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Abstract
This paper establishes the existence of string-like static solutions of the

coupled Einstein-matter-gauge equations. Such solutions have important im-
plications in cosmology and quantum physics. It is shown that for a prescribed
string location, the system possesses a continuous family of distinct finite en-
ergy solution configurations. The proof relies on a two-side shooting method.
Power-type decay estimates at spatial infinity are also obtained.

AMS subject classifications (1991): 58G03, 83F05, 81T20.

1 Introduction

A fundamental problem in cosmology is the quest for a model of galaxy formation.
Recent theoretical developments have provided the scenario that a sequence of phase
transitions in the early universe at various critical temperatures corresponding to a se-
ries of symmetry breaking scales can lead to the production of cosmic strings which are
the seeds for the accretion of matter to form galaxies [14],[22]. The Yang-Mills-Higgs
theory gives the mechanism for symmetry-breaking and cosmic strings axe realized
as cylindrically symmetric solutions of the fully coupled Einstein-Yang-Mills-Higgs
equations with a suitable gauge group G. Naturally, a first-step understanding of the
model should be achieved for the case where G takes the simplest form G = (7(1) and
the equations describe an Einstein-matter-gauge system in which the C/(l) symmetry
is spontaneously broken (namely, a gravity-condensed matter system). In fact, most
studies and progress in understanding cosmic strings have been made for the U(l)
system and people hope that the conclusions reached may be useful in the investiga-
tion of a more general theory. Along this direction, for example, Garfinkle [6] studied
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the existence and properties of the string solutions by a heuristic argument, Laguna-
Castillo and Matzner [17] presented a numerical solution of the system, Gregory [8]
made a stability analysis, Gibbons, Ortiz and Ruiz [7] proved a non-existence theo-
rem for strings with certain prescribed asymptotic properties. However, due to the
complexity of the coupled Einstein-matter-gauge equations, people have not yet been
able to establish rigorously the existence of these important cosmic string solutions.

Recently, the works of Linet [15],[16] and Comtet and Gibbons [5] have shed
new light on the problem. In their approach, it is shown that at a critical coupling
phase, the second order Einstein-matter-gauge equations allow a reduction into a
coupled Einstein-BogomoPnyi system. In particular, Comtet and Gibbons [5] further
proved that the Einstein-Bogomol'nyi equations may be put into a system of two
coupled nonlinear elliptic equations, one of which can be integrated exactly so that
the resolution of the problem relies on the understanding of the remaining equation
of a Liouville type which has a much more promising structure.

In this paper we prove the existence of cosmic string solutions of the Einstein-
matter-gauge system in the above mentioned critical Bogomornyi coupling using the
equation derived in the work of Comtet and Gibbons. It may be surprising to notice
that under our condition for existence, there is also non-uniqueness. More precisely,
we shall show that when the winding number of the string is not too large, there
exist a continuous family of distinct solutions realizing a prescribed string location.
We shall also obtain some power-type decay estimates for the field configurations and
the gravitational metric. An interesting feature of the governing equation (see (4.7))
is that it shares some common properties with the corresponding equation derived
recently by Hong, Kim, and Pac [10] and Jackiw and Weinberg [11] in their studies
of the self-dual Chern-Simons Higgs theory and the string solutions of the equation
here resemble the non-topological Chern-Simons vortex-lines constructed in Spruck
and Yang [20]. Therefore we are able to extend the shooting method used in [20] to
the existence problem of cosmic strings considered in this paper.

Here is an outline of the contents. In Section 2 we introduce the reduction
of Comtet and Gibbons from the Einstein-matter-gauge equations to an Einstein-
Bogomol'nyi system and fix most of the notation of the paper. In Section 3 we
establish the equivalence of the Einstein-Bogomol'nyi system and the reduced Li-
ouville type elliptic equations under the assumption that the 2-manifold where the
strings reside is a Riemann surface. Such a condition is important (and also general
enough) to ensure the use of suitable bundle isomorphisms to recover the Einstein-
Bogomol'nyi equations. In Section 4 we state and prove our main existence result



(Theorem 4.6) for an isolated string solution. Detailed properties are also obtained
in this section. In Section 5 we present an existence theorem for "0-string" solutions
without any restriction on the range of parameters. In Section we assume that the
background gravity is known and study the existence of separated strings arising from
the matter-gauge sector. Section 7 contains some final remarks.

2 The Einstein-BogomoPnyi Equations

In this section we shall follow the main line in Comtet and Gibbons [5]. First of
all, the matter-gauge sector of the theory in the critical coupling phase is described
by the action density

C = -\g»»'9""'F^F^, + ̂ "(D^iD^Y - I(|*|8 - I)2, (2.1)

where g = (g^) is the metric tensor of a 4-dimensional Minkowski manifold (space-
time), A^ is a 4-vector (gauge) field, <f> is a complex scalar (matter) field, F^ =
d^Ay — dyAy, is the Maxwell electromagnetic field, and D^(f> = d^—iA^ is the gauge-
covariant derivative. The local U(l) gauge-invariance <f>»—> elu^, AM »—> d^w + AM is
observed in the model.

Cosmic strings axe the solutions of the coupled Einstein-matter-gauge equations
under the assumption that the spacetime metric takes a special form. When the
strings are parallel to the z-axis, the line element is given by the expression

ds2 = -d t 2 + dz2 + gjkdxjdxk,

where and in the sequel, g = (gjk) (j\fc = 1,2) is the metric tensor of an unknown
(or otherwise prescribed) non-compact Riemannian 2-manifold M.

It is consistent to assume that the only non-vanishing components of the gauge
field are Aj (j = 1,2) and that Aj and <j> are fields on M. In this case the energy
density function for the matter-gauge sector takes the form

£mg = \frJ*F^Frv + \j\DiMDiW + (̂M2 - I)2- (2-2)

The field equations for 4> and A = (Aj) are the Euler-Lagrange equations of (2.2):

x € M. (2.3)
j s >Y - 4?[Dk4>]),

The full system consists of (2.3) and the Einstein equations.



On the other hand, it is easily seen that (2.2) can be rewritten in the form

= \9"'9kk\Fik ± \tik(\W - l)){Fyk, ± \tM\t? ~ 1))

Di<t> ± i^Dj.MDki ± \tk
k'Dk,<}>Y (2.4)

where tjk is the standard Levi-Civita skew-symmetric 2-tensor satisfying ci2 = y/g,
e* = tjjigh>', Vj is the covariant derivative with respect to the metric <7, and J* is the
current vector defined by

\ {<P[Dk4>) *[Dk4>)m). (2.5)

Since the last term on the right-hand-side of (2.4) is a total divergence, a solution

of the equations

f»±WW2-i) =o,
x € M (2.6)

* = 0 ,
may be a minimizer of the energy JM Smgy/g^x. Thus a solution of (2.6) should also
satisfy the equations (2.3). In fact it can be directly verified that (2.6) always imply
(2.3). The system (2.6) is the curved-space version of the Bogomol'nyi equations [3].

Let K be the Gaussian curvature of the 2-manifold (M,g) and G > 0 the universal
gravitational constant. To complete our setting of the problem, we need to add the
Einstein equations to the system. In the above framework, it can be seen [5] that the
Einstein equations are reduced to

K = 87rGT«, (2.7)

where Ttt = £mg is the energy component of the energy-momentum tensor T^y de-
cided by the matter-gauge action density (2.1). As a consequence, we see from (2.4),
(2.6), and (2.7) that the full Einstein-matter-gauge system can now be solved by the
following coupled Einstein-Bogomol'nyi equations

Dj<t>±ith
iDk<t> = 0 ,

- 1 ) =0, *€M. (2.8±)

>kJk) = 0 ,

The unknown is the metric-matter-gauge triplet (</, ̂ , A). Since the equations (2.8+)
and (2.8—) are equivalent under the "conjugacy" (#, ^, A) H* (p, <£*,— A), from now
on we shall only consider (2.8+).



3 Charaterization of Solutions

In this section we make a general discussion of the string-like solutions of the
Einstein-BogomoPnyi equations (2.8+).

Suppose we have found a solution triplet (<7,̂ , A) of (2.8+) so that (M,p) is a
Riemannian mainfold. Since M is two-dimensional, it can be covered by isothermal
coordinate charts. Namely, for given p G M, there is a local coordinate system
([/, (xj)) so that p G U C M, xJ'(p) = 0, and gjk = Slu{x)*>jk around p, where ftt/(x)0
is a smooth function defined on U. In this local chart, the first equation in (2.8+)
becomes

Dxt + iDit^O,

which says in view of the #*-Poincare lemma (see [9]) that, if p is a zero of <£, then
there holds the expression

<f>{z) = znh(x\x2), z = x1 + ix2 (3.1)

in a neighborhood of z(p) = x(p) = 0, where h is a non-vanishing smooth function
and the multiplicity n > 0 is an integer. In this case people say there is a string
passing through p with the winding number n, or simply say there axe n strings at p.

The fundamental existence problem is this: Given a 2-manifold M and pi, ...,pm €
M, n l9..., nm G N (the set of positive integers), does the system (2.8+) have a solution
triplet (p,<£,A) so that (M,g) is a Riemannian manifold, px,...,pm are exactly the
zeros of <f> with corresponding multiplicities ni,..., nm, and the total energy (the energy
per unit length of strings)

(3.2)

is finite? Such a solution describes N = rt\ + • • • + nm cosmic strings located at

Pi,..-,Pm.

To see the structure of the above problem, we need a further reduction as in [5].
Since <j> has the local representation (3.1) around each point p = pi (with n = n*),
I = 1, ...,m, one sees that the substitution u = In |<£|2 puts the first two equations in
(2.8+) into the form

m
Agu = ew - 1 + 4TT £ n^p/, (3.3)

where A5 is the Laplace-Beltrami operator with respect to the metric g:



and 6P is the Dirac distribution on (M, g) concentrated at p.

However, in view of the first two equations in (2.8+), we can rewrite the current
vector (2.5) in the form

1 1
2 4

Thus using the first two equations in (2.8+) again, we get

4 4 9

As a consequence, the third equation in (2.8+) is reduced to

K + 2*G{[\<j>\2 - 1] - A9\<t>\2) = 0, (3.5)

or
K + 2*G{[eu - 1] - Age

u) = 0. (3.6)

In summary, (2.8+) is now reduced to the coupled equations (3.3) and (3.6) with
unknown (<7,tx), which looks difficult to tackle. To go on, we introduce the following
standard device. Suppose go is a prescribed Riemannian metric on M and the un-
known metric g is related to go by a pointwise conformal deformation g = e^go where
TJ is an unknown function on M. Let Ko denote the Gaussian curvature of (M,<7o)«
Then it is well-known that Ko and K are related through the two-dimensional Yamabe
equation (see Aubin [1] or Kazdan and Warner [13])

- AgoV + K0 = Ke\ (3.7)

On the other hand, since AgF = e~vAgoF for any F € C2(M), we have by using
(3.7) in (3.6) that

- AgoV + Ko + 27rG(e*[e" - 1] - Agoe
u) = 0. (3.8)

Besides, (3.3) becomes

Agou = e"(e" - 1) + 4TT £ nt6Pt, (3.9)

where, now, Sp is the Dirac distribution on (M,go)-
The equations (3.8)-(3.9) are the reduced form of (2.8+) for an N = ni H h nm

cosmic string solution (<7, ̂ , A) with strings located at pi, . . . ,pm . So we are led to the
following important questions.

(Qi) Under what condition on (M,<7o)> can a solution of (3.8)-(3.9) be used to
construct a desired JV-string solution of (2.8+)?



(Q2) For what (M,<7o), can the coupled equations (3.8)-(3.9) have a solution?

In Section 4 we shall solve a special case of (Q2)- In the rest of this section, we

give an answer to (Qi).

Theorem S.I. If M is a non-compact Riemann surface and g0 is the Rieman-

nian metric induced from a hermitian metric on M, then a solution pair (77, u) of

(3.8)-(3.9) can be used to get a cosmic string solution triplet (<7,<£,A) of the coupled

Einstein-BogomoVnyi equations (2.8+) so that g = evgo, \(f>\2 = eu, the strings are

located at J>i,-..,pm, and the corresponding winding numbers are n i , . . . ,nm .

Proof. Let h0 be the hermitian metric on the Riemann surface M so that g0 is
induced from h0. Define h = evho and g = evgo. Then g is induced from the
new hermitian metric h over M. For Pi,...,pm and ni,...,nm given in the theorem,
introduce the divisor

m

on M. Since M is non-compact, it is standard that D is the divisor of global mero-

morphic function 4> on M. The fact that rn > 0 (£ = l , . . . ,m) implies <£ is actually

holomorphic. We can construct a line bundle L from D. Denote by {ea : U —> L}

(Ua C M) a set of local holomorphic frames of L and by

gab: £/« n l/i -> GL(1, C) = C - {0}

the corresponding transition functions: e& = ^a6ea. The triviality of L says that <f>

gives rise to a global holomorphic section of L —• Af. For simplicity, such a section is

still denoted by ^. Of course (<?,u) = (e^po t̂x) solves (3.3) and (3.6). We now define

a global hermitian metric h for L by setting

*«..«.) = i£p. (3.10)

where <£ = ^ a e o . By virtue of fo = g~i<j>a, h is well-defined.

Let V^ be the unique metric connection of L associated with /i, A being the
connection vector which is of type (1,0):

A = (Ai — L42)d2:

A2dx2 - i(A2dx1 - A1dx2).

On t/o, we have gjk = n ^ ^ and

= 0. (3.11)



Moreover, since V^ is canonical, using (3.3), (3.10), and A In \<}>a\ = 2TT Y17=I nt$pn w e

see [9] that the curvature 2-form F = dA satisfies

F12 = \ ( )
(3.12)

where, and in the sequel, A = d\ + d\. Our goal is to show that (2.8+) can be
recovered from (3.11H3.12).

Let L = M x C be the trivial line bundle equipped with the standard hermitian
structure. We shall find our solution triplet (#, ^, A) of (2.8+) from (#, <̂>, A) so that
the complex scalar <j> is a cross-section of L —> M, the vector field A is represented as
a real-valued connection 1-form: (Vyi^)j = Dj<f> = dj<f> — iAj<£ (in local coordinates),
and .Fjfc is recognized as the curvature 2-form of L —• M determined by A: F = dA.
For this purpose, we recall that there is an isomorphism / : L —• L. Denote by
{ea : Ua —• L} a set of local frames of L and {<7o&} C C — {0} the corresponding set
of transition functions. If /(ea) = / oe o , then fo = gabfaGlab- Thus by setting

r(e \ =
V a)

we obtain from / an isomorphism T : L —> L satisfying

T(ea) = raea, ro =

As a consequence, we get a 1-1 map r. so that if <f> and A are a cross-section and a

connection 1-form of L —> Af, then

A = r.(A) = iTtdr-1 + A

are those for the line bundle L —* M. Thus there holds

V T . ( j t ) T . M = Ta(d<t>a - iA<j>a)ha. (3.13)

Besides, (3.10) implies the relation

<W*. (3.14)

We are now ready to construct a solution of (2.8+). Let A be the complex-valued
1-form which yields the unique metric connection of L —> M equipped with the

8



hermitian structure h. Choose a 1-form A on M so that rm(A) = A. Assume that V^
is the connection of L - • M induced from A. Using (3.13)-(3.14) we see that for any
two cross-sections (or complex-valued functions) <f>, xp of L —> M,

which implies that V^ is the metric connection of £ —• M. In particular, A must be
a real-valued 1-form.

With rm(<f>) = 4> and T.(A) = i where <̂  and A satisfy (3.11)-(3.12), we have after
a straightforward calculation that, in the chart (C/a,(x

J)),

= r-l(Vifti
0'1) = 0,

F12 =Re(di ) a

Hence the first two equations in (2.8+) are recovered. This fact also says that the
current vector Jk satisfies (3.4). However, from the definitions of <f> and <£, we have
\<f>\2 = eu. Consequently the third equations in (2.8+) follows immediately from (3.5)
and the theorem is proved. •

4 Existence of Cosmic Strings

In this section we consider the existence of a solution to the system (3.8)-(3.9)
where the non-compact Riemannian 2-manifold (M,(/o) is to be specified. Of course,
the most convenient assumption is that (Af,<jo) =the Euclidean plane R2. Thus, in
(3.8)-(3.9), Ago = A, Ko = 0, and the unknown functions ?/,tx satisfy the equations

. AT? = 2*G(efl[eu - 1] - Ae«),

x € R2. (4.1)
An = ev(eu — 1) + 4TT]^ n^P/,

At this moment, we are not able to prove a general existence theorem for (4.1).
However, when the points pi, ...,pm coincide, we can obtain the following result.



Theorem 4.1. Assume that p\ = • • • = pm = p and that N = n^ H h nm satisfies

2TCNG < 1. (4.2)

For any constant a verifying

t/ie equations ^ . i j /lave a solution pair (rj^a\u^) so that it is radially symmetric
about the point p, u^ < 0 in R2, and

max{u(a)(x)} = - a .
*€R

2

Moreover, as functions of the radial variable r = |x — p|, tx̂ a^ is strictly concave and

there hold the asymptotic decay estimates

c"(a) = o(r"4), ett(o) = oir-2"-^-2*"^) for large r. (4.4)

This theorem will be established in several steps.
First we recall a useful reduction for (4.1) made in [5] . Put

m

uo(x) = 2]£n*ln|z - pt\

and u = uo + v. Then (4.1) becomes

At) = 2TG(eT>[eu°+v - 1] - Ae*0"1-1-),
x € R2. (4.5)

Au = e"(euo+t; - 1),

Insert the second equation in (4.5) into the first one, we have

A(»? - 2vGv + 2irGeV0+v) = 0.

Thus it is reasonable to impose the relation

t/ = 2irG(v - e"°+v) + a, (4.6)

where a is an arbitrary constant. As a consequence, (4.5) is reduced to

Av = aoe
2*G<t'-e''o+t'>(etio+v - 1), x € R2 (4.7)

10



with a0 = e° > 0. We shall study the special case of (4.7) when px = • • • = pm = p.

Without loss of generality, we assume that p is the origin. Then u0 = 2N In r (r = \x\)

and a radially symmetric solution of (4.7) must satisfy

vrr + -vr = aoe^G(v'^v\e^v - 1), r > 0. (4.8)

We hope to obtain a solution of (4.7) from a solution t; of (4.8). However, by
virtue of the well-known removable singularity theorem (see [19]), we easily see that,
v can be extended to the full R2 to get a smooth solution of (4.7) if and only if

^ l = 0 . (4.9)
r—o lnr

In fact, assume that v(r) is a solution of (4.8)-(4.9). Then, for any 6, &i > 0, there
holds

]imiV**> = l i m e ^ ^ ^ ) = 0.
r—•O r—>0

As a consequence, we can view the right-hand side of (4.8) as an L2(ft) function,
where ft is a small neighborhood of the origin. Therefore the I? theory of elliptic
equations says that there is a W2j2(Ct) function w so that Aw =the right-hand side
of (4.8) in ft. ^From the embedding W2'2(ft) -* C*(ft) (0 < a < 1), we see that
w € Ca(£l). However, since / = v — tx; is harmonic in ft — {0} and satisfies (4.9), we
see that / is smooth and harmonic in the entire ft. Therefore v is Ca in ft. Finally,
the Ca theory and a bootstrap argument imply that t; is smooth.

Thus, from now on, the equation (4.9) will serve as our boundary condition at
r = 0 for a solution of (4.8).

To work on (4.8), it may be more convenient to replace v by the old variable
u = u0 + v = 2JVlnr + v. Thus (4.8) is equivalent to

urr + i u r = aor-4^Ge2^u-cW)(ew - 1), r > 0, (4.10)

and (4.9) takes the form

^ (4.11)

The statement in Theorem 4.1 says that we are looking for solutions of (4.10)
satisfying

Umti(r) = -oo . (4.12)

Those solutions must enjoy the following simple property.

Lemma 4.2. Ifu{r) verifies (4.10)-(4.12), then u(r) < 0 for all r > 0.

11



Proof. The boundary condition (4.11) implies in particular that limr-+o u(r) = — oo.
Therefore we can get an r*o > 0 such that

u(r0) = max{u(r)},

tirr(^o) < 0, and ur(r0) = 0. Using these facts in (4.10) we find u(r0) < 0. However,
u(r0) ^ 0 since otherwise we would have by using ur(r0) = 0 the conclusion u(r) = 0
(the uniqueness theorem for the initial value problems of ordinary differential equa-
tions), which is false. Thus u(r) < u(r0) < 0 for all r > 0. D

Consequently, for a solution of (4.10)-(4.12), there are constants ro > 0 and a > 0
so that

u(r0) = - a , ur(r0) = 0. (4.13)

In the following, we shall find suitable r0, a > 0 so that the solution of (4.10) subject
to the initial condition (4.13) will satisfy the boundary constraints (4.11)-(4.12). Such
a goal will be achieved by a two-side shooting argument.

It is useful to employ the change of variable

t = lnr, to = In ro.

Then we are led to the initial value problem

u" = a o e 2 * 1 - 2 * " ^ ^ - ' " ) ^ - 1), -oo < t < oo,
(4.14)

u(to) =-<*, ^ ( M = 0,

where uf = du/dt and u(<) denotes the dependence of u on the new variable t which
should not be confused with the notation u(r).

We have the following basic result concerning (4.14).

Lemma 4.3. For given a > 0, (4-14) has a unique global solution u(t). This solution
satisfies u(t) < 0 and

lim ult) = — oo, lim u(t) = —oo. (4.15)

Moreover, both
Umu'(t) = /?_ and Km u'(t) = -/?+ (4.16)

are finite numbers and

{iz|^} (4,7)

12



Proof- For a local solution of (4.14), we have

u'(t) = a0 f
Jto

in the interval of existence. We claim that, for all t where u(t) exists, we have u(t) < 0.
Otherwise, if there is a i verifying u(i) > 0, we may first assume t to be such that
i > to and

t = inf {t > t0 | u(t) exists and u{t) > 0}.

The fact that a < 0 implies i > t0 And u(i) = 0. Of course u(t) < 0, t € [to,*).
Inserting this result into (4.18) we get u'(t) < 0, t € (to,t). In particular, u(t) < 0, a
contradiction. Similarly, the assumption t <t0 will also lead to a contradiction.

Using the property u(t) < 0 and (4.18), we see that \u'(t)\ cannot blow up in finite
time. Therefore the existence holds globally in (—00,00) for a solution of (4.14).

On the other hand, applying u < 0 in (4.14) we have u"(t) < 0, t € (—00,00). So
u'(t) is strictly decreasing. In particular, either uf(t) —• 00 or uf(t) —> a finite positive
number as t —• —00 since u'(to) = 0. Thus we always have u(t) —• —00 as t —• —00.
Similarly, since u'(t) —• —00 or u;(t) —*a finite negative number as t —> 00, we must
have tx(t) —• —00 as t —* 00. Hence the boundary behavior (4.15) is established.

To prove the first result in (4.16), we assume otherwise that

lim u'(t) = - a 0 P eW
J~~ (4.19)

= OO.

Therefore the L'Hopital rule implies

lim ^ = lim u'(t) = 00. (4.20)

On the other hand, the integral in (4.19) has the bound

ft\ 2(l-2

L- 0 0

( ) +
cL ' J d*, (4.21)

where t\ < min{to?—1} and Ci,C2 > 0 are constants depending on t\* F̂Vom (4.20)
we can find a t2 < ti so that

2(1 - 2TTNG) + 2 T T G ^ > 1, s < t2.
s

Thus the right-hand side of (4.21) is finite, which contradicts (4.19).

13



Finally, we show the validity of the second result in (4.16). As observed earlier,
we have u'(t) —• —oo or u'(t) —>a finite negative number, — /?+, as t —• oo. However,
assuming the former possibility will lead to

hm —^ = —oo.
t-*oo t

Then using the same argument as that for the case t —• — oo, we reach the contra-
diction |limt-tooti'(t)| < oo. Hence u'(i) —• — /?+ as t —• oo and u'(i) > — /?+. In
particular,

u(<) > -p+t + C, t > t0,

where C is a constant. But the convergence of the integral (4.18) as t —* oo and
(4.15) imply the convergence of

r
Consequently,

•/to

e C f°° e(2[l-2*NC\-2*G0+)s

/

< OO.

T h e r e f o r e 1

We now denote the dependence of the solution u of (4.14) on the initial data <o> <*
by u = ti(i;to,c*). Using Lemma 4.3 and (4.20), the boundary condition (4.11) reads

P-(to,a) = lim u'{t]tOja) = 2N. (4.22)
t—*—oo

Recall that j9.(to, a) can be expressed by the formula

$.(t0,a) = -oo T c2(1-2*NG)'c2^u(';t«"Q)-eU(';l0lO))(e^:t0'0) - 1) ds (4.23)

(see (4.18)). Assume that (4.2) is fulfilled. Since u < 0, the integral in (4.23) is
uniformly convergent with respect to the variables <o> a. Hence /?_(io> ot) is continuous.
We shall show that, for suitable to € R and a > 0, (4.22) can be verified.

Lemma 4.4. Suppose that the condition (4-2) holds. Then for any a satisfying (4.3),

there is a to = *o(<*) such that the unique solution u(t\to,a) of (4-14) fulfills (
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Proof. ^From (4.14) we have

u" > -

Set w = 2(1 - 2vNG)t + 2wGu. Then

w" > -aoe
w. (4.24)

However, since u' > 0 for t < t0, we have in view of (4.2) that w' > 0, t € (—oo,t0]-

Multiplying (4.24) by w' and integrating on the interval (t,<o)5 we arrive at

4(1 -1*NG)2 - (w'(t))2 > 2<x0 (c^> - eW-MWto-M**^, t < t o .

Thus

0 < 2xGu'(t; to, a) < ^4(1 - 2TT7VG)2 + 2aoe2(1-2^G)*o-2irGa - 2(1 -

T, t < t0,
(4.25)

which implies the useful inequality

-a>u(t;to,a) > -a-a(to-t), t<t0. (4.26)

Again, from (4.14), we have by using u < 0 that

u" < a1c2(1-2 'NG>1e2 'Gu(c t t - 1), (4.27)

where a\ = aoe~2*G.

Consider the function f(u) = e2*Gu{eu — 1). It is easily seen that / (u) is decreasing

for u € ( - o o , - l n ( l + 1/2TTG)]. Thus the condition (4.3) and (4.26) imply that

- In (l + 2 ^ 3 ) > ti(<; t0, a)>-a- a(t0 - <), t < tQ. (4.28)

Using (4.28) in (4.27) gives

u" < aie2d-2^G)'e-
2'G(«+<'(*o-«))(e-(*+«'('o-t)) _ i ) , t < t o . (4.29)

Integrating (4.29) over (—00,i0), we find

B

However, since the condition (4.3) can be rewritten as

15



we obtain from the above

- 2irNG] -

(4.30)

(2TTG + 1)^4(1 - 2wNG)2 + 2aoh(t(h a)

where

(4.30) we see that for given a satisfying (4.3), we can find t0 = t'o so that

/3_(<o, <*) > 2N. On the other hand using (4.25), we see that for fixed a, there is some

t0 = *o t o make /?_(<o,a) < 2N. Consequently the continuity of /?_(to>a) implies the

existence of a point t0 = to(<*) between t'o and tg so that /9-(to,a) = 2A .̂ Hence the

lemma follows. Q

We now improve the lower bound for /?+ given in (4.17).

Lemma 4.5. Let u(t) be a solution of (4-14) produced in Lemma 4-3 so that (4-22)

is fulfilled. Then the constant /?+ in (4-16) satisfies

P+>2N + - ^ ( 1 - 2TTJVG). (4.31)

Proof. Multiplying (4.14) by u' and integrating over (—00,00), we obtain formally

I
Obviously (4.17) implies

= 0.

Thus the first term on the right-hand side of (4.32) vanishes whereas the second term

may be rewritten by using (4.18) and Lemma 4.3 in the form

+ + 2N) + a0
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Inserting the above into (4.32) we have

fil - ^ ( 1 - 2vNG)/3+ - 2JV^A[i . 2*NG\ + 2tf) > 0,

namely,

(ft. + 2JV)(ft. - [ A ( i _ 2̂ 7VG) + 2tf]) > 0.
Therefore the desired lower bound is found. E

Replacing t by the original variable r = e* in (4.14) and using Lemmas 4.3-4.5
and (4.6), we see that Theorem 4.1 is established.

Thus using Theorems 3.1 and 4.1, we obtain a family of string solutions of the
Einstein-BogomoPnyi equations (2.8+). In fact for our problem discussed here, we
can actually construct a solution triplet (<7,<£, A) of (2.8+) directly from a solution
pair (77, u) of (4.1) produced in Theorem 4.1 by setting

gjk(z) =e"«6 i J t ,

<f>(z) = ci«W+ iw •*!«,
(4.33)

Ax (2) =-Re{2id* In 4>(z)},

A2(z) = -Im{2id* In <£(*)},

where
z = (x) = x1 + ix2, 8=(d1- i02)/2.

Let us now compute several relevant physical quantities.
First of all, the total magnetic flux is, in view of (2.8+), (4.6), (4.18), (4.16), and

Lemma 4.5,

_2£ / " n M I * * ! ^ _ 1 ) d r
2 Jo

_ ^ ° f°° c»(l
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Next, using (4.4), (4.31), (4.16), and (2.8+), we have

g =o(r"4),

for large r. (4.34)

\Fik\ =o(r"4)

Furthermore, from (3.4), we can calculate

Vi(eJ*Jfc) = Ie**f>* + |lm{divf (e*V[I

Therefore using the decay estimates (4.34) we find

/ Vi(e>kJk)y/gd*x = **.

Inserting the above result into (2.4) and (2.8+) we obtain the total energy (3.2) (the
energy per unit length of the strings) for a solution of (2.8+):

E = TT$ + 8TT2G$ = 7r(87rG + 1) (N + ^/3+).

In summary, we can state

Theorem 4.6. Suppose that N is a positive integer satisfying (4-2). Then the
Einstein-BogomoVnyi equations (2.8+) have a family of finite-energy distinct cos-
mic string solutions (g^Q\ <f>^Q\ A^) labelled by the parameter a in the range (4-3) so
that the 2-manifold M, on which the strings reside, is R2, that the solutions all realize
an arbitrarily prescribed string location p € R2 and are radially symmetric about the
point p} and that the winding number of the string is N. Moreover, there hold the
decay estimates (4-34) for the solutions and

Furthermore there is a constant fi(a) > 1/icG such that the flux and the energy of the
solution (g{a\(f>{Q\A^) are given by

Note. From (3.7), (4.5), (4.6), and (4.34), the decay estimate for the Gaussian
curvature K can also be obtained. For example, if N > 1, then K =0(1) at infinity.
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5 The Case When N = 0
In such a situation (4.1) take the form

AT/ = 27rG(eV - 1] - Ae«),
x € R2. (5.1)

Au =eT>(e u- l ) ,

Thus we can use the ansatz

ri = 2nG{u - e") + a, a 6 R

as in Section 4 to reduce (5.1) into

Au = aoe
2*G(u-eU\eu - 1), aQ = ea > 0. (5.2)

As in our previous paper [20], we can use the method of Chen and Li [4] to prove

the symmetry of all global solutions of (5.2) under the hypothesis

/ 2exp27rGtx < oo (5.3)

This gives the following result which we state without proof.

Theorem 5.1. Let u be a global solution of (5.2) satisfying the finiteness condition

(5.3). Then u is radially symmetric and strictly decreasing about some point p £ R2.

Moreover, u(p) < 0 and u is asymptotic to — /?logr as r = |x| tends to infinity, for

some 0 > 2

Therefore, it is natural to look for solutions of (5.2) which are radially symmetric

about an arbitrarily prescribed point p G R2. Without loss of generality, we can

choose p to be the origin. In this special limit, (5.2) becomes

urr + -u r = ooeairG<—">(eu - 1), r > 0. (5.4)
r

In order to obtain a solution of (5.2) from a solution of (5.4), it is standard to

impose the boundary condition

t/(0) = - a , ur(0) = 0. (5.5)

It is well-known that, for given a € R,{5.4)-(5.5) allow a unique local solution (see
Berestycki, Lions, and Peletier [2]).
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Lemma 5,2. For any a € R, (5.4)"(5.5) have a unique global solution in r > 0.
Furthermore

lim u(r) = oo, lim rur(r) = oo t / a < 0 (5.6)

anrf
Urn u(r) = -oo , Urn rur(r) = -p+ if a > 0, (5.7)

where the constant /?+ satisfies

^ (5.8)

Proof. Locally we have the representation

rur(r) = ao / pe2^u^""c P'(e"^'— l)dp. (5-9)
O

Therefore, if u(0) = —a > 0, then u(r) > 0 for all r > 0 where u(r) exists. Suppose
there is an ro > 0 so that u(r) exists in [0,r0) and u(r) —> oo as r —• r0. However,
since

we see that rur(r) is bounded in [0,ro). This contradicts the assumption that u(r) —•
oo as r —» r0. Hence the solution is global.

An easy implication of (5.9) is that ur(r) > 0 in (0, oo). In particular u(r) is an
increasing function. Thus either u(r) —>a finite positive number or (5.6) is true. It is
obvious that the former possibility cannot occur in view of (5.9). Thus (5.6) holds.

If ti(0) = —a < 0, then u(r) < 0 for all r > 0 where u(r) exists. Hence the
solution must be globally defined for all r > 0. Using (5.9) again we see that u(r) is
decreasing. Thus we may show in a similar way that the first limit in (5.7) holds. As
a consequence, rur(r) —• — oo or rur(r) —* — /?+ (a finite negative number) as r —• oo.
We first exclude the former possibility.

In fact, if there is an r0 > 0 so that

2
rur(r) <—^Q for r > r0,

then
tz(r) < u(r0) In —, r > r0.

Therefore
dp < C / /T3 d/> < oo
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and the integral on the right-hand side of (5.9) is convergent when r = oo. This

contradicts the assumption made earlier. Hence the second limit in (5.7) holds as

well and
rur{r) > - £+ , r > 0,

which says that
tx(r) > - /?+lnr+ u(l) for r > 1, (5.10)

where /?+ > 0 is to be determined. However, since (5.10) implies

dr < C ̂ °° re2irG*<r> dr < oo,

we find the condition

*•• > 7a- ( 5 - n )

Finally, multiplying (5.4) by r2uP(r), integrating by parts over (0, oo), and using (5.9),

(5.11), we arrive at

f°
g +

TTG 7rG ./O

Therefore (5.8) follows. •

The inequality (5.8) can be viewed as a special case of (4.31) for N = 0. As in
Section 4, we can use the solutions produced in Lemma 5.2 to construct a family of
nontrivial 0-string solutions of (2 .8+):

Theorem 5.3. For any a > 0 and p € R2, the Einstein-Bogomol'nyi equations

(2.8+) have a finite energy solution triplet (g{a\<f>{a\ A(a)) over R2 so that there hold

the decay estimates (4-34) with N = 0 and the solution is radially symmetric about

p. Moreover

and l^0^!2 is strictly monotone decreasing with respect to the variable r — \x — p\.

6 The Matter-Gauge Sector

In the last two sections, we have obtained a family of solution triplet (g, <f>, A) of
the Einstein-Bogomol'nyi equations (2 .8+) so that (M, g) is conformally equivalent
to R2 and

9jk = evSjk = o(r~ 4 ) for large r = \x\. (6.1)
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In view of (6.1), when the gravity sector is assumed to be known and only the string
solutions of the BogomoPnyi system (2.6) (namely the matter-gauge sector) are con-
sidered, we expect to find some new results. Such solutions describe magnetic strings
or topological defects in a superconductor in a cosmological scale and are of indepen-
dent interest. For greater generality, we assume in this section that —17 blows up at
infinity like In r and

c* = o(r~3*), 1 < K < 2 (6.2)

for large r = |x|. Here K is a constant. Note that no radial symmetry is imposed on

V-
From (3.3) we see that the existence of a string solution of (2.6) (we shall con-

centrate on (2.6+)) for which the strings are located at pi,...,pm € R2 with the
corresponding winding numbers ni,..., nm is equivalent to the solvability of the equa-
tion

m

Au = e^e" - 1) + 4*2>*«p,. (6.3)
In the case e* = 1, an existence and uniqueness theorem has been established in

JafFe and Taubes [12]. In our case (6.2), we shall adapt the method of McOwen [18]
for the study of conformal deformation equations as for the electroweak vortices [21].
We proceed as follows.

Let uo be defined by

o 5I/ln(<y+|z-p*r2), o > 0.

Then
m

with
m

|2\—2

The change of variable v = u — Uo then reduces (6.3) to the form

At; = e^+v-eH/a. (6.5)

Note that e*« > 0 is smooth. Choose v0 G C°°(R2) to verify

vo(x) = — lnr, r = |x| > 1.

An integration by parts gives

— / 2 Avodx = — / At>odz = 2TT.
JR J\x\<i
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Define now w = v — av0. Then (6.5) becomes

Aw = e"
+tl0+ot'0+ti; - F, (6.6)

where

Since / / ^ O a s a - ^ o o (see (6.4)), we can fix a and a to make

Construct the functionals

1{w) = /R2 Q | V U ) | 2 ~ F w ) dx'

L e d x .

In order to have / , J well-defined, we need to consider a suitable weighted Sobolev
space: Choose h0 € C°°(R2) so that h0 > 0 and

ho{x) = r~2* for r = |x| > 1.

Define the measure d/x = hodx and set L9(d^) = Lq(R2,dfi) (q > 1). Denote by
the Hilbert space of L? functions for which

Then R c W and the closed subspace R1 = H in 7i is given by

/ 2

The following important results are cited from [18].

Lemma 6.1. There are constants C, /? > 0 so that for any w

JR2 eM 4. <Cexp

Lemma 6.2. T/ie Poincare inequality is valid in H:

Lemma 6.3. T^e injection 7i —* L2(dfi) is a compact embedding.
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In view of the above results, it is straightforward to show that / is weakly lower
semi-continuous while J is weakly continuous in H.

Consider the optimization problem

mm{/(«,)}, (6.8)

where
S = {w € H | J(w) = Co}, Co = L Fdx.

The condition (6.7) implies that Co > 0 and 5 ^ 0 .

Lemma 6.4. The problem (6.8) has a solution.

Proof. For any w € 7i, we have a unique decomposition w" = w + w with w € R and
w € H. Thus for to G 5 there holds

w = In Co - In [ / 2 e ^ 1 4 0 ^ ^ ^ dxj. (6.9)

As a consequence,

/(«,) = I||Vw\\l{dx) - JR7 Fw dx - Cow

+ C 0 In f J c"+u«+«u»+11' dxl.

However, by h^1 > Co > 0 and Jensen's inequality,

f ev+»o+<*vo+* dx > £ o I ev+uo+°vo+* d / x

i/JR2 d/x] (6-n)

where C\ is a constant. Inserting (6.11) into (6.10) and using the Schwaxz inequality
and Lemma 6.2, we arrive at

> C2 - C 3 , (6.12)

where C<i,Cz > 0 are constants independent of it? € 5 . In particular, / is bounded
from below on S.
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Let {wn} be a minimizing sequence of (6.8). Then (6.12) and Lemma 6.2 say that
{wn} is bounded in H. Using (6.9) and Lemma 6.1 we conclude that {wn} is bounded
in R as well. Hence {wn} has a subsequence which approaches some point w G H
weakly. Such w is a solution of (6.8). a

Lemma 6.5. Let w £7i be a solution of (6.8). Then w is a smooth solution of (6.6).

Proof. By the Lagrange multiplier rule, there is a number A € R so that for any

jR2 (Vw • V£ - FO dx = A JR2 c«+*+"*+^ dx. (6.13)

In (6.13), set f = 1. Then we find A = - 1 . Hence w is a weak solution of (6.6). The
standard elliptic regularity theory then implies w is smooth. E

We now discuss the asymptotic behavior of the solution of (6.6). As in [18], for
6 G R and s € N, define W*s to be the closure of the set of compactly supported C°°
functions over R2 in the norm

HI2**, =

The following useful results can be found in [18].

Lemma 6.6. If s > 1 and 6 > —1, then W?6 functions are continuous and vanishing
at infinity.

Lemma 6.7. For — 1 < 6 < 0, the Laplace operator A maps Wfj onto W£6+2

its range is
#hdx = o}.= {h €

Lemma 6.8. If(eH and A£ = 0, then £ —const.

Lemma 6.9. The solution w obtained in Lemma 6.5 tends to a constant at infinity.

Proof. Denote the right-hand side of (6.6) by hx. Then hx G L(dx) and

Using (6.2) it is seen that hx € W£$+2 for -1 < 6 < 0. Thus by Lemma 6.7,
there is a wi G W£5 so that Awi = hi. Lemma 6.6 says Wi vanishes at infinity.
Consequently Wi € L2(dfi). Moreover, since Vw\ G WQ>6+1 and 6 > — 1, so Vt^ G

25



jL2(dx). Therefore wi € H. Thus w - wx € H and A(w - tyx) = 0. By Lemma 6.8,
w — u>i =const. D

Let us now return from the solution w of (6.6) produced above to the original
variable u:

u = u0 + <*t>o + to.

Thus we have the following sharp decay rate

where a satisfies (6.7). Of course the function u here again gives rise to a solution
pair {</>, A) of (2.6) so that

(6.14)

In summary we have

Theorem 6*10. For any pi,...,pm € R2, ni,...,nm € N, and a,a satisfying (6.7),
the BogomoVnyi equations (2.6) have a multi-string solution (<£, A) so that the strings
are located exactly aipi,. . . ,pm with respective winding numbers ni, . . . ,nm , the matter
field <f> obeys the sharp decay estimate \<f>\2 =O(r~Q) for large r = |x|, and the magnetic
flux has the representation (6.14).

7 Concluding Remarks

In this paper we have established the existence and behavior of a continuous family
of finite energy solutions of the Einstein-BogomoPnyi equations which are automat-
ically the solutions of the coupled Einstein-matter-gauge equations. These solutions
are all cylindrically symmetric and represent cosmic strings living in a conformally
flat space. In particular, we conclude that a string distribution cannot uniquely de-
termine & solution configuration of the Einstein-matter-gauge system. Furthermore
we make the following remarks.

(i) The condition (4.2) presents a (sufficient) bound to the total number of strings
superimposed at a point. Whether such a bound can be further improved remains
open. However, since in our normalization, the gravitational constant G is typically
of order 1O~40, (4.2) is not too severe a restriction.
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(ii) Our solutions do not yield an asymptotically Euclidean spacetime metric as is
generally expected for the gravitational effect. In fact this is a special feature of the
Einstein-Bogomornyi system (2.8+) as was already observed in [5]. To see this, we
rewrite (4.6) in the form

= c* =

where (#, <£, A) is a solution triplet of (2.8+) so that <f> is related to u by the formula
ln|<£|2 = u. It can be shown that, if (flr,<£,A) is a finite energy solution of (2.8+),
then \<f>\2 < 1 everywhere. Such a result may be obtained by an adaptation of the
argument in the proof of Lemma 2.1 in [23] (although, here, the metric g is no longer
asymptotically Euclidean). Thus we see that the metric g is necessarily asymptotically
zero. As a consequence, it yields considerable flexibility for the behavior of field
configurations in the category of finite energy . Due to this reason, non-uniqueness
occurs.

(iii) Theorem 5.3 presents a family of 0-string solutions so that the gravitational
metric enjoys essentially the same asymptotic properties as those in iV-string solu-
tions. This result suggests that strings may not be responsible for the cosmological
phenomena occurring far away from local regions.

(iv) Our solutions are all in the sector \<f>\2 = 0 at infinity. It is not known whether
the Einstein-Bogomol'nyi system also allows nontrivial solutions in the sector \<f>\2 ^ 0
at infinity.

(v) To show that the multi-string solutions of the matter-gauge Bogomol'nyi sys-
tem (2.6) have finite energy, some extra assumptions on the decay rate of the first
derivatives of the prescribed metric gjk = ev$jk in addition to (6.2) may have to be
made.
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