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Chen, Gigaand Goto ([14]) and, independently, Evans and Spruck ([20]) proved

the existence and uniqueness of viscosity solutions for (3) thereby providing an al-

ternative weak formulation for (1). The notion of viscosity solutions was introduced

by M. Crandall and P, L. Lions for Hamilton-Jacobi equations ([16]) and extended

to second order (degenerate) equations by P. L. Lions ([31]).

The extensive mathematical literature on the problem of evolution by mean cur-

vature was partially motivated by questions arising in materials science. Indeed,

equation (1) was introduced by Mullins in [33] to study the motion of grain bound-

aries. A more general equation that accounts for anisotropy has been derived by

Angenent and Gurtin ([4],[27]) from thermodynamical considerations. An alterna-

tive derivation of (1) was obtained by Allen and Cahn in the context of antiphase

boundaries. In [1], they introduced the free energy functional

E*(v) = j (F(v) + <?\Dv\2) dx (e < 1) (4)

for an order parameter v. Here F is an even function with exactly two local minima,

say at v = r\ and t> = r2, and e is proportional to the antiphase boundary thickness.

After rescaling the corresponding gradient flow becomes

v\ = Av€ - ^f(v€) where / = F\ (5)

By considering (5), Allen and Cahn formally established (1) as the correct limiting

law of motion for antiphase boundaries. Their analysis was later mathematically

justified by several authors using different techniques: the solutions v€ were rigor-

ously shown to converge, as e —> 0, to a piecewise constant function whose surfaces

of discontinuities move according to (1). Such results were established in [9],[17]

and [12] for smooth mean curvature flow. The first global-in-time results, past the

geometric singularities, were proved in [19] and later generalized in [7], using the

viscosity formulation of (3).
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In the work cited above however, the interaction of the walls of a container ft

holding the two-phase mixture with the interface was neglected. In [11], Cahn pro-

posed a free energy functional modified so as to take into account this phenomenon.

This functional has the form

E*(v) = / (F(v) + <?\Dv\2) dx + e [ c(v) da, (6)

where the last term is the contact energy. The modified gradient flow becomes,

again after rescaling,

v\ = A,f-I/(if) xen, (7)

As a first attempt to study this problem, we shall consider here the case of constant

contact energy, i.e.

cV) = 0.

Thus, the equation (7) is subject to the Neumann boundary condition

| £ (8)

In [35] Rubinstein, Sternberg and Keller formally established the convergence of the

solutions v€ of (7), (8) to a function taking only the values r\ and r2. The "interfaces"

Tt between the regions of constancy move according to (1) and satisfy the contact

angle condition (2). A rigorous local-in-time result for the convergence problem was

proved in [12] with the implicit assumption that ft is convex (see Section 4.2). For

the limiting equations (1),(2) Huisken ([28]) established the global existence and

uniqueness of smooth solutions for the graph case in a cylindrical domain. Results

concerning smooth solutions in two dimensions can be found in [35]; notice that the

motion can develop singularities in finite time even in this case (see Section 2).



Motivated by the formal and classical results of [12],[28] and [35], we shall study

globally in time both the convergence of the solutions v€ of (7),(8) and the limiting

problem (1),(2) using the level set approach (3). In Section 2 we present a proof of

the local existence of classical solutions of (1),(2). Section 3 is concerned with global

weak (viscosity) solutions of (1),(2): we discuss the issues of existence, uniqueness

and behavior of the interface near the boundary of the domain. Finally, Section 4 is

devoted to the convergence of the solutions v€ of the Allen-Cahn equation subject to

homogeneous Neumann boundary conditions to the global weak solution of (1),(2).

Acknowledgment. We wish to thank Mete Soner for suggesting the problem

studied in this paper and for many helpful discussions. This work was partially

supported by the National Science Foundation through the Center for Nonlinear

Analysis.

2 Local existence of classical solutions

In this section we prove local (in time) existence and uniqueness of smooth hypersur-

faces restricted in a domain ficRn moving with normal velocity equal to their mean

curvature and meeting the boundary dQ at a prescribed angle. Several approaches

to this problem could be taken which would yield essentially the same result. In

every case the size of the existence time-interval will depend on some smooth norm

of the initial data. For example, one could try to extend the approach of Evans and

Spruck [21] to deal with the boundary conditions; alternatively, the evolving sur-

faces could be sought as graphs over the initial manifold yielding a scalar parabolic

problem (see [13]), We choose however to take a different perspective which we

believe is more adaptable to more complex situations such as different conditions on

the boundary of the domain or to the evolution of "networks". This formulation,

a version of which was used in [10] in the context of three-phase boundaries, is a



natural extension of the equations of motion for graphs. More precisely, we shall

describe the evolving surfaces via a parameterization

Then, the mean curvature K of the surface Tt = p({t} x U) is given by

K = tvace{(Dp • Dpf)~lD2p) • N

where

and

(Dp • Dp%- = pXi • pXj )ij = pXiXj

N = N(p(t,zi,- • • ,xn.i)) = unit normal vector to Tt =
N

\N\

N = det
Pr,

Px._,

Thus, the condition that the normal velocity be equal to the mean curvature can be

written in the form

pt-N = trace{(Dp• Dpf)~lD2p) • N.

It is natural then to choose a tangential velocity so that the evolution of the

parametrization p is governed by the parabolic system

To complete our formulation we need to impose conditions on the boundary of Q

or, equivalently, on the boundary of U. In order to keep the presentation simpler,



we shall assume that the parametrization of the initial surface To has the property

that
n-l

n H for (*i,*2,-",*«-i) € dU

where

i/o = unit normal vector to dSl at p(0,x\yx^• • •,£n-i)>

n° = (ni,n2,**->«S-i) = unft normal vector to dU at (xi,X2,"*,arn-i)»

No = N(p(0,Zi,---,a:n_i)),

7 = contact angle at the boundary dfi (i.e. UQ • NQ = cos(7))t

/i — /x(xi, • • •, xn_i) = scaling factor

Then, if we let

we have

and the condition that the surfaces remain within Q is

while the contact angle condition at the boundary becomes

= cos(7) for (£i,£2,---,xn_i) € 8U. (11)

Now, to make the problem well-posed we still need to impose n — 2 conditions on the

boundary. These conditions, which should determine the tangential velocity of the

surfaces I \ , can take many different forms, a fact that again shows the versatility of



this formulation. The form of the boundary conditions that we choose is perhaps

the one for which the well-posedness of the resulting parabolic system is easiest to

check; these conditions are

A W f o r (*i .*2,-",*«-i) € d U and j = l , - - . , n - 2

(12)

where r1, • • •, rn~2 is a basis for the tangent plane of Fondft at p(0, x\, #2, • • • * ̂ n-i)-

We may now state a local existence and uniqueness result.

Theorem 1 Let 0 < a < 1 and let dft € C2+°, 6 € C2+°(Rn) and p(-,0) €

C2+a(Z7). Then there exists T = T(||&||2+a,|b(0,-)||2+a) > 0 such that the system

(9) subject to the boundary conditions (10)-(12) has a unique solution p € C2+a(W x

[o,TD-

Proof: The idea of the proof is to first linearize the equations and boundary

conditions about the initial data, prove existence and uniqueness for the linearized

system and finally use a fixed point argument to establish a local result for the

full problem. Once the linearized system is shown to be well-posed, the rest of the

proof follows using standard estimates (see [10]). Thus we shall only show here

that, under the assumptions of the theorem, the linearized version of (9)-(12) has a

unique solution.

After linearizing about the initial conditions we obtain

pt = trace((Dp° • Dpoi)"lD2p) in [0,T] x U (13)

with boundary conditions on [0,T] x dU given by

I cos(7) — NQ • I/Q + (î o — cos(*y)No)DNop%

V • VQ + NQ- VQ + VQDNQ(PX — p^)) (14)
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+ N(u0-

cos(7) - \N0\ cos(7) - cos(<y)N0DN0(p*
Db{p) ,
\Db(p)l

•ad fcri-l,.-,n-2.
«=1 i=l

Here,

and

Z7m\ Dpm.NnpXi

We want to show that the system (13) subject to the linearized conditions (14) with

given right hand sides (which we shall denote by F(t,x)), has a unique solution in

C2+a([0,T) x 17). For this, let C denote the (diagonal) matrix associated to the

system (13) and let B be the matrix of boundary conditions so that (13), (14) can

be written in the form

and

B(x, dx)p = F(t, x) on [0, T] x dU.

The system above will have unique solutions in Holder spaces provided the "com-

plementary condition" is satisfied on the boundary [0,T] x dU, see [37]. Since both
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our operator and boundary conditions coincide with their principal part, the com-

plementary condition can be stated in the following way: let L = det £ , C = L£~l

and let Ai, • • •, An denote the roots of L(x, £, i(6 — An0)) (as a polynomial in A) with

positive imaginary part; then the complementary condition is satisfied if

for every x € dU and every $ in the tangent plane of dU at x,

the rows of BC(x, C, i(0 - An0)) are linearly (15)

independent modulo the polynomial n"=i(A - Xj)

whenever R(C) > 0, \(\ > 0.

Let BQ S BO{X, C» ^I» • • • I Xn) denote the matrix B(x, i(9 — An0)) when in the j — th

column A is replaced by Xj = root of £jj(a:,C,i(0 — An0)) with positive imaginary

part. Then, it is easy to check that the condition (15) is equivalent to

det Bo 9*0. (16)

FVom (14), we see that the matrix B{x,dx) is given by

r . w —j - w - w - • r w ' * * J

and, therefore, the matrix BQ takes the form

T



Now, since u0 - cos(7)iVo = /xL"^1 «?P2<

= det

- cos{t)N0)

e2

P*.-,

we obtain that

*i - Am})

Thus,
i/J

-iAirJ - i
-»Ai7f —»A2r|

-2 _tA 2T 2
n - 2 ^r2

and, if we define

A =

A! 0 0
0 A2 0
• • •• • •• • •
0 0 0

0
0

and BQ S=
- t r 1

-it2

i j
i n}(«i - A.n})

L - l . . n - 1 \ - l

-tr
n-2

we can write

BQ =

Hence, to establish (16), it suffices to show that

1*9*0 (17)

10



But (17) follows immediately from the fact that the imaginary parts of the roots A,

are positive. D

The local character of the existence statement in Theorem 1 is not just a result

of the method of proof employed. Indeed, hypersurfaces moving by curvature will,

in general, develop singularities in finite time at which

||p(t,-)||2+a — oo *st-+T

(a notable exception is the case in which the hypersurfaces are graphs over an n — 1

dimensional domain, [28]). A sphere, for example will shrink to a point in time

proportional to the square of its radius, while the "dumbbell"-shaped region in

Figure 1 is, by now, the classical example of a surface that, when evolving by mean

curvature, will develop a singularity before it becomes extinct.

The presence of the domain boundary 9f2, on the other hand, gives rise to other

kinds of singularities. For example, we can imagine the surfaces I\ (smoothly)

advancing towards a nonconvex part of dQ, until they finally meet, as shown in

Figure 2. At that point in time, where the contact angle condition is not satisfied,

we expect that the evolving manifolds will "break up" to immediately satisfy the

boundary condition. This, of course, cannot be established using (9)-( 12), as these

equations implicitly assume that the interior of the initial manifold To does not

intersect the boundary dfl. However, a similar formulation can be derived in that

case, rendering a free boundary problem for the surface and its intersection with the

boundary of the domain (with an incompatibility condition at * = 0). The study of

this free boundary problem and, in general, of the behavior of the evolving manifolds

near a singularity will, at any rate, be left for future work.
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3 Global motions
3.1 Existence and uniqueness

As discussed above, singularities are expected to develop for a surface evolving by

its mean curvature. Classical solutions to (1),(2) will not exist in general, so that

the concept of a "weak" solution to these equations should be introduced. As we

stated in the introduction, we shall use here the level set approach to define the

motion in the viscosity sense.

For smooth surfaces I\ , the evolution can be written in terms of the level sets of

a function u in the form

r t = { x : u ( t , x ) = 0 } , (18)

with
( « TlSO i s (0,T) x

(NP) I

where the initial surface is given by To = { x : g(x) = 0 } . To further motivate

the need for a weak formulation of (NP), first notice that the parabolic equation is

degenerate along the normal direction to I\, N = |§JJ. This means that there is no

diflFusion along N so that the zero level set of u moves without using any information

about other level sets. In particular, the interior of Tt does not "see" the boundary

of the domain until it hits it; at this instance, the Neumann condition is not satisfied

(see Figure 2). Thus, not only do we need to interpret the equation in a weak sense

but also the boundary condition. The correct viscosity formulation for degenerate

second order boundary value problems was first developed motivated by questions

in optimal control theory, see {31],[6],[15]. We shall now present this formulation as

it applies to the Neumann Problem (NP) and discuss existence and uniqueness.

Definition 1 Let u be a bounded upper (resp. lower) semicontinuous function on
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Hy. The function u is a viscosity subsolution (resp. supersolution) of (NP) provided

u(O,x) < g(x) (resp. >) and for each <t> € C2([0,oo) x IT) we have:

(i) ifu — <f> has a local maximum (resp. minimum) at a point (to, XQ) € (0, +00) x

ft, then

4>t ̂  {$ij — \D6$ )^gi-gji (resp. > ) at (to,xo)

and

( <f>t < (6ij — Tjx.T]Xj)(f>x.Xj, (resp. > ) at (to,xo)
/or some 77 € JRn wtt/i \TJ\ < 1, t/ Di(to,xo) = 0,

(ii) ifu—<j> has a local maximum (resp. minimum) at a point (to, XQ) € (0, +00) x

dQ and D<f>(to,xo) # 0, then

min (& - (Sij - ^ ^ ) ^ . , i f D<t> • 1/) < 0, at (to,xo), (21)

(resp. max (& - (6tj - ^ | ^ ) 0 X | X . , i?0. „) > 0, at (to,xo)), (22)

where v is the outward unit normal to dQ.

The function u is a viscosity solution of (NP) if it is a sub- and supersolution of

(NP) and satisfies the initial condition tx(0,x) = g{x), x € fi.

The following comparison theorem has been proved in [36] for f) convex and in [25]

for a general domain.

Theorem 2 Let SI be a smooth bounded domain in JRn. Let u and v be, respectively,

viscosity sub- and supersolutions of(NP). Ifu(0,x) < t>(0,x), then u <v on !Tr.

The following existence lemma was also proved in [36].

Lemma 1 For every function g € C(H) there exists a lower semicontinuous subso-

lution u and an upper semicontinuous supersolution v of (NP) satisfying u(tyx) <

g(x) < v(t,x) in VtT ond tt(0,x) = g(x) = v{0,x) in ft.
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1 Introduction

In this paper we study some aspects of the evolution of hypersurfaces by their mean

curvature inside a domain flcRn, subject to a normal contact angle condition on

dn. More precisely, we axe concerned with the evolution problem for hypersurfaces

Tt satisfying

V = K (1)

N • v = 0 (2)

where V is the normal velocity, K the mean curvature and N the unit normal vector

of Ft, and v denotes the unit normal vector to dSl.

Equation (1) has been extensively studied in recent years. Results for n = 2,

in which case solutions remain smooth until they become extinct, can be found for

example, in [26],[24],[3]. Also, global existence and uniqueness of classical solutions

in higher dimensions was proved in [18] for the evolution of graphs. However, if n > 3

singularities may appear as the surfaces evolve, so that (1) should be understood

in a "weak" sense. Brakke in [8] provided a weak formulation in terms of varifolds.

A different approach was inspired by the work of Osher and Sethian [34], who

represented I\ as the zero level set of a function u\ in this case, equation (1) can be

written in the form
ut Du. .

or equivalently,

(, «CjucA , ffT Du®Du 2 \

* ' \6ii' W$)Utiti = v " ~ W ) D u)' (3)

Notice that equation (3) is not only nonlinear and degenerate parabolic but it is

also singular when Du = 0.



Using Lemma 1 and Perron's method (see [29]) we can construct at least one viscosity

solution of (NP) which by Theorem 2 is unique. Therefore, we have the following

theorem.

Theorem 3 There exists a unique continuous viscosity solution of (NP).

Remark 1 If we assume that the initial data g € W2'°° we can establish the Lip-

schitz continuity of the viscosity solution. For this, consider the solutions of the

following approximating problems:

Using Bernstein's method and standard maximum principle arguments (see [20])

we can obtain uniform estimates for ||uCia||^oo and ||ujt<r||^oo. We can also get uniform

estimates for H-Dt^H^oo: first notice that Du • v = 0 implies D\Du\2 • v < Co|-Du|2,

where Co is a positive constant depending on the curvature of dQ (see [32]). There-

fore, for any positive constants k, A and if p(x) = dist(x,dQ), the function z(t,x) =

kexp(C0p(x))\Due^(t,x)\2 - Xu€*(t,x), satisfies Dz • v < 0. It follows that for an

appropriate choice of A:, A, the maximum of z occurs at t = 0 . This in turn, implies

a uniform bound for ||.Du£t<T||£,oe. By extracting a convergent subsequence, we obtain

u€'*' —* u, locally uniformly as £*, & —• 0, where u is the unique viscosity solution

of (NP).

The solution of (NP) describes a geometric evolution of level sets. Therefore the

evolution should be invariant under any arbitrary relabeling of the initial level set.

Indeed, the following proposition, which will be used subsequently, can be proved

along the lines of [20, Theorem 2.8].
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Proposition 1 Assume u is the viscosity solution of {NP) and ty : 1R —> 1R is

continuous. Then

v & $(u)

is the viscosity solution of (NP) with v(0,z) =

3.2 Geometric properties of the viscosity solution

In this section we present some results concerning the interaction of Tt with the

boundary of fi and we establish a geometric condition for Tt to vanish in finite time

at the boundary.

We first state the following lemma which describes the properties of the sub and

superdifferentials of the solution on dVt.

Lemma 2 If u is a viscosity solution of {NP) and u. — <f> has a local maximum

(resp. minimum) at a point {t,y) € (0,+oo) x d$l, then

either D<f>-v<0 {resp. > 0) or D<t> = \D<f>\ u {resp. - \D<f>\ u) at (t,y).

In the latter case

<f>t - trace ((I - v ® i/)JD2<£j < 0 {resp. > 0).

Proof: Assume that u — <f> has a local maximum at the point (t,y), y € dO, and

D<t> • v > 0. Then (see [15])

{D(f> -1 v,X + mv ® v) € J2*u{tyy), I > 0, m € R,

where J^tffoy) is the superjet of tt at y for t fixed, i.e.,

ti(-,z) - <£(-,z) < ti(-,y) - <f>{-,y)+ < Dfrx- y > - / < i/,z - y >

+ - < (X + mv ® v){x - y),x - y > +o(|x - y\2) as x -> y, z € H.
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The matrix X is any nxn symmetric matrix satisfying the inequality

PD<f>P<PX P-IS,

where P is the projection onto the tangent plane to dtt at y and 5 the symmetric

operator in the tangent plane corresponding to the second fundamental form of dCl

at y.

Since u is the viscosity solution and the boundary condition is not satisfied,

letting Z —• 0 we have that

The last inequality is valid for every m only if D<f> • v = \D<t>\, which concludes the

proof of the lemma. D

The above lemma describes the interaction of the interface with the boundary.

According to the lemma a smooth interface either meets the boundary orthogonally

or "touches" the boundary tangentially. In the first case we expect that the classical

Neumann condition is satisfied. In the latter case the equation has to be satisfied

at the touching time: for any test function </>,

that is, the normal unit vector to Tt is collinear with the unit normal vector to fi.

As we explained at the beginning of the section, the touching of the boundary by

the interface Tt = { x : u(t, x) = 0 } at a time t = V occurs due to the degeneracy

of the equation along N = ^ . If IV has positive curvature at the touching point

(with respect to */), it wiU ^ a v e t o SP^ apart for t > V (see Figure 2). Then due to

the nondegeneracy of the equation in the tangential directions of I\ , the Neumann

condition is immediately taken into account, and a right angle condition is imposed

16



between the interface and the boundary. This kind of discontinuities on Du exclude

in general, the existence of classical solutions even in two dimensions.

We now consider a smooth surface So such that the interior of So does not inter-

sect dil. Let a be the signed distance from So- We make the following assumption:

The surface So has positive mean curvature with respect to the unit

normal field directed towards {a > 0} n SI. Moreover, for any point

<r(x0) = |x0 - zo\, 20 € So \ dQ and .X° ~ *°. • v(x0) > 0.

For example this is true if the boundary has the geometry depicted in Figure 3.

In particular (Al) is valid if {a > 0} n dQ, is convex. We have the following lemma.

Lemma 3 Let v(t,x) = a a(x) — t. Then, under assumption (Al), there exists a

constant a > 0 such that

vt - (t>a - ]|--p K*> > 0, /or x € fl n {a > 0}, (24)

and

Dv'U>0forxedCin{cT> 0}. (25)

Proof: Assume that t; — 4> has a minimum at (fo>£o) and v{to,xo) =

If Xo € dCt n {a > 0}, let a(x0) = |xo — zo\, z0 € So. We define the function

w(x) = a\x — 2o\ — to- Since w(x) > aa(x) — to» we have that

w(x) - <f>(to,x) > (aa(x) -1 0 ) - <t>(tQ,x) > w{x0) - <t>(tOjxo).

Thus xo is a local minimum for w — <f>. Hence, D<p is in the subdifferential of w and

(see [15, equation (2.15)])
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In view of assumption (Al),

du "~

On the other hand, if xo € ft n {a > 0} then, <f>t = — 1 and we have to prove that

- ^ - f s j p ^ 1 ' ' " 1 - 0 " (26)

Arguing as in [19, Theorem 2.2], we obtain

\D4>\ = a.

Define ^(x) = 0(to,x + x0 - *o) — v(to,xo). Then,

{^ > 0} C {a > 0}. (27)

Indeed let x be such that ip(x) > 0 and assume a(x) = 0. Then, since ^(x) > 0

a a(x + x0 — z0) —10 > <£(<0i * + x0 - 2:0) > a a(x0) - to-

Thus, since a(x) = 0, we obtain the contradiction

a|x0 - zo\ —10 > aa(x + x0 - z0) - aa(x) - 1 0 > aa(x0) —10.

Now, |-D^(^o)| = « and (27) yield that the mean curvature of the surface {x : tp(x) =

0} is greater than that of SQ at ZQ. Let K denote the mean curvature of the level set

{x : tp(x) = f} at zo with respect to pj^. Since 50 has positive mean curvature, K

is bounded om below by a positive number. Thus,

" ! " {6ij " ]Z>|f ) f e ' « - 1 + «« > 0. at (<0,20). (28)

for a sufficiently large. By using

£h^(2o) = D<ttto,xo) and D2V(2o) = D2<f>(t0,x0),

(27) and (28) we obtain (26). D

A direct consequence of the above lemma and Proposition 1 is the following:
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Proposition 2 Let So satisfy (Al). Then, (aa(x)-t)+ is a supersolution of(NP)

with initial data (aa(x))+ •

Proof: By Proposition 1, v+(x) = (aa(x) —1)+ satisfies (24), (25). However for

t > 0, {v+ > 0} CC {a > 0} and consequently v+ is a supersolution of (NP) in ft.

D

Using the above proposition we can prove the following:

Theorem 4 Let a and So be as in Proposition 2 and let the initial interface To =

{x : g(x) = 0} C {x : a > 0} (see Figure 3). Then, Tt vanishes in finite time.

Indeed, since {x : g > 0} C {x : (aa(x))+ > 0}, an application of Theorem 2 yields

{x : tx(t,x) > 0} C {x : v{t,x) > 0}.

Therefore, there exists a time t such that {x : u(t,x) > 0} = 0 for t > t.

A consequence of the above theorem is the following corollary which has appeared

in [35] for the case of a smooth plane curve IV

Corollary 1 If To is contained in a convex subdomain ofQ, then Tt will vanish in

finite time.

4 The Allen-Cahn Model with Neumann bound-
ary conditions

In this section we axe concerned with the limiting behavior as c —• 0 of the solutions

to the Allen-Cahn equation subject to Neumann boundary conditions:

v\ - Av€ + jif(v€) = 0 in (0, oo) x ft,

!) = tf(x) in ft, (29)

x) = 0 on (0,oo)x9ft.
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Here, ft is a smooth bounded domain and / = F' where F is a W-shaped potential

with wells of equal depth. We assume for simplicity (see Remark 2) that F(r) =

| ( r 2 - 1 ) 2 , so that / (r) = 2(r3 - r). A formal analysis in [35] suggests that, as e -> 0,

ft separates into two regions Pt and Nt where v€ « 1 and v€ » — 1 respectively and

the separating front Tt moves by its mean curvature with a normal contact at dCl.

Moreover, this analysis yields the asymptotic formula

v€ » q ( ' J as € —• 0

for the solutions vc, where q(z) = tanh(z) is the traveling wave associated to the

nonlinearity / (see [5]) and d(t,x) is the signed distance function to Tt. Thus, we

shall assume

where d(0,x) denotes the distance to IV The above assumption can be removed by

studying the generation of the front (see [12],[7]), but we shall not pursue this here.

In Section 4.1 we rigorously establish, for convex ft, that in the limit as

e —> 0 the hypersurfaces Tt evolve by their mean curvature, in the generalized sense

of Definition 1. In the final section we discuss the difficulties encountered when

trying to extend our global-in-time results to general nonconvex domains. (Local

convergence of the solutions can be established as long as the motion is classical;

see Section 4.2).

The first rigorous results for (29) in more than 1-dimension were obtained in [9]

where it was proved, using energy methods, that a subsequence t^ —> ±1 a.e. in

(0,00) x ft. Global convergence results have been recently established by Evans,

Soner and Souganidis in [19] and by Barles, Soner and Souganidis in [7], for the case

ft = JRn.
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4.1 The convex domain case

Theorem 5 Let Q be a convex domain in ]Rn and v€ the solution of (29). Then

/ - • 1 in P = {(t,x): u(t,x) > 0}
(30)

v€ —* — 1 in N = {(t,x): ti(t,x) < 0},

locally uniformly on compact subsets of P and N.

In our analysis we essentially use the method introduced in [19]: we "trap" v€

between super and subsolutions of (29) of the form q{^f^) where d is the signed

distance from Tt = {x : ti(t,x) = 0} and u is the viscosity solution of (ATP). In the

sequel we shall only discuss the construction of a supersolution, since the arguments

can be easily modified to yield subsolutions.

Since

substituting q{^f^) into (29) we see that, to obtain a supersolution, d has to satisfy

\q>(±)(dt - Ad) - ^'(4)(|Dd|2 - 1) > 0 in (0,oo)xJ),I (31)
t , x ) > 0 on (0,oo)xdft.

The above inequalities suggest that d should be taken to be a distance function,

so that \Dd\ = 1, and that it should also be a supersolution of the heat equation

with Neumann conditions. The following lemma shows that in a convex domain the

distance function to I \ satisfies the required inequalities.

Lemma 4 Let d(t,x) = dist(x,Tt) where Tt is given by (18) and u is the viscosity

solution of (NP). If it is a convex domain then,

dt-Ad>0 in (0,t*) x (fin {d > 0}) (32)

(resp. dt-Ad<0 in (0,f) x (On {d < 0})
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and

Dd-v>Oin(OX)x(dnn{d>Q}) (resp. Dd-v < 0 in (0,**) x (dQn{d< 0})).

(33)

when V = inf {t > 0 : T, = 0} .

Proof: We shall first prove (32). Assume x0 € ft n {d > 0} and let ^ be a smooth

function such that d — </> has a minimum at (to,xo) € (0,f) x H. We will show that

0 at (to,xo). (34)

Let ^o € Tio be such that d(to,xo) = |XQ — 2o|- Then either ZQ € n or z$ €

Case 1: *p € fl. Then the arguments in [19, Theorem 2.2] yield (34). The idea is

to first translate <j> along XQ — ZQ to obtain a test function for ^(u) at (to, *o)> where

$ is an appropriate monotone function. Then, (34) follows from the semiconcavity

of the distance function.

Case 2: z0 e dfl. Define %}>{t,x) = <f>{t,x+xo-zo)-6 where d(to,xo) = |x0—^o| =

^, and let w(x) = |x — zo|. Since w(x) > d(to,x), we have that

w(x) - ^(to,a:) > d(to,x) - ^(t 0^) > d(to,xo) - <f>(tOyxo) = t^(x0) - <t>{tOyxQ).

Thus xo is a local minimum for u; — </> and

\x0 — zo\

Since Q is convex we have
XQ ••" Z{\ g v

i r • Kzo) < 0

and therefore

^ * " ^ < 0 . (35)
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As in [19] we can construct a nondecreasing continuous function $ : [0, oo) —•

[0, oo) such that *(0) = 0, *(z) > 0 if z > 0 and

*l>{t)Z) < $(u(t,z)) for all (tyz) near (to>*o)-

Therefore, ^(u) — V has a local minimum at (to, zo) &ad by Proposition 1 and (35),

-i ^ °' a t (36)

By rotating coordinates we may assume that XQ = ZQ + 6en, where en = ( 0 , . . . , 0,1),

and prove as in [19] that

*«.«.(to,*o)<O. (37)

Since Zty(*o,*o) = en, (36),(37) imply

<f>t — j\(f> = <f>t — (6,j — i J\A\2 )^y'gi ™" $x*xn ^ 0 at ( to ,xo) ,

which concludes the proof of (32).

In order to prove (33) assume now that xo € dQ, n {d > 0}. As above if d

has a local minimum at (to,xo) so does w — <j>. Thus (cf. Lemma 3)

9i/ |xo — ZQ\

which implies (33), D

In order to construct supersolutions to (29) consider the viscosity solutions of

~~ (̂ «i "" \D<J''\*)U**"*J s 5a l^u 6 a l ' for ^ € n

. v s 0, on 9fi

The proof of existence and uniqueness of viscosity solutions for this problem is similar

to that for {NP). Now set ^(t,x) - d(x,lf°) , where if" is the zero level set of

23



u*'c. Following the proof of Lemma 3.1 of [19], we define w*'a(t,x) =

where ^ is a real smooth function such that

tls(z) = -6 for z < 6/4,

ri6(z) = z - 6 for z > 6/2,

r}s{z) < -6/2 for z < 6/2,

0 < T/6 < C and |ijjf| < C6'1

and C is a positive constant independent of 6.

By the semiconcavity of the distance function and a simple adaptation of Lemma 4

we obtain (see [19], where 17 = JRn):

Lemma 5 There is a constant K, independent of a, 6 such that

> —— in
o

and

| a > 0 tn fiT n {<?'" > 6/2},

\Dws*\ = 1 in QTC\ {rf*'° > 6/2}

and

v > 0 on ((0,T] x dtt) n { '̂a > 6/2}

(38)

(39)

(40)

(41)

We now define

where q€(z, a) is the traveling wave associated to /c(r) = f(r) — ea. From [5] we

know that there is a unique pair (q€(z,a),c€(a)) such that

(42)

3
- a as
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Lemma 6 For every a > 0, there is 60(a) and eo(6,a) such that Z€ is a viscosity

supersolution of (29).

The proof of Z\ - AZ€ + $f(Z€) > 0 appears in {7] (Proposition 10.2). It

only remains to prove that DZ€ • v > 0. However, this is immediate from Lemma 5

(equation (41)).

We conclude with the proof of Theorem 5.

Proof of Theorem 5: Let (to,*o) be such that u(to,xo) < - 0 < 0. By the

stability properties of the viscosity solutions,

us<a(s,y)<-l<0 (43)

for all 6, a sufficiently small and (s,y) in a neighborhood of (to^o)- Furthermore

since q(z, a) is increasing in a (see [5]), we have:

Z<(0,s) ><,<(*) = tf^iEsl.O). (44)

By standard comparison arguments for viscosity solutions, we obtain that Z€ > v€

in fij. On the other hand by the classical maximum principle, v€ > — 1.

From (43), (44) we have

limsup v€(s,y) < limsup Z€(s,y) = —1.
«—0 c—0

The result follows since

liminf v€(s,y) > —1.
(•.»£(tOo.«o)

In a similar way we obtain v€ -+ 1 locally uniformly in P. D

Remark 2 Theorem 5 can be extended to the case in which / = /(t ,x,r) (see [7]).

Namely, if fc_(t, x) < A:(t, x) < A;+(t, x) are the roots of/(t, x, r) and /£* /(t, x> r)dr =

0, then Theorem 5 holds true with /:_,/:+ in the place of — 1 and 1 respectively.
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4.2 The nonconvex domain case

When ft is nonconvex the proof of Lemma 4, and consequently that of Theorem 5,

fail. On the one hand, the distance function d does not always satisfy Dd • v > 0,

see Figure 4, and hence DZ€ is not necessarily greater than or equal to 0. On the

other hand, the distance function is no longer a supersolution of the heat equation

on {d > 0}. For example, in Figure 4 the interface does not move, so that dt = 0,

and Ad = 1 in Sector A of ft.

The question arises then as to what is the appropriate choice for "(f' in Z€ « q(^)

that will allow us to overcome the above mentioned difficulties. Freidlin in [22, 23]

deals with the so-called Kolmogorov-Petrovskii-Piskunov equation (KPP)

v€
t - eAv€ + \f{v€) = 0 in (0, oo) x ft,

r) = 0€(x) in ft, (45)

x) = O on (0,oo)xdft,

where / (r) = r(l — r). Based on a result of Anderson and Orey ([2]), Freidlin proved

that u€ « 9 ( ^ 7 ^ ) . Here, Tt is an interface moving with constant speed, q is the

stable traveling wave of KPP and

da(x,y) = *&{£ \<f>'(s)\2ds : <f> € C0'1, # 0 ) = x, # 1 ) = y, <j>(s) € H, s € [0,1]} .

In [30] a similar result is proved for (45), when f(r) = (r - m)(r2 — 1) and rn^O.

We conjecture that for (29), Theorem 5 holds and u€ w g(^^ r < ) ) where Tt moves

according to (NP). However, it is not always true that 9 ( ^ 7 ^ ) is a supersolution

of (29): although dn satisfies the Neumann condition (33), it is not necessarily a

supersolution of the heat equation; see the example of Figure 4, where Adn(ar, Tt) —*

+00 as x - • (0,0) and x € Sector A.

Finally, a word is in order regarding the local convergence of the solutions of

(29) when Tt is smooth. This question was addressed in [12]; there, under the
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assumptions that (a) there exists a local smooth solution to (1),(2) and (b) that the

distance function to the interfaces is smooth, a version of Theorem 5 was established.

As shown in Section 2, statement (a) can be proved for smooth initial data. On the

other hand, (b) is not always true in a non-convex domain: in the example in Figure

4, the distance function is not smooth across the line separating sectors A and B.

However, the arguments in [12] can be easily modified to account for this behavior.

For example one could smoothly extend the interface outside 0 and consider the

distance function to this extended interface.
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