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Abstract

The diffusional growth of a precipitate transforming under applied stress is ana-
lyzed to determine the shape evolution of the precipitate. The analysis is based on
linearizing the precipitate shape about a circle. Because of applied stresses, a circle
is a stable shape only when the shear moduli of the precipitate and the surrounding
matrix are identical. Otherwise, one finds a non-circular base shape that depends
on the applied stress and the elastic constants of both phases. For small precipitate
sizes, the progression of growing base shapes are not self-similar, but define a path
of fastest growing shapes. The base shapes become unstable at a critical radius that
depends on the elastic fields. In particular, the critical radius can be affected by
elastic fields even when the shear moduli of the precipitate and matrix are equal.
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1 Introduction

It has been well established that the equilibria and kinetics of phase trans-

formations in crystalline alloys can be strongly influenced by elastic ener-

gies. Elastic energies may arise from both misfit between phases and applied

loads. The importance of elastic effects during phase transitions has been

experimentally documented by both adjusting the misfit via small composi-

tion changes [1,2] and by applying stresses during the transformation pro-

cess [3, 4j. These experiments indicate that stresses have a strong effect on

the observed precipitate shapes and alignments on the stresses in the system,

though the exact nature of this relationship may be quite complicated.

There has been, in addition to this experimental work, a great deal of

theoretical modelling of the role of elasticity in phase transformations and

microstructural development. Roughly speaking, this work has followed two

approaches. One approach is to consider how the combination of elastic

energy and surface energy sets the equilibrium state of the transformed al-

loy. Many authors have taken this view to study the equilibrium shapes

of precipitates that result from both diffusional and martensitic transforma-

tions [5-9]. The second approach considers the influence of elasticity on the

kinetic evolution of the microstructure by focussing on the interaction be-

tween elastic and diffusion fields. This view characterizes the morphological

stability calculations of Leo and Sekerka [10]. If the kinetic processes gov-

erning the transformation are allowed to reach an end state, the kinetically

driven shapes should match the equilibrium shapes [11].

In this paper, we adopt the kinetic based approach to study the problem

of the morphological evolution of an initially cylindrical precipitate growing

by diffusion in a binary crystalline alloy, when arbitrary loads are applied

during the transformation. We also allow for an arbitrary misfit between

the precipitate and the surrounding matrix. The precipitate and matrix are
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taken to be elastically isotropic, but with different elastic moduli.

We pose the problem as an initial value problem for the diffusional growth

of an infinitely long cylindrical precipitate. At some time t = 0 after the

nucleation of the precipitate and before any Mullins-Sekerka morphological

instabilities occur [12], we subject the system to an applied stress. As noted

by Johnson [13], these stresses will immediately interact with the diffusion

fields, so that the cross-section of the precipitate will not in general remain

circular. The goal of the analysis presented here is to describe the evolution

of the precipitate by developing a coupled set of partial differential equations

and boundary conditions for the stress and diffusion fields throughout the

material, which in turn yield the speed of the moving interface.

In order to keep the problem tractable, we assume that the system is

always near equilibrium, so that the equations of elastostatics can be used to

find the stress fields in the system. Also, we use the equilibrium equations

derived from the thermodynamics of solids to develop a diffusion equation and

a boundary condition for the composition of the diffusing species. We neglect

surface stress and we take the atomic volumes of the two components to be

identical. The latter assumption allows us to neglect both stress-assisted

diffusion and coupling between the elastic and diffusion fields [14]. Finally,

following Mullins and Sekerka's analysis of the morphological stability of

a sphere [12] and Coriell and Parker's similar analysis of a cylinder [15],

we consider a small but otherwise arbitrary perturbation off of the initially

unperturbed cylinder, and we only retain terms that are first order in the

perturbation amplitude.

The outline of our analysis is as follows. We first calculate the detailed

stress and strain fields that arise from a combination of applied load and

misfit. The elastic fields are used to find the diffusion fields everywhere in

the system, which in turn yield the local normal growth speed of the interface.



Finally, we use this interfacial speed to determine the evolution of the growing

precipitate.

2 Elastic Fields

2.1 Unperturbed Cylinder

Consider a cylindrical inclusion of radius R embedded in a matrix of infinite

extent. We take a coordinate system such that the cross-section of the

cylinder lies in the x\ — X2 plane, and the X3~direction coincides with the

axis of the cylinder. The inclusion phase has shear modulus fi1 and Poisson

ratio i/;, while the corresponding constants of the matrix phase are \iu and

vM. Suppose that there is a constant misfit e[j between the two phases, and

that there is a uniform far-field stress af;- (or a far-field strain e^) in the

matrix. Finally, suppose i,j = 1,2 only, so that both the far-field stresses

and the misfit only act in the plane normal to the axis of the cylindrical

inclusion, and assume there is no displacement in the ^-direction. Then, we

have a combination of Eshelby's transformation and inhomogeneity problems

in the framework of plane strain elasticity [16].

In order to account for the misfit, we take as our reference state an imag-

inary state after the transformation has occurred, in which the inclusion

has been stressed so as to retain its original shape and size, and the ma-

trix is stress free. The constitutive equations relating stress a^ and strain

Uj are given by a(j = CyW(cjy — c£) in the inclusion, and a^ = Cyjyejy in

the matrix, where e»j is the infinitesimal strain tensor and Cyju denotes the

isotropic stiffness tensor. These stresses must satisfy the equations of elastic

equilibrium in the absence of body forces, da^jdxj = 0.

The boundary conditions that apply at the inclusion-matrix interface



correspond to those at a coherent crystal-crystal interface [17]. Therefore, at

the interface r = y/x2 + y2 = R the displacements are continuous, u[ = u^,

and the tractions are continuous, a^rij = o™Uj, where the unit normal

n = {rij} is taken to point from the inclusion to the matrix. Finally, we must

satisfy the appropriate far-field conditions on stress or strain as r —> oo, and

we insist that the displacement is bounded as r —• 0.

To find a solution to the above problem, we express the far-field stresses or

strains and the misfit strain in polar coordinates (r,0). If we imagine splitting

the far-field strain into its hydrostatic and deviatoric components, then the

hydrostatic component (say e) corresponds to a purely radial displacement

ur = er, UQ = 0 in polar components, while the deviator corresponds to

a displacement of the form ur — ar cos(2# — <f>), UQ = —ar sin(20 — <£),

where a is the magnitude of the deviatoric strain and <f> is some constant

phase angle. These far-field displacements serve as a template to find the

particular form of the solution to the equations of elastic equilibrium that

satisfy the boundary conditions.

As a simple example, consider the problem where there is no misfit and

the applied strain is a pure shear t^ = —tyf, cff = 0. (This problem, as

well as problems with hydrostatic loading or misfit, has been considered in

reference [18], among others.) This shearing strain corresponds to far-field

displacements ur = ar cos 26 and u$ = —ar sin 29. In order to match this

far-field condition, we use either the series solution given by Alexander et

al. [19] or the Airy's stress potentials [20] to find an equilibrium displacement

field with components in polar coordinates that are proportional to cos 20 and

sin 29. After satisfying the boundary conditions, we find
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and

M(0) f / r \ //?\3 , O,,M\{RW
L\/i/ ^ r ' \ r / J

where u; = HM/nJ is the ratio of the shear moduli of the matrix and inclusion,

c*2 = (1 — u>)/(3 + u — AvM) and the '0' superscript refers to the unperturbed

problem.

2.2 Perturbed Cylinder

Consider the same elasticity problem as above, but suppose that the interface

between the precipitate and the matrix has the shape of a perturbed cylinder,

r(6) = R + <5 cos 7i0, (5)

where \6/R\ <$C 1 so that terms of order |<5//?|2 and higher can be neglected.

For simplicity, we consider here a single n-fold perturbation mode, though

later we will need to consider all perturbation modes.

We write the total displacement in the inclusion-matrix system as

where the displacement u(0) associated with the unperturbed cylinder is

known from the results of Section 2.1, and we have to find the displacement

u(1) arising from the shape perturbation. We take this perturbed displace-

ment to be of the form [19]

ir2 + Bx + Cr'2 + Dx In r] cos 6 (7)

~lk-l)] coskO



and

r I T

in 6 (8)

r-i*"" \sinkd.

where
4(1 - v*) + fc = fc - 4(1 - */*)

a * 2(1 — 2^#) — A:' 2(l-2i /#) + fc

for all fc > 1, where V can be either T or CM\

Even though we are considering a single cosn# shape perturbation, the

perturbed displacements will include other cosine modes because of the ap-

plied fields. Hence we keep the summation on fc in eqns. (7) and (8). The

particular values of fc that the system selects, as well as the constants Ak

through Dk, are determined by insuring that the total displacement (6) sat-

isfies the far-field conditions and the boundary conditions evaluated at the

interface (5). The resulting expressions are linearized in 6/R to derive con-

ditions for the order 6/R part of the total displacement. Since the unper-

turbed displacement already satisfies the far-field condition, the perturbed

displacement must vanish as r —• oo, and must remain finite at r = 0. The

linearization of the boundary conditions at the precipitate-matrix interface

can be illustrated by evaluating the equation expressing the continuity of

ur at r{6) = R + 6 cos n6, and expanding in powers of 6/R. We find that

the zeroth order contribution is ^ ( 0 ) ( /?) = uJ
r^(R), which is satisfied by

the solution to the unperturbed problem, while the first order contribution

yields

Since u^0^ and u^0^ are known from the solution to the unperturbed prob-

lem, this equation specifies the jump in the r-component of the perturbed



displacement. Similar expansions for the ^-component of the displacement

and the two components of the balance of tractions prescribe the remaining

boundary conditions for the perturbed problem.

The linearized boundary condition (10) also reveals how we determine

the values of A: needed for the perturbed displacements (7) and (8). Recall

that the unperturbed displacement u° may be written as a function of radius

only, which corresponds to hydrostatic loading, plus a function proportional

to cos 20, which corresponds to pure shear. Thus, the right hand side of

eqn. (10) includes a cosn0 term plus a term proportional to cos 20 cos n0 =

| [cos(n + 2)9 + cos(n — 2)0]. It is easy to see that the same reasoning applies

to the remaining boundary conditions, so that we must choose k = n, n —

2, n+2 for the perturbed displacements (7) and (8). Finally, the constants Ak

through Dk for these fc's are found by satisfying the complete set of linearized

boundary conditions. We note that some care must be taken when n = 2

and n = 3, since these correspond to special cases of the general solution (7)

and (8).

3 Diffusion Fields

Consider a perturbed cylinder growing from a supersaturated matrix. The

concentration in the precipitate is taken to have a uniform value C, the far-

field concentration is given by Coo, and the concentration at the precipitate-

matrix interface is denoted by cs. We assume that the concentration fields

reach steady state at every stage in the precipitate growth, so that the dif-

fusion equation reduces to Laplace's equation. This quasi-static approxi-

mation is valid if the growth speed of the precipitate is slower than the

characteristic speed of diffusion, which is the case if the supersaturation



Because the solution to Laplace's equation in two-dimensions has a log-

arithmic component, adopting the quasi-static approximation requires one

to introduce a finite outer boundary for the diffusion field [15]. This finite

outer boundary, Rx, may be found from R\ = R/(v\), where lni/2 = 0.5772

is Euler's constant and A is found by solving A2ln(i/2A2) + 5 = 0. Since

the supersaturation S is small, A will be small and so R\ ^> /?. We note

in this regard that in the calculation of the elastic fields in Section 2, we

took the outer boundary to be at infinity. However, as long as R\ ^> R> this

introduces negligible errors.

The concentration cs at the precipitate-matrix interface is found by ex-

tending the equilibrium conditions at a coherent crystal-crystal interface to

the precipitate growth problem [17]. The detailed calculation of this bound-

ary condition has been described previously [10]; the result is

cs = co [l + *(*7 + G*)] , (11)

where Co is the matrix concentration at an incoherent planar interface and z =

(1 — X)/(k9Tp\X—xoj), where xo and X are the mole fractions corresponding

to Co and C, p is the density of the alloy, kg is the gas constant and T is

absolute temperature. Also, 7 is the interfacial energy, which is assumed to

be constant, K is the local mean curvature of the interface, taken so that

K = \/R for a circle of radius R, and

2bijkiaijaki ~ £ «w « kl

is the elastic contribution to c5, where Sijki indicates the components of the

elastic compliance tensor. Roughly, Ce/ is a pointwise measure of the elastic

energy densities of the two phases and the work needed to keep the interface

coherent through any transformation.

The interfacial concentration cs depends on the angle 6 through both the

curvature K and the elastic energy density Gel. For the shape (5), we find
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that to order 6//?, K = \/R + 6{n2 — l)cosn0//?2, so that K depends on 0

only through the shape perturbation. The elastic energy density Gd depends

on 6 not only through the shape perturbation, but also through the angular

dependence of the applied stress. From the calculation of the elastic fields,

we can show that the general form of G6* is

C*1 = Go + G2 cos 26 + G4 cos 46 (13)

+ — {Gn-4 cos(n - 4)0 + Gn_2 cos(n - 2)6
ti

+Gn cos n0 + Gn+2 cos(n + 2)0 + Gn+4 cos(n + 4)0} .

Obviously, the details of the applied stress, misfit and elastic constants

lead to different coefficients G2, G4, Gn, Gn±2 and Gn±4- There are, however,

two important features inherent in the form of eqn. (13). The first is that

Gc/ depends on 0 even when 6 = 0. Johnson [13] found an equivalent result

in the case of a spherical precipitate under uniaxial tension, and concluded

that an initially spherical precipitate would not grow as a sphere. A second,

related observation is that while the order 6/R contribution to Gel has one

contribution, Gncosn0, that is 4in-phase' with the shape perturbation, all

the remaining contributions are 4out-of-phase' with the shape perturbation.

The out-of-phase contributions arise from the interaction between the shear

component of the applied stress (or misfit) and the shape of the precipitate,

and are not present when hydrostatic pressures or dilatational misfits are the

only sources of stress in the system.

Finally, the concentration field is given by the solution to Laplace's equa-

tion,

c(r) = A + B\nr (14)

+{C2r~2 + D2r
2) cos 20 + (C4r~4 + D4r4) cos 40

where k = n, n ± 2 and n ± 4 and the constants A, B, G2, D2, C4, £>4,



Fk and G are found from the far-field condition that c —> c^ at r = R\ and

the boundary condition (11), evaluated at the interface (5) and linearized in

6/R. We will not present the details of this calculation here.

4 Shape Evolution

The motion of the precipitate-matrix interface is determined by its normal

growth speed vn, which is given by the flux balance

V" =
 TAG>

 l) = 7? 7ZT V C ' ™ Interface, (15)
at G — cs\v)

where r(6,t) is the position of the interface at any time t. Suppose we view

the evolution of the precipitate as an initial value problem where the shape

at some time to is given by r - Ro + <5cosn0, as in eqn. (5). Prom the

discussion following eqn. (13), it is clear that it will not be sufficient to take

a growth speed of the form vn = dRo/dt + (d8/dt) cosnO. Thus, in evaluating

eqn. (15), we take

E0, (16)

where R(t = to) = -Ro and bk{t = to) = 6 if k = n and vanishes otherwise. We

insist that \bk{t)/R{t)\ <S 1 so that the results of the previous sections apply

to the evolving shape. To calculate the normal growth speed at t = t0, we

evaluate the right hand side of the flux balance (15) by using the concentra-

tion field found in Section 3, and set the result equal to the time derivative of

eqn. (16). For a general applied stress and misfit, the unperturbed cylinder

generates three growth terms, R, 62 and £>4, while the perturbation 6 cos n6

induces up to five growth modes, bn±A, K±2 and 6n.

We call R and bn the fundamental growth modes because they arise di-

rectly from the shape (5). By following the procedure described above, we

find that R and bn are similar in form to the values of R and 6 reported by
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Leo and Sekerka [10]. In particular, bn includes a positive contribution from

the supersaturation, which is associated with the point effect of diffusion, a

negative contribution from capillarity, and a contribution from elasticity that

is proportional to Gn and can be either positive or negative.

However, unlike the Leo-Sekerka problem, the evolution of the precipitate

shape also includes the modes 62, 64, 6n±4 and bn±2- These stress-induced

modes are generated by both the unperturbed cylinder and the shape per-

turbation. The growth modes 62 and 64 arise in the unperturbed problem

owing to the elastic energy densities G2 and G4 (see eqn. (13)). Similarly,

6n±4 and 6n±2 result from the initial n-fold perturbation through the elastic

energy densities Gn±2 and Gn±4-

In light of the above discussion, we may imagine the following scenario for

the evolution of a precipitate. Suppose that at some time after the nucleation

of a cylindrical precipitate, we apply a uniform far-field stress to the system.

We see from the above analysis that the cylinder will immediately be unsta-

ble, and will develop in general both two- and four-fold perturbations off of

its circular cross-section. As the growth process continues and these initial

perturbations grow, they induce six- and eight-fold perturbations, which in

turn induce 10- and 12-fold perturbations, and so on. Stabilization of the

induced modes occurs when their amplitude becomes large enough so that

capillary effects begin to slow their growth.

Therefore it is clear that a cylindrical precipitate will be an unstable

growth shape when the system is under applied stress. The obvious question

is, can we find a shape that is stable for some range of sizes? Consider again

the fully perturbed shape given by (16), only now at some time when all the

perturbation modes have some amplitude. Since each perturbation amplitude

bk will generate up to five growth modes or, equivalently, each growth mode

depends on up to five perturbation amplitudes, we have a linear system of
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equations,

R = aooH + 002^2 + O0464

61 = 01161+01363 + 01565

62 = CL20R + O2262 ~̂~ a24&4 +

63 = CI3161 + 03363 + 03565 + 03767 (17)

64 = a^R + 04262 + 04464 + O4666 +

where the diagonal terms akk (no sum) are associated with the fundamental

growth modes and the off-diagonal terms Oi; (z ^ j) with the stress-induced

modes. The coefficients a»j depend on the radius -R; however, consistent with

the the quasi-static assumption, we take R to be fixed at any instant in time.

The system of equations (17) is an infinite dimensional matrix equation

x = Ax, where the vector x = {#,61,62,...} and the matrix A = [ay].

The question of the morphological stability of the precipitate is answered by

studying the eigenvalues and eigenvectors of the matrix A.

As an aside, we note that in the context of the Mullins-Sekerka analy-

sis [12], the matrix A is a diagonal matrix. The first term of the matrix,

ooo, is the positive eigenvalue corresponding to the supersaturation driven

growth of the cylinder (i.e., the eigenvalue {/?,0,0,...}). The next eigen-

value, 022,1 is exactly the ratio 62/62 that determines the stability of the

two-fold growth mode (eigenvector {0,62,0,0,...}). The same ideas apply

to the nth eigenvalue onn and eigenvector {0,0,..., 6n, 0,. • .} .

Returning to the the problem at hand, we see that because stress-induced
lA one-fold perturbation corresponds to a translation of the circle, and so is not

considered.
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coupling leads to off-diagonal terms in A, its eigenvalues and eigenvectors

cannot be directly determined by inspection. However, we expect to find

the following behavior. At small enough precipitate sizes, there will be a

single positive eigenvalue associated with the supersaturation. The corre-

sponding eigenvector will not be simply {#, 0 ,0 , . . .} , but will be of the form

{H,0,62)0,64,...} to reflect the fact that the cylinder generates two- and

four-fold growth modes and so on. (The form of the Gel term in eqn. (13)

implies that the applied stresses couple even perturbation modes to other

even modes, or odd modes to other odd modes.) The stability of this 'base'

state is determined by the remaining eigenvalues and eigenvectors, which are

functions of the size of the precipitate.

Thus, there are now two separate problems to consider. First, we need to

understand the base shapes associated with the first eigenvalue of the matrix

A. We then calculate when these shapes are stable.

4.1 The Base Shape

Let the first eigenvalue of the matrix A be denoted £o> where it is straightfor-

ward to show that £0 is a positive number directly related to the supersatura-

tion. Let the eigenvector associated with f0 be given by {i?, 0, b2° , 0,64 , . . . } ,

where the particular values of bf \ &4°\- • • depend on R, the applied stress,

the misfit and the elastic constants of the precipitate and matrix phases.

At any instant in time, we define a base shape

r(o)(0,i) = R(t) + f>£?(t)cos2/c0, (18)

consisting of small perturbations off a circle. We will show in Section 4.2

that this base shape is instantaneously stable in the sense that if we take

a fixed value of R less than some critical value, all small perturbations off

(18) decay. However, as growth continues and R increases, the base shape
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amplitudes b^ change. In other words, eqn. (18) defines a set of shapes that

evolve in time through the radius R(t).

Consider the following interpretation of the base shape (18). If we let

x(0) be the eigenvector associated with f0, so x(0) = {R,O^2\o,bf\...},

then the evolution of the base shape is governed by the matrix equation

x(°) = Ax (0) = fox(o). If we restrict attention to values of R less than the

above mentioned critical radius, then £o will be the largest positive eigenvalue

of A, and so x(0) is the fastest growing eigenvector. Equivalently, the base

shape (18) is the fastest growing shape among all possible shapes of the

form (16). However, because A depends on R, the progression of base shapes

as R increases will not in general be self-similar.

In order to calculate the eigenvalues and eigenvectors of the infinite-

dimensional matrix A, we truncate the system of equations (17) at some large

value of k and calculate the eigenvalues and eigenvectors of the resulting finite

matrix. We then change the upper limit of k and recalculate the eigenvalues

in order to insure that any truncation errors are small. It turns out that the

perturbation amplitudes b^ of the base shape decrease rapidly with A:, so

truncation errors are negligible.

We now discuss some detailed calculations of the base shapes for different

applied loads and combinations of elastic constants. We consider only applied

shears and applied uniaxial tensions, and we limit ourselves to dilatational

misfit strains. While more general cases can be considered, most of the

interesting physics can be seen in these relatively simple cases. In all the

figures, we choose dimensionless groups such that the elastic constants of

the matrix are fixed and those of the precipitate vary. Also, the radius R is

normalized by R* = z7Co/(Coo - Co), which is the critical nucleus radius for

a cylindrical precipitate.

Because our main purpose is to highlight the role of applied stress and
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elastic constants on the growth of a precipitate, we set the supersaturation

at about 0.8% by choosing \n(Rx/R) = 3. Higher supersaturations lower the

critical nucleus radius R* and hence increase the importance of capillarity.

Therefore, for a given value of R/R*> elastic effects will be weaker at higher

supersaturations, and so the base shapes will be closer to a circle. We note

that for the parameters we have chosen, the base shapes in some cases have

a maximum perturbation amplitude of up to about 20% of the radius R.

Consider first the case of applied stress and zero misfit. The first obser-

vation is that if the shear moduli of the precipitate and matrix are equal

(CJ = fiM//I1 = 1), the base shape is a circle. This result agrees with the

calculations of Berkenpass et al. [5], which show that the elastic energy of an

elliptic cylinder under applied tension is independent of aspect ratio when

the shear moduli of the cylinder and the surrounding matrix are equal. We

also observe that at fixed u ^ 1, the base shapes depend very weakly on the

Poisson ratios of the precipitate and matrix. Thus all our figures for the base

shapes are plotted for the case where the two phases have the same Poisson

ratio. However, we note that the Poisson ratios will be important in studying

the stability of the growing precipitate, even when u = 1.

If the shear moduli of the precipitate and matrix differ, then the base

shape will differ from a cylinder. Figures 1 and 2 each show a progression of

base shapes for three values of R/R*, when the system is under an applied

shear o^f = — a ^ , o0^ = 0 with zero misfit. In Fig. 1, a; = 0.5, so the

precipitate phase has a higher shear modulus than the matrix, while in Figure

2, LJ = 2, so the opposite is true. The base shapes in both figures differ

substantially from a circle, and exhibit a four-fold symmetry that reflects

the symmetry of the strain energy density in pure shear. By comparing

Figs. 1 and 2, we find that the deviations from a circular shape are more

pronounced when the precipitate has a lower shear modulus that the matrix.

This observation agrees in principle with the conclusion of Leo and Sekerka
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that the elastic fields arising from a dilatational misfit tend to destabilize

a 'soft' (low shear modulus) precipitate, and tend to stabilize an elastically

'hard' precipitate [10].

Figures 1 and 2 also show that as R/R* increases and the stabilizing effect

of capillarity lessens, the base shape moves progressively away from a circle.

Since in the quasi-static limit time changes via R(t), we view the progression

of shapes in Figs. 1 and 2 as possible kinetic paths for the transforming

system. As long as the base shape is stable, these kinetic paths are paths of

fastest growing shapes. We note that all the shapes shown in Figs. 1 and 2 are

well within the linear stability regime (see Section 4.2), though nonlinearities

may become significant well before the onset of linear instability.

The same basic conclusions hold when we consider a uniaxial tension.

Figures 3 and 4 show a progression of base shapes under an applied uniaxial

tension a*™ and zero misfit for u = 0.5 and 2, respectively. As in the applied

shear case, the deviation of the base shape from a circle is more pronounced

when the precipitate has a lower shear modulus than the matrix. However,

we now find that because uniaxial tension has a hydrostatic component, the

strain energy density has two-fold symmetry. Hence the base shapes under

tension are approximately elliptical, as opposed to the more squarish shapes

seen in the applied shear case. Further, the long axis of the precipitate is

perpendicular to the axis of applied stress, in agreement with the energy

calculations of Berkenpass et al. [5].

The results above can be altered drastically by combining applied stress

with dilatational misfit strains. Figure 5 shows the base state evolution for

applied shear and positive misfit. Because the misfit adds a hydrostatic

component to the elastic fields, the base shapes take on more of the elliptic

shape seen in the uniaxial tension case. The positive misfit tends to align

the growing precipitate in the vertical direction (recall that the applied shear
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corresponds to tension in the horizontal direction and compression in the

vertical direction). In contrast, if we were to take a negative misfit, the

precipitate would align horizontally, in a 90° rotation of the shapes shown in

Fig. 5.

Consider finally the interaction between dilatational misfit and applied

tension. A positive misfit combined with uniaxial tension simply accentuates

the patterns seen in uniaxial tension alone. However, the orientation of

the precipitate growing under tension may be changed by imposing a large

enough negative misfit strain. Figure 6 shows the effect of increasing the

magnitude of the negative misfit. As the magnitude if the misfit increases, the

base shape moves from a shape whose long axis is perpendicular to the applied

tension (Fig. 4), through a shape that is approximately circular (Fig. 6a),

and into a shape with a long axis parallel to the applied stress (Fig. 6b). If

we consider compression instead of tension, then we need a positive misfit to

alter the orientation of the evolving base shape. Again, these results are in

basic agreement with energy calculations, although the energy calculations

indicate a sharp transition in the orientation of the precipitate as the misfit

changes sign, rather than the smooth transition observed here.

4.2 Stability of the Base Shape

As has just been discussed, the first eigenvalue fo of the matrix A is always

positive, and is associated with the evolving base shape. The remaining eigen-

values & and eigenvectors x (*\ k > 1, are associated with perturbations off

this base shape, and so determine the stability of the base shape. Following

Mullins-Sekerka [12], we can consider two viewpoints of the stability of the

growing precipitate. In the first, we focus on whether the perturbations grow

or decay, and so we consider the signs of the eigenvalues £* as a function of

the radius R. Alternately, we can ask whether the perturbations change the
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shape of the evolving precipitate, which requires looking at sign of & - Co

each k > 1, again as a function of R. Both stability criteria lead to a critical

value of R for each k > 1. In what follows, we adopt the shape stability

criterion and calculate the critical radius at which £* overtakes £o-

Because we are considering the linear stability of a time-dependent base

shape that is itself a small amplitude perturbation off a circle, we must

choose parameters that ensure that the perturbation amplitudes of the base

shape at the critical radius for instability are small. Here, in order to fully

explore the roles of elastic constants and applied stress on the stability of the

evolving base shape, we allow for perturbation amplitudes in the base shape

of up to about 10% before we concede that nonlinearities have taken over

the dynamics of growth.

As in the calculation of the base shapes, we fix the supersaturation by

setting \n(R\/R) = 3. As discussed by Coriell and Parker [15], this value

affects the critical radius for instability such that the critical radius decreases

as \n{Rx/R) decreases (supersaturation increases). Also, as mentioned ear-

lier, elastic effects become less important as the supersaturation increases.

However, the results we present here are qualitatively valid for all supersat-

urations we have considered.

In all the cases we have studied, we find that £3 is the first eigenvalue to

become larger than £o- As R increases above the critical radius for which

the perturbation shape x(3) goes unstable, we find a strictly monotone pro-

gression of unstable modes—i.e.y x
(4) goes unstable, followed by x(5), and so

on. We never see an instability associated with x(1), which is essentially a

translation of the circle. We also never see an instability associated with x(2),

even though the base shape includes a two-fold perturbation.

The critical radius /?cr(3) at which £3 becomes greater than £0 depends

on the elastic constants, applied field and misfit. Figure 7 shows a plot of
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Rcr(3)/R* as a function of u when the Poisson ratios of the two phases are

the same, and the system is subjected to an applied shear and three different

misfits. The critical radius is a strong function of a;, such that stability is

favored for u < 1 (a 'hard' precipitate) and instability is favored for u > 1

(a 'soft1 precipitate). Adding misfit leads to a small destabilization of the

system that is independent of the sign of the misfit. In the zero misfit case,

the value of Rcr{3)/R* when u = 1 is exactly equal to that calculated by

Coriell and Parker in the absence of stress [15]. However, when a misfit is

present, the value of #<T(3)/ /?* at u = 1 is no longer at this zero stress value,

though the deviation is very small.

If we put the system under applied tension, we again come to the con-

clusion that the stability of the base shape decreases as u increases. Figure

8 shows Rcr{Z)/R* versus u) for three values of misfit. In contrast to the

applied shear case, the sign of the misfit is important, with a positive misfit

being stabilizing and a negative misfit being destabilizing. As in the applied

shear case, when v = 1 we recover the Coriell-Parker critical radius only for

vanishing misfit.

Figures 7 and 8 are both for the case where the Poisson ratios of the

precipitate and matrix are equal. Of fundamental interest is what happens

when the Poisson ratios of the two phases are different, so the system is

elastically inhomogeneous even though u may be unity. Figure 9 shows

Rcr(3)/R* versus u for different combinations of Poisson's ratios, when the

system is under tension and has zero misfit. As v1 decreases below vM, there

is a destabilization of the base shape, even when u = 1. In contrast, there is

a stabilization of the system as v1 increases above vM.

A nice interpretation of the above results can be found by casting them in

terms of bulk moduli rather than Poisson ratio. Figure 10 shows 72^(3)//?* as

a function of the bulk modulus ratio KM jK1 for different values of u/, again
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for the uniaxial tension and zero misfit case. The u = 1 curve shows clearly

that there elastic fields affect stability when the bulk moduli of the two phases

differ. Further, we observe the rough trend that the bulk modulus stabilizes

the system when KM < K1 and destabilizes the system when KM > K1.

There is some sense of more complicated behavior as u moves away from one;

however, by this point we may be neglecting significant nonlinear effects.

Our conclusion is therefore that the ratios of both the bulk and shear

moduli affect the stability of the base shape, with the trend being that if the

precipitate has the higher modulus there is a stabilizing effect, while if the

precipitate has a lower modulus there is a destabilizing effect. The relative

importance of the moduli ratios depends on the details of the applied fields

and misfit. For example, in the cases of applied shear only or dilatational

misfit only, only the shear modulus ratio u enters the stability results. In

other cases, both the shear and bulk moduli ratios are needed to fix the

stability picture.

5 Further Discussion and Summary

The introduction of applied stresses in an analysis of the morphological evo-

lution of a growing precipitate leads to problems that are not apparent when

only simple dilatational misfits are considered. As has been recognized pre-

viously [13], the applied fields in general break the symmetry of the problem,

so that a growing circular cylinder is not a solution to the field equations.

In the context of a linear morphological stability analysis, this implies that

we have to look for a base shape with a cross-section that deviates slightly

from a circle, and then consider further small perturbations off that shape in

order to test for stability.

The base shapes depend on the details of the applied field and misfit,
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as well as on the ratio of the shear moduli of the matrix and precipitate.

This dependence is determined by the angular variation of the strain energy

density at the precipitate-matrix interface. Thus, we find that with no misfit,

the base shapes under an applied shear differ from those with under a uniaxial

tension. By adding misfit to the system, we can change both the symmetry

of the base shape, as well as its orientation relative to the applied stress. For

all cases, the base shape degenerates to a circle if the ratio u = fxM /fi1 = 1. If

u ^ 1, then the deviation of the base shape from a circle is larger if /x7 < \xM,

while the base shape stays closer to a circle if \i} > fiM.

We find a strong qualitative similarity between our evolving base shapes

and the precipitate shapes calculated in [5]. Our base shapes also compare

qualitatively with equilibrium shapes calculated for elastically homogeneous

but anisotropic systems [8, 9]. We expect that the introduction of anisotropy

breaks the symmetry associated with a circular base shape, much as applied

stress does in an elastically isotropic system. In other words, the elastic fields

that arise in an anisotropic system will couple different mode shapes in much

the same way that applied stresses do in our analysis.

As has been discussed, a stable base shape is a fastest growing shape. We

have run some simple numerical simulations involving updating the interface

via the normal growth speed (15). These calculations show that at least

in the linear perturbation regime, an initially circular precipitate will very

quickly reach the appropriate base shape and subsequently evolve along a

path of base shapes. The paths we have calculated should be valid until

nonlinearities begin to appear, so \6/R\2 terms become significant, or until

the base shape itself becomes unstable.

The onset of instability of the base shape itself depends strongly on the

elastic constants of both phases and the details of the elastic fields. The base

shape is stabilized when the shear modulus of the precipitate is higher than
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that of the inclusion, and destabilized when the opposite is true. However,

the stability picture when applied stresses are present also depends on the

bulk moduli of the two phases. We find that even when the shear moduli of

the precipitate and matrix are the same, there is an elastic influence on the

critical radius for instability when the bulk moduli of the two phases differ.

As with the shear moduli, we conclude that all else being equal, the base

shape is stabilized if the bulk modulus of the precipitate is higher than that

of the inclusion, and destabilized in the alternate case.
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Figure Captions

Figure 1. The progression of base shapes for R/R* = 2,6,10 under an applied shear

aff = - c r ^ = 0.01/iM, off = 0 and zero misfit. In all the figures, the dimension-

less quantities correspond roughly to a supersaturation (coo — CQ)/{C — CQ) = 0.008,

p** = 35 GPa, 7 = 0.1 J/m2 and /T = 10 nm.

Figure 2. The progression of base shapes for R/R* = 2,6,10 under an applied

shear off = -off = 0.01/zM, <7?f = 0 and zero misfit.

Figure 3. The progression of base shapes for R/R* = 2,6,10 under an applied

tension off = 0.017/xM, a^t = off = 0 and zero misfit.

Figure 4. The progression of base shapes for R/R* = 2,6,10 under an applied

tension a*™ = 0.017/iM, a ^ = tf^T = 0 and zero misfit.

Figure 5. The progression of base shapes for R/R* = 2,6,10 under an applied

shear a^ = - a ^ = 0.009/A off = 0 and misfit eT = 0.0005.

Figure 6. The progression of base shapes for R/R* = 2,6,10 under an applied

tension off = 0.017/xM, a ^ = off = 0. Figure (a) is for a misfit eT = -0.003,

while (b) is for tT = -0.006.

Figure 7. The critical radius Rcr(3)/R* as a function of u; = fiM//x7 for three

misfits and an applied shear off = —^2^ = 0.005/xM, a ^ = 0.

Figure 8. The critical radius Rcr{3)/R* as a function of u = /XM/M7 for three

misfits and an applied tension off = 0.012/xM, a ^ = off = 0.



Figure 9. The critical radius Rcr{Z)/R* as a function of u> = VMIv1 for three

values of u1 and an applied tension a"? = 0.012/zM, o%? = a?f = 0.

Figure 10. The critical radius Rcr(Z)/R* as a function of the bulk modulus

ratio KM/K1 for three values of u = (J,M'/H1 and an applied tension a^ = 0.012/zM,
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