

where ||Vzn||2 —> 0 as n —• 00.

Note that by the (subcritical) growth condition (1.1), it suffices to show that the sequence

un is bounded in HQ(£1). We suppose the contrary, that is ||Vun||2 —» 00. Let vn =

un . Then vn —> VQ in HQ(Q). The crucial step in the proof is the following:
l|Vun||2
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CLAIM: V0 # 0 in 0 (ie, " ""„ y+ 0.)
||VUn||2

Assuming the claim for the moment, we then divide (5.2) by ||Vun||2 and pass to the limit

to obtain

(5.3)

for all <p €

we see

(5.4)

7v0 • V<p- Aiw = Hm (||Vun||f-
2 / W(x) ^}_l'p)

n—00 ^ Ja ||VUn||$ J

. Now, using the condition at infinity (1.26) and dominated convergence,

f W(x)
n tn ' Jn Jn

Now, using (1.33), and denoting tn = ||Vun||2, we have

!/'(*»[*>»+ ( l -*>o]) |K-t ;o |I/.W(x) 9 - 1 V?

(5.5)

<C f [\6vn
Jn

< C[\\6vn +

- vo |

C)\\vn -

Applying (5.5), (5.4), and (5.3), we have

(w(
Jn

for all v? G #o(^)- Hence vQ € H%(Q,°), and from (5.3) we have

(5.6) / Vv0 • V(p - XvQip = 0

for all <p € -H"o(̂ °)- As we are assuming that the claim holds, this is impossible unless

A € a(fi°). However, this contradicts our assumption, and so we see that in fact ||Vun||

must be bounded, and the Lemma follows.

It remains only to prove the Claim. In fact, we shall show that it is a consequence of

either of the conditions (a) or (b). We treat the two cases separately.

So suppose first that (a) holds; ie, / satisfies (1.26) with 2 < p < 2* and

(5.7) n ft- = 0
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To prove the claim we argue again by contradiction and suppose that VQ = 0. In that case,

(5.2) yields

(5.8) lim / = 1

Now, in view of (5.7) there exists V € C0°°(RN) with 0 < xp(x) < 1, j>(x) = 1 for all

x € ft" and V(*) = 0 for all x € £2+. Let <p = V*>n € Hl(&) and apply (5.2) again to

obtain

/

In particular

(5.10) Urn

On the other hand, combining (5.1) and (5.2), we have

(5.11)

Fixing 0 < e < I min(i, | — ^), apply (1.26) to find a constant C such that

(5.12) (- - e\ f(u)u -C< F(u) < ( " +

for all u € R. Now applying this estimate to (5.11), we obtain

(5.13) = o(l)

where we have used (5.10) in the last step. By the choice of e, we conclude that

(5.14) Kja^J
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By putting together (5.8), (5.9), and (5.14), we obtain the contradiction; hence the Claim

must hold in case (a).

In case (b), we again combine (5.1) with (5.2) to obtain

(5.15) W(x) [|/(un)un - F(un)| <c-\

Using condition (b) and (5.15) we obtain

(5.16) (l~-) f W(x)f(un)un < c+C\\un\\2
2 - \f Vzn • Vun

We again assume for a contradiction that vn —* 0. Dividing (5.16) by || Vun|J2 and passing

to the limit, we obtain

(5.17)

However, if we use (5.2) with <p = un , we obtain a contradiction since

i ( « n ) « n , , ,vLW(x)
l|Vun||?

(5.18)

Therefore, the claim must hold under the condition (b) as well. |

PROOF OF LEMMA 1.3: Supposes solves

' - A u - Xu = W(x)up~l in Q

(5 .19A) u|an = 0

u > 0 in

with A > Ai and p > 2. Replacing t\ by tt\ if necessary (t > 0) we can always assume

that ci < tx in ft. Then

(5.20)
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where we have integrated by parts twice to reduce the term with Au.

Now, we calculate A(logei) and A(logu) to produce the following two identities:

|Vu|2 = -WvT^u - t/2A(logu) - At/2

After substituting into (5.20), we obtain:

Q

(5.21)

On the other hand,

and so the right-hand side of (5.21) is strictly positive and

W(x)e{ < 0.
Jn
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