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2. Regions in the interior are expected to have lower concentrations of carriers (smaller
values of %()). In fact, interior regions would be nonsuperconducting (^ = 0) if
u>(x)/7 > 1.

3. We expect to be able to formulate problems such that for certain values of 7 and
H, we will be able to compute solutions such that for x in interior regions of the
body we will have

To us this would represent a Type-II superconducting material exhibiting an oscil-
latory vortex structure: Corollary 4 (and the construction in the proof of Lemma 3)
indicates that at such points the minimizing sequence for the energy can be con-
structed by oscillating between the nonsuperconducting phase (ip = 0) and a su-

perconducting phase with concentration of charge carriers V> = */§ ( l — ^^ j #

Note that one of the defects of our theory (and of the use of Young-measures in
general) is that our results give no indication of the geometric structure of the vor-
tices. However, we have retained important information about the average charge
carrier concentration and the states that are averaged to get this quantity. In many
applications this information may be sufficient to make this a useful model.

We are currently working on numerical calculations for these problems.
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Proof. The existence of a sequence satisfying (4.38) is guaranteed by Lemma 3. Thus,
we need only verify that this sequence is an innmizing sequence for S. Suppose not,
then there exists ($, A) € X4(n ;IR+) x H^tyTR3) such that S(i>,A) < hmE(r/>n,An).
However, using (4.6) and the fact that G* < G, we get

lim£(V>n,An)

This contradicts the fact that ($, A) is a minimizer of £R. O

Using the direct method of the calculus of variations described above and some other
standard techniques, one can prove the following existence theorem for the relaxed prob-
lem.

Theorem 7 Let H G L2(£l;TRz) be given. Then there exists a solution
(Vs A) G £4(ft;]R+) x iJ^fylR3) of the relaxed nonlocal minimization problem.

To finish this section, we state the Euler-Lagrange necessary conditions for the relaxed
nonlocal minimization problem.

Theorem 8 Suppose H € L2(Q,] IR3), and in addition H x n (where n is the unit outward
normal to dVi) is well defined in the sense of trace on the boundary ofCl. Then every
solution (V>,A) G £4(fi;IR+) x if^fijIR3) of the relaxed nonlocal minimization problem
satisfies

curl curl A(x) = curl H(x) + V>(x) / K a(x - y)A(yty(y) <*y, (4.40)

<?;(V>(x),x) = | jf K2(x - y)V-(y) dy - 2A'(x) jT Kx(x - y)A(y)^(y) dy. (4.41)

at almost every x G £2. Furthermore, at almost every boundary point x G #fi we /tare

curl A(x) x n(x) = H(x) x n(x). (4.42)

Once again, the proof of this is standard.

5 Comments
Our results suggest that for various values of the parameter 7 and the applied field
H, we can expect minimizers of the modified nonlocal energy to have the following
characteristics.

1. Because of the dependence of the local lower-order term G on x, we expect Super-
conducting charge carriers to be concentrated at the boundaries of the material.
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1. At almost every point x € tl at which $(x) € 0, J§ (1 — ^^Elj t&e Young-measure

fix of the sequence %}>n is a convex combination of two Dirac masses centered at 0

2. At almost every point x G £2 at tu/ucfc $(x) > A/ | (l — £ ^ ) the Young-measure fix

of the sequence ipn is a single Dirac mass.

We now can prove that a minimizing sequence for £ (or at least a weakly convergent
subsequence) yields a minimizer of the relaxed energy £R.

Theorem 5 Suppose there is a sequence (tpnyAn) € I4(fi;IR+) x #*($}; IR3) such that

(V>n, An) - (^ A) in I4(n;IR+) x J J ^ I R 3 ) , (4.33)

and

lim £(V>n, An) < £(V>', A1) for all M>*, A1) e I4(f2;IR+) x H^OjlR8). (4.34)

TAen (V», A) mmtmtze^ ffce relaxed nonlocal energy; i.e.,

£*(& A) < ^(V*1, A') /or a« (V>», A1) € L4(fi;IR+) x ^(njIR 3) . (4.35)

Proof. Suppose not. Then there exists (V>, A) € L4(f2;IR+) x Jfa(fi;IR8) such that

£ J I ( ^ A ) < £ H ( ^ A ) . (4.36)

Now, by Lemma 3, there exists a sequence rpn € LA(£l] IR+) such that

lim & ^

< lim

(where we have used Lemma 2 for the final inequality). This lead to a contradiction of
(4.34). D

We now state the most important result of the section which says that minimizing
sequences for £ can be constructed from classical minimizers for £R.

Theorem 6 Suppose (V̂ , A) minimizes the relaxed nonlocal energy; i.e.,

£R$,A) < £«(V>(, A") for all (^,A1) € X4(fi;lR+) x H\Sl;TB?). (4.37)

Then there is a sequence (i>n,An) € I4(ft;]R+) x If^fylR3) such that

(V-n, An) - $, A) in X4(ri;lR+) x H ^ I R 3 ) , (4.38)

and

lim £(Y>n, An ) < 5(V>(, A«) /or aH (V>«, A1) e I 4 (n,IR+ ) x ^ ( t y l R 3 ) . (4.39)
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We can now deduce the following properties of ^n. Since if) »-• G*(V>,x) is aifine (on
each cube on which rpn is not constant), it follows that

jf G;(Vn(x),x) dx = jf G;(V;n(x),x) Ac. (4.27)

Furthermore, since V>n is bounded in L4(fi;]R+) we have

Gn(*»(*),x) - <T(&(x),x)] dx - 0. (4.28)

Finally, using our choice of x, we get

G-(V-n(x),x) = G(Y>n(x),x) for all x € Cl. (4.29)

Putting these results together, we get (4.6).
We now need to show that 4>n - - $ in I4(ft : IR+). Let K be such that

II*." ^11^(0*1+) < K. (4.30)

Let <f> £ L4/3(J7; IR) be given. For any e > 0, we can choose N sufficiently large such that
there exists a simple function <f>e, constant on each cube of the grid GN such that

W - WL*I*(VX) < jt* (4.31)

Since our grids are nested, <f>€ is constant on the cubes of Qn for any n > N. Thus, for
n > N we have

/ Vn& dx = / VU« dx = / Ut dx. (4.32)
Ju Jn Jo

Thus, for n sufficiently large, we can use Holder's inequality to get

This completes the proof. •

We have chosen not to use any of the tools of Young-measures in this paper. (One of
the main reasons for this being that the natural space for tp is L4 (where Young-measures
are rather complicated) rather than L°°.) However, the following result on the Young-
measure of the weakly convergent sequence constructed above follows naturally from the
construction. We state it without proof.

Corollary 4 Let the hypotheses of Lemma S hold and in addition suppose
xj> € L°°(£2;1R+). Then the Young-measure of the sequence tpn constructed in Lemma S
has the following properties.

14



Let fi be covered with a nested sequence of grids Qn of cubes with side lengths 2 n .
We approximate $ by the sequence of simple functions xj>n that take the average value of
V> within each cube completely contained in fi; i.e., for any cube C C ft in the grid Qn

we let
r, XGC. (4.17)

Now, for each cube C in £n , pick x G C such that

It follows from standard results of analysis that

V»n - • V> (strongly) in L4(fi;IR+), (4.18)

and hence
)• (4.19)

(4.20)

G'(V>,x) := G*(V>,x) for x € C. (4-21)

Note that since u> is uniformly Lipschitz and %j)n is bounded in X4(Q;IR+) we can show

-> 0 (4.22)

u>(x) = mina>(x).

Now define

We now construct ipn from ^n in the following way. Let C be any cube in which

e o, for all x € C. (4.23)

(Here x G C is the point picked in the construction of G*.) Thus there is a 6c G (0,1)
such that

Pick any measurable set S$c C C with

ifr-2?) for xeC.

and let

(4.24)

(4.25)

(4.26)

By making this modification in every cube in which (4.23) is satisfied and letting ^n =
in all other cubes of Qn we construct ^n-

13



Lemma 3 For any ($,A) € I4(fl;IR+) x ff^fylR3) there exists a sequence V>n €
£4(Q;IR+) such that

^ n - ^ « n I 4 ( f t ; l R + ) J (4.5)

and
A). (4.6)

Proof. We first note that we can write

where

e = sL + eN, (4.7)
SR = S*L + SN, (4.8)

(4.9)

>,A) := / G(i>(x),x)dx (4.10)

x)dx (4.11)

, A) := / |curl A - H|2 dx - - f f K2(x - y)V-(x)V>(y) dx dy (4.12)
Jo 7 ./n Ju

A*(x)Ka(x - y)A(y)V>(x)V>(y) dx dy.j j
Recall that the integral operators

L4(O; IR) 3 1> ~ I K2(x - y)^(y) dy € I 4 / 3 (n; IR) (4.13)

and
V ̂  / A-(x)Kx(x - y)A(y)V'(y) iy e I4/3(fi; IR) (4.14)

are assumed to be compact. We use this, the fact that compact operators map weakly
convergent sequences in strongly convergent sequences, and the fact that the integral of
the product of weakly and strongly convergent sequences converges weakly to get

£N(1>n,k)->eN$,A) (4.15)

for any weakly convergent sequence satisfying (4.5). Thus, to show (4.6), we need only
construct a sequence satisfying (4.5) and

(4.16)

12
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Figure 3: The relaxed energy density G" and its derivative.
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• The minimizers of the relaxed energy SR are classical, and hence we can try to com-
pute them using classical techniques of the calculus of variations (Euler-Lagrange
equations, etc.).

• There is an easy way to construct minimizing sequences for S (or to deduce the
structure of the Young-measure for the minimizing sequence) from a minimizer of
the relaxed energy SR.

The relaxed problem is obtained by replacing the nonconvex energy density G with
its convexification. This relaxed or convexified energy density is given by

W-(l-
Note that G* is convex (though not strictly convex) and continuously differentiable in its
first variable (cf. Figure 3). (Recall that in this section 1 — ^ > 0.)

The relaxed nonlocal minimization problem. Let H G -L2(ft;IR3) be given. Find a
pair (V>, A) € L4(ft;IR+) x #a(fi;IR3) such that the relaxed energy functional

- - / / K2(x - y)V>(*)V>(y) dx dy (4.2)

+ / / A*(x)Ki(x — y)A(y)^(x)V^(y) dx dy
«/n JQ

is minimized.

We begin our study of the relationship of the relaxed problem to the modified nonlocal
problem with the following lemma.

Lemma 2 Suppose there is a sequence (V>n, An) € I4(f2;IR+) x ^(fijIR3) such that

(V>n,An) - (Vs A) in I4(n;IR+) x Hl(Q;JRz). (4.3)

Then
SR($, A) < lkn mf £(V>n, An) (4.4)

The proof of this is standard in the calculus of variations. It uses the weak lower
semicontinuity of all the terms in the two energies except for the nonconvex G, together
with the fact that G* is the convexification of G.

The next lemma is actually a construction of a weakly convergent sequence such that
the limit of the modified energy S is the relaxed energy SR of the weak limit.

10



2. Upper and lower bounds on the energy of the sequence are then used to obtain a
priori estimates on the sequence in some Banach space.

3. A weakly convergent subsequence is then extracted from the minimizing sequence
(by the Banach-Alaoglu theorem).

4. Finally, one shows that the weak limit of the subsequence is actually a minimizer
for the problem.

Unfortunately, the final step usually uses the convexity of the highest order terms of
the energy density in a crucial way. Because (7, a leading order term in our energy,
is nonconvex, it is not in general true that the weak limit of a minimizing sequence is
itself a minimizer. When this occurs, we say that the minimum energy is not attained.
One way of addressing nonattainment is to accept the minimizing sequences themselves
(rather than their limits) as solutions of the minimization problem. However, while this
makes sense theoretically, it is obviously a rather cumbersome process to try to compute
minimizing sequences. For any given body fi and applied field H we would have to
compute not just a single function, the minimizer, but an entire sequence of functions
that minimize the energy. In addition, when computing sequences, the classical tools
used to compute minimizers (Euler-Lagrange equations and other necessary conditions)
no longer seem to be useful.

Fortunately, for the modified nonlocal problem, there is a relatively easy way to
determine the character of minimizing sequences. In the next section we introduce a
relaxed version of the nonconvex problem stated above. We will show that this problem
has a classical minimizer. Furthermore, we will show that using this classical minimizer
of the relaxed problem, we can construct a minimizing sequence of the nonlocal energy £
or, alternatively, deduce the structure of the Young-measure of the minimizing sequence
directly. (Young-measures are probability measures describing the oscillations of weakly
convergent sequences. Since in this paper we are able to describe minimizing sequences
using classical variational techniques, we do not give a detailed description of Young-
measures here. For a more complete theoretical discussion one could consult [2, 14, 15,
18]. Examples of applications of Young-measures in a setting similar to the one in this
paper include [3, 5, 7, 11, 13].)

4 The relaxed nonlocal problem
Because of the special structure of the modified Bardeen energy £, we will be able to
deduce the following facts about the relationship between £ and the relaxed nonlocal
energy £R (to be described below).

• The weak limit of any minimizing sequence for the modified Bardeen energy £ will
be a minimizer for a relaxed energy £R.



Figure 1: The local energy density G.
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Figure 2: Weighting funciton a> when fl is an infinite plate of thickness 1L and ^(x—y)
c-C|x-y|/|x _ y | .



The first term on the right is often absorbed into other terms in the total energy.
It is interesting to note that our justification of nonlocal energy densities by referring

to the derivation of the gradient term is the opposite of the procedure used by Van
der Waals [16], who modeled density phase transitions using a nonlocal term and then
approximated the nonlocal term using a gradient term.

One should also note that the success of higher order "viscosity" models has been in
applications to relatively stable, nonoscillatory phenomena. The analysis of phenomena
such as turbulent flow of fluids and hysteresis subloops in ferromagnetism using higher
order models is difficult at best, and it is for such applications that nonlocal models seem
to be most promising.

One analytic "cost" we pay for dispensing with the higher order term is that now the
behavior of the energy is more heavily influenced by the local lower-order term

where

The energy density G(^,x) is a perturbation of the nonconvex local energy density
term (|V>|2 ~~ I)2 found in the Ginzburg-Landau energy by an additional local penalty
for superconducting charge carriers ^^^l^l2. (The additional penalty is the remnant of
the nonlocal penalty for variations (cf. 3.12).) Note that the entire energy density is
nonconvex when 1 — a>(x)/7 > 0. Furthermore, in this case it is minimized at if) =

- o>(x)/7 (cf. Figure 1).
In order to understand G more fully, we need to examine the function tt>(x) =

/ni^2(x — y) dy. At present, our hypotheses simply imply that its values lie in the
interval [0,1]. In practice, as we indicated earlier, we think of K^ as satisfying

#2(x-y):=*( |x-y|) , (3.14)

where k : (0, oo) —» IR* is a smooth decreasing function, concentrated at the origin. In
this case, if the body is large compared to the region of concentration of fc, then a> is
close to one in the interior of the body and significantly less than one at the boundary
(cf. Figure 2). Since G is minimized at y1 — a>(x)/7, this leads us to the conclusion that
the local energy density G encourages a greater concentration of superconducting charge
carriers at the boundary of the body.

One might now try to use the "direct method7' of the calculus of variations to get a
classical existence result. This method is described as follows.

1. One first considers an minimizing sequence for the energy (such a sequence always
exists since every energy has an infimum).



whose distance from x^ is k), and let rij be the number of nearest neighbors to Xj. In
order to penalized rapid transitions in u, we define an energy

Efr GM) := %- £ - £ \u{xj) - t ^ f , (3.6)

where C > 0 is a constant. A routine calculation shows that as the step size goes to zero
we have

J (3.7)
Note that one of the key assumptions in the derivation of (3.7) is that as the grid size

becomes smaller, one continues to penalize only differences between nearest neighbor grid
points. Another obvious possibility for penalization is to consider differences between the
values of u based on distance between grid points. In elasticity, the argument for such
a penalty has been made based on the effects of capillarity and viscosity [16, 17]; and
in ferromagnetism a similar argument can be based on exchange forces [13, 6]. One can
argue that in superconductors the existence of Cooper pairs and the linkage between these
pairs makes a distance-based penalty for the phase parameter even more compelling than
in elasticity or ferromagnetism.

Suppose we wish to use such a method of penalization. For simplicity, let us take
k(\xi — Xj\) to be the weighting function for the penalties, where k : (0, oo) —> IR+ is
a smooth function such that k is nonincreasing (so that distant points are penalized no
more than nearby points) and

Jo
)r2dr < oo. (3.8)

/o

We consider an energy of the form

Q M M

E{u] GM) ~ TH E E KWi - XmDWxj) - u(xm)|2. (3.9)
M jzzl m=l

As the step size goes to zero we have

E(u]GM)->cJ^J^k{\x-y\)\u{x)-u

If we let
j n y (3.11)

we get

C f I fc(|x-y|)Kx)-u(y)|2dxdy
n ° - r r r r i (312)

= 2C \ 0(x)u2(x) dx - / / fc(|x - ylMxMy) dx dy\.



Here u represents a typical variable whose phase change is being penalized. Such a
replacement has the "advantage" of allowing for both discontinuities and oscillations. In
Bardeen's model the higher order terms in %f> and A remain. We suggest the following
modification of Bardeen's model which will allow us to consider a much weaker space for
the order parameter ij>.

Modified nonlocal minimization problem. Let H € I2(fi;IR3) be given. Find a
pair (V>, A) € £4(ft;IR+) x if^ftjIR3) such that the energy functional

~ ̂  + ̂ ^ Wr + lend A - H|» J dk

+ Jf jf A*(x)K1(x - y)A(y)V>(x)V>(y) dx dy

is minimized.

Here 7 > 0 is the appropriate nondimensionalization constant,

«(x) := Ja K2(x - y) dy, (3.2)

and we assume that K^ : IR3 —> IR+ is even and satisfies

^ K2(x -y)dy = 1, (3.3)

and that the operator

I4(fi; IR) 9 V ^ / K2(x - y)^(y) dy € I4 / 3(fi; IR) (3.4)

is compact. The type of kernel we have in mind is one of the form

c-C|x-y|

which satisfies the compactness condition.
In order to motivate the replacement of a gradient term with a nonlocal term as a

phase change penalty, let us examine a typical justification for the use of the gradient
term. Let fi C IR3 be a bounded domain. Suppose it : 0 —* IR is some physical
quantity whose phase transitions we wish to penalize. Let GM := {XmJmsi ^ e a unif°*m
Tectangular grid on Q with step size h. For each j = 1>. . . ,M let Nj be the set of
indices of the grid points that are nearest neighbors to the grid point Xj (i.e., those



2.2 Bardeen's nonlocal theory
Bardeen [4, p. 326] proposed a nonlocal generalization of the Ginzburg-Landau theory de-
signed to incorporate Pippard's theory. Bardeen considered a one-dimensional model; we
consider a multidimensional generalization of Bardeen's model below. Neither Bardeen's
model or our generalization of it is gauge invariant. Indeed, to the authors' knowledge the
problem of whether a gauge invariant nonlocal theory can be formulated remains open
and the question of whether such a theory is desirable remains problematic. Thus, in the
following, we assume that the superconducting charge density if> is real and nonnegative.

The Bardeen nonlocal minimization problem. Let H 6 L2(fl;IR8) be given. Find
a pair (V>, A) G #1(C2;1R+) x H^fylR3) such that the energy functional

, A) = ̂  | i ( |Vf - I)2 + ±\Vi>\* + |curl A - H|2] <£x

is minimized.

Here, A* indicates the transpose of the vector A, and IR+ := [0, oo).
In the rest of this paper we assume Kx : IR

3 —» Psym (where Psym denotes the space
of positive definite symmetric 3 x 3 real matrices) is even and satisfies

l. (2.9)

In addition, we require that for any fixed A € if:(£l;IR3), the operator

I4(fi;IR+) 9 V ~ / A*(x)K1(x - y)A(yhHy) dy € I4/3(n ;IR) (2.10)

is compact. While Bardeen did not make this compactness assumption explicitly, the
Pippard model employs a kernel of the form

K,(x - y) := C-j7

where C and £ are positive constants and ® indicates the dyadic tensor product. With
this kernel, the operator described in (2.10) is compact (cf. Theorem 5.3 in [1]).

3 Modified Bardeen model

The use of nonlocal energy densities in Bardeen's model has some interesting similarities
to nonlocal models in ferromagnetism [6, 13] and phase transitions [17]. However, in
[6, 13, 17], a nonlocal energy density was used to replace a higher order term; i.e.,

/ / fc(x - y)u(x)u(y) dx dy replaces / |Vu(x)|2 dx.



is minimized.

Here, ft C IR3 is a bounded domain occupied by the superconductor, A is the magnetic
vector potential which is related to the magnetic field h generated by the superconductor
through the identity

h = curl A, (2.2)

H is the applied magnetic field, if> is the complex-valued order parameter, and K is the
Ginzburg-Landau parameter, a material constant. Sometimes the problem is supple-
mented with other boundary conditions.

In the Ginzburg-Landau theory, %J> is regarded as an "averaged wave-function of the
superconducting electrons". It can be normalized so that |V>|2 is proportional to the
density of superconducting charge-carriers, and the phase of */> is related to the current
in the superconductor.

The Euler-Lagrange equations for (2.1) are known as the Ginzburg-Landau equa-
tions:

—t
—V-A

K

2

-0 H- -0(1-01 — 1) = 0 in ri (2.3)
curl curl A = curl H - |V>|2A in (I. (2.4)

The current j in the superconductor is given by

c c
j = -—curl h = —curl curl A, (2.5)

4TT 4TT

where c is the speed of light. Thus, we can rewrite (2.4) as follows

— j = curlH-|V>|2A. (2.6)
c

Using standard techniques (cf. e.g., [8, §3.2]) one can prove the following existence
result for the Ginzburg-Landau minimization problem.

Theorem 1 There exists a solution of the Ginzburg-Landau minimization problem; i.e.,
there exists (V>,A) G H^fyC) x H\QiJRz) such that

Sty, A) < I(^, A1) for all (V>f, A«) G #*((); C) x ^(ftjIR3). (2.7)

Unfortunately, solutions of the Ginzburg-Landau equations have proved to be very
hard to compute, particularly in regimes in which one observes highly oscillatory vortex
phenomena.



characteristics. In Section 4, we use relaxation techniques to prove an existence theorem
for the modified model and to describe some of the behavior of solutions. Finally in
Section 5, we make a number of concluding remarks.

Notat ion. We use nonboldface Greek and Latin letters to denote scalars (both real
and complex). Boldface letters are used to denote both vectors and tensors. The space

, IRn) is the set of (measureable) functions

f: n - » m n

such that

|f(x)|p <facj < oo.

Here | • | indicates the Euclidean norm in IRn. The space H1(fl,IRn) is the set of (mea-
sureable) functions f as above such that

Here Vf indicates the gradient of f (the tensor of first partials of the components of f).

2 Classical Models of Superconductivity

In this section we give a brief description of two classical models of superconductors
that can be compared directly with the model to be proposed in Section 3. Our theory
is basically a modification of the Ginzburg-Landau theory (described in § 2.1), which
models superconductors in terms of a local variational problem. In our model, we replace
higher-order terms in Ginzburg-Landau with terms that are nonlocal in space. Spatially
nonlocal terms have been used in mathematical models of superconductors for some
time. Notably, the theory of Pippard [12] introduced a nonlocal constitutive law for
the current inside the superconductor and Eringen [9] studies a very general memory-
dependent nonlocal model. However, instead of describing these nonlocal theories, we
examine in § 3.2 a nonlocal model of Bardeen, which is in variational form and is therefore
easier to compare to the model we introduce below.

2.1 The Ginzburg-Landau theory
The Ginzburg-Landau theory of superconductivity is based on the following variational
problem.

The Ginzburg-Landau minimization problem. Let H € L2(£2;IR3) be given. Find
a pair (if>, A) € Hl(Sl\ <D) x if1(f2;IR3) such that the energy functional

E{1>, A) = /n | i ( M 2 - I)2 + | ( ^ V - A) vf + lend A - H | 2 | cfoc (2.1)
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1 Introduction
Superconducting materials exhibit a variety of highly oscillatory behavior. In particu-
lar, classical type-II superconductors display quantized vortices in certain regimes, and
new high-rc materials are characterized by finely layered structures. Recently, new tech-
niques of analysis such as relaxation and the use of Young-measures have been used
successfully to study other multi-dimensional, highly oscillatory phenomena. Examples
of such applications include fine-phase structures in elastic crystals (cf. e.g. [3, 7, 10])
and magnetic domains in ferromagnetic materials (cf. e.g. [6, 11]). Precursors of the
techniques used in these problems, under various names such as generalized curves and
chattering controls, have a long history of use in problems governed by ordinary differen-
tial equations. It seems reasonable that the mathematical tools developed for the phase
transition applications cited above would be well suited to describe the physical behavior
of superconductors. Unfortunately, classical mathematical models of superconductors (in
particular, Ginzburg-Landau) are not amenable to the application of these techniques.
The purpose of this work is to describe a modified model for superconductors to which
these new techniques can be applied and to do some of the basic analysis for this model.

The rest of this paper is organized as follows. In Section 2, we give a brief description
of some classical theories of superconductivity that particularly influenced our model. In
Section 3, we introduce the modified model and describe some of its basic mathematical
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the Center for Nonlinear Analysis.

*The research of R.C. Rogers was partially supported by the National Science foundation through
grant # DMS-9204304 and by the Army Research Office and the National Science Foundation through
the Center for Nonlinear Analysis.



 



NONLOCAL SUPERCONDUCTIVITY
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Abstract

Classical Type-II superconductors display quantized vortices in certain regimes, and
certain high-Tc materials exhibit finely layered structures. These highly oscillatory phenomena
suggest that mathematical models involving Young-measures may be a plausible choice. In this
paper we introduced a new model for superconductors which allows for "measure-valued"
solutions. The new model is a modification of Bardeen's nonlocal theory, and is in the form of a
variational problem involving minimization of a nonlocal energy.

The results obtained for this model seem to suggest that superconducting charge
carriers will concentrate at the boundaries of the material, whereas in the interior of the material,
there will be a lower concentration of carriers. In addition, (under certain conditions) a minimizing
sequence for the energy can be constructed by oscillating between the nonsuperconducting phase
and a superconducting phase similarly to Type-II superconductors exhibiting an oscillatory vortex
structure.
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