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Introduction

Separation and contact of real objects are everyday phenomena. Real objects may develop

cracks, may split, or may shatter to pieces. Fluids may cavitate or mingle. Real objects may

stick together, merge, or be pieced together to form composites. The laws that govern these

phenomena have been of great interest to engineers for a long time and there has been renewed

interest in the discovery and study of these laws in recent years.

The purpose of this paper is to create a mathematical infrastructure which would facilitate

the study of the phenomena described above. Good mathematical descriptions of deformations of

continuous bodies have been developed during the past 200 years or so, but I have not seen in the

literature a satisfactory mathematical description of changes of coherence for such bodies. Here I

would like to present such a description. It includes only what I call the "geometry" of changes of

coherence. A next step would be a description of "kinematics" of such changes, i.e. of changes of

the geometry of coherence with time. Next would come a study of the forces involved in such

changes, and finally one would like to develop a general theory of the constitutive laws governing

the phenomena governing such changes.

One of the problems with the description of separation and contact of continuous bodies is

that the material points on the surfaces of separation or contact disappear or are created. One

may ask, therefore, what it is that retains its identity during such processes. The answer, I

believe, is the materially ordered set that consists of the subbodies of a given body and the

corresponding Boolean algebra. The material points are determined by filters (in the sense of

Boolean algebra) of such subbodies. What may change as a result of separation or contact is the

set of filters that determine material points.

Changes of coherence of a continuous body can come about not only by separation and

contact, but also by processes that can be understood as a separation followed by a simultaneous

contact or vice versa. Sliding would be an example. If such separation and simultaneous contact

preserve material points, we call the process a "reformation". Such reformations may serve to



obtain insight into phenomena such as phase transitions, acceleration waves, and shock waves.

The notation and terminology of [FDS] is used in this paper. In particular, the collection

of all subsets of a given set df is denoted by Sub df. The set of all positive numbers, including

zero, is denoted by P. A superscript x on a set indicates the removal of zero or of the empty set.

Let a mapping tp be given. The domain, codomain, and range of tp are denoted by Dom tp,

Cod <p, and Rng (p} respectively. For every A 6 Sub Dom tp, the image of A under <p is

denoted by tp (A) := {(p(x) | x e A}. For every B 6 Sub Cod <p, the pre—image of B under

<p is denoted by tp^ (B) := {y e Dom (p} \ (p(x) e B}. Given A e Sub Dom ip and
B B

B G Sub Cod ip such that ^ ( A ) c B, the adjustment ip\^ is defined by Dom<p|? := A,
Cod tp\^ := B, and

A(X) = rt*) for all x € A.

If tp is invertible, its inverse is denoted by ip~. The identity mapping of a set df is denoted by
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1. Continuous Bodies

Before giving a precise mathematical definition of a continuous body, one should first

specify two classes: (i) a class Fr consisting of subsets of Euclidean spaces, subsets which are

candidates for regions occupied by a continuous body when placed in a frame of reference, (ii) a

class Tp of mappings which are candidates for the changes of placement of a body in a given

frame of reference or from one frame to another.

We take Fr to be the class of fit regions recently introduced in [NV], i.e. we take Fr to

be the class of all subsets of Euclidean spaces that are bounded and regularly open and have

negligible boundary and finite perimeter. The set of fit regions included in a given Euclidean

space t is denoted by Fr(£). For all &>3 6 Fr(£) we then have

tf n 3> 6 Fr(£) (1.1)

tf V 2 := Int Clo (tf fl 3) 6 Fr(£) (1.2)

and

«? 3) := Int(tfV0) G Fr(£). (1.3)

We call tf V 2 the join of tf and 3 and tf 3) the difference-region of tf and 3). If

<p: £ -4 8' is a C^-diffeomorphism from the Euclidean space $ to a Euclidean space S' then

tpA&) € Fr(^7) for every 3) 6 Fr(£). We may express these facts, roughly, by saying that Fr is

stable under intersection, joining, forming of difference—regions, and C1—diffeomorphisms. If <if

is a subset of a given Euclidean space £, we put

n Fr(£) (1.4).

We take Tp to be class determined by the following requirements:
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(Ti) Every A 6 Tp is an invertible mapping whose domain DomA and range RngA are

subsets of Euclidean spaces denoted by DspA and RspA , respectively.

(T2) We have DomA € Fr for every A 6 Tp.

(T3) For every A € Tp, there is a C2-diffeomorphism tp : DspA -» RspA such that

DomA

The following facts are immediate consequences of (Ti) — (T3):

(T4) We have RngA e Fr for every A € Tp.

(T5) For all A, fi 6 Fr with RngA = Dom/x, we have \i o A G Tp.

(T6) For every A € Tp we have A*" € Tp.

(T7) For every A 6 Tp and 3 € Fr(DspA ) with & c Dom A, we have A
2

We call the members of the class Tp transplacements.

€Tp.

Remark 1: Strictly speaking, Tp is the class of morphisms of a category whose objects are pairs

,#), where £ is a Euclidean space and 3) e Fr(£). B

Remark 2: For certain purposes, for example when dealing with bodies subject to constraints, one

might wish to modify the definitions of Tp or of Fr, or both. a

Definition 1: A continuous body 3 is a non-empty set endowed with structure by the

specification of a non-empty class P l ( ^ ) satisfying the following requirements.

(Bi) Each /cGPl(^) is an invertible mapping with Dom/c = ^ and Rng K 6 Fr.

(B2) For all *, 7 e Pl(^) we have K O 7" e Tp.

(B3) For every K€T1(3) and A € Tp such that Rng K = Dom A, we have A o K € Pl(^).

We call the members of Pl(^) the placements of 3. Given K € Pl(^), we call Rng K

the region occupied by 3 in the placement /c; the Euclidean space in which Rng K is a fit region
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is denoted by Frm K and is called the frame-space of K; the translation space of Frm « is

denoted by Vfr AS and is called the frame—vector space of K.

Given K 6 V\(3), it follows from (B2) and (B3) that

Tl{3) = {A o K | A 6 Tp, Dom A = Rng «}. (1.5)

Let a continuous body 3 with placement-class Pl(#) be given. The subsets of 3

belonging to

fi^ := {9 e Sub 3 | *>(•?) e Fr for some K G

are then called the parts of 3.

It is an immediate consequence of (B2) and (T4) that

Q3 = {9 e Sub 3 I «>(.?) e Fr for all K e Tl{3)}. (1.6)

The non-empty parts of 3 are also called subbodies, which is justified by the following

fact.

Theorem 1: Every part 9 6 fij^ acquires the natural structure of a continuous body by the

specification

T\{9) := {K
9

for the placement class of 9.

(1.7)
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Proof: The fact that P l ^ ) satisfies (Bi) follows directly from (1.6). Given K,J e Pl(^) we have

Hence, since 7 o *" e Tp because V\{3) satisfies (B2), it follows from (T7), with S£ := KA9)

and A := 7 o /c*", that Pl(^) also satisfies (B2). Now let K 6 Pl(^) and A € Tp be given such

that Rng(/c > ) = *>>{&) = Dom A. By (T3) we may choose tp : Dsp A -» Rsp A such that

\=<p
Rng A

. Putting A := ip
K)

Rng K
, we have A e Tp and hence, since Pl(^) satisfies

(B3), A o K 6 Pl(c#). Therefore, (A o K) > =Ao(/c > ) e Pl(^), which shows that

satisfies (B3). H

The structure of a continuous body on a given set 3 can be specified by the prescription

of a single placement of 3 as follows.

PIOPOSITIOI 1: Let 3 be a set and let a be an invertible mapping with Dom a. — 3 and

Rng a € Fr. Then

T\Q(3) := {A o a I A € Tp, Dom A = Rng «} (1.8)

endows 3 with the structure of a continuous body and we have a G PI (JZP).

PIOOF: Since Rng a 6 Fr we have l j . 6 Tp and hence a = l j , o a e PI (*#), showing

that P l a (^ ) is not empty. The fact that Pla(<#) satisfies (Bi) - (B3) is an immediate

consequence of (T4), (T5), and (Te). •
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2. The Material System of the Parts of a Body, Filters

We assume that a continuous body 3 with placement-class Pl(#) is given. We call the

collection Q^ of all parts of 3, as given by (1.6), the material system of parts of 3. The

following theorem shows that Q^ satisfies the axioms for a material system as given, for

example, in [N] or [T], (where the term "material universe" rather than "material system" is

used).

Theorem 2: The collection ft^, when ordered by inclusion, has the following properties:

(i) The intersection of any two parts of 3 is a part of 3> ie. for all 9,2 6 Q^

9 n 2 6 fi^.

(ii) For any two parts 9,2 6 £!& there is a smallest part of 3 that includes both.

This smallest member of Qg> that includes both 9 and 2 is called the join of 9

and 2 and is denoted by 9 V 2.

(iii) For every part of 9 6 Q^, there is a largest part of 3 that is disjoint from 9.

This largest member of H^ that is disjoint from 9 is called the exterior of 9

relative to 3 and is denoted by 9h, so that

(2.1)

and

(9 fl 2 = I A 2,C9*) for all 2 6 ft^. (2.2)



For every K e V\{3) and all 9£ 6 ft^>, we have

ny{9 n £) = K^P) fl /c^.2) (2.3)

K^P V jg) = *(,?) V /c(A) (2.4)

(2.5)

PROOF: Let K e Pl(^) be given. It follows from (1.6) that ( « > ) > ( ^ ^ ) = {^>(^) I & 6 fi^} is

the set Fr(Rng K) of all fit regions included in Rng K defined according to (1.4). Hence, since K
F r (Rng K)

is invertible, n ^ is an order—isomorphism from ft ~> to Fr(Rng /c). Now, it follows

from Theorem 4, Sect. 5 and from (C), (D), (E) of Sect. 4. of [NV] that Fr(Rng K) has properties

analogous to (i), (ii), and (iii). Hence ft^ has these properties and (2.3)-(2.5) hold. H

It is easily seen that

(̂ >b)b = y and 9 V 9* = 3 for all 9 e ft^. (2.6)

PiOPOSmoi 1: The body 3 has exactly one uniform structure that makes all placements uniform

homeomorphisms. This uniform structure is determined by any one of the metrics d on 3

defined by

d^ftY) := | *(X) - K(Y) | for all X,Y e 3, (2.7)

where n €
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PROOF: We choose a placement K 6 Pl(3) . There is exactly one uniform structure on 3 that

makes K uniformly continuous, namely the structure obtained by transporting the uniform

structure of Rng K inherited from Rsp K to. 3 by means of it. This uniform structure is the

one determined by the metric (2.7). Now let a placement 7 € V\{3) be given. Showing that 7

is a uniform homeomorphism from 3 to Rng 7 then amounts to showing that A := 7 o K is a

uniform homeomorphism from Rng n to Rng 7. Now, it follows from (T2) that A has a

continuous extension A : Clo Rng K -> Clo Rng 7. Since Rng K is bounded and hence Clo Rng K

compact, it follows from the Uniform Continuity Theorem that A, and hence A, is uniformly

continuous. Interchanging the roles of 7 and K} we see that A4" = K O 7*" is also uniformly

continuous, i.e. that A is a uniform homeomorphism. a

Definition 1: We say that a non-empty subset i of Q^ if a filter on Q^ if

(Fi) i is stable under pairwise intersection, i.e., for all 9>,2, € I we have 9* fl -2 e \.

(F2) Every set in Q^ that includes a set in i belongs to I, t.e., for all & 6 \ and all 91 c Q^

with 9 C 9t> we have 9Lt\.

We say that the filter i is fundamental if for every entourage 1C of the uniform space 3> there is

a 9* 6 i such that 9> * 9* c ft. We say that I is minimally fundamental if it is fundamental and

if there is no fundamental filter that is strictly included in i.

Remark 1: The concept of a filter as defined here coincides with the one used in the theory of

Boolean algebras (see Sect. 3 of [S]). Indeed, with the operations of intersection, join, and exterior

relative to 3 as described in Theorem 2, the material system fi^ is just a Boolean algebra. The

concept of a filter as used in topology (see Sect. 5 of Ch. I of [B]) is somewhat different. What we

call a filter here is a filter-base in the sense of topology, and what we call a fundamental filter here

would be called the base of a fundamental (or Cauchy—) filter in topology. a
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Let K € ¥1(3) be given. Since the uniformity of Rng K is determined by the Euclidean

distance in Frm *, it follows from Prop. 1 that a given filter # is fundamental if and only if, for

every c e IP*, there is a 9 € \ such that

diam(/c>(i5)) < e. (2.8)

For every X 6 3, the subset

fij2 | X e J?} (2.9)

of ti<g is easily seen to be a minimally fundamental filter.

Definition 2: The set 3 of all minimally fundamental filters on Vt^ is called the completion of

3 and is denoted by 3.

Remark 2: Definition 2 does indeed describe a completion of the uniform space 3 in the sense in

which the term "completion" is used in the theory of uniform spaces. This is an easy consequence

of the theorems on completion stated in Sect. 7 of Ch. II of [B]. a

It is easily seen that the mapping (XHX) : 3 -* 3 is injective. We identify the range of

this mapping with 3 itself, i.e., we use the symbol X instead of X also for the filter (2.8).

The set 3 has the structure of a separated, complete uniform space and the original uniformity

of 3 coincides with the one that 3 inherits from 3 when 3 is regarded as a subset of 3.

Given a subset df of 3, one then must carefully distinguish between the closure Clo df of df

in 3 and the closure of df when df is regarded as a subset of 3. We denote the latter by

Clo df. An analous distinction must be made between Bdy df and Bdy df. For example, we



11

have

Bdy 3 = 0 , EHy 3 = 5\J» * 0. (2.9)

The following fact is an immediate consequence of Prop. 1 and the fact that the completion

of an open subset of a Euclidean space can be identified with its closure.

PEOPOSITIOI 3: Every placement n € ¥1(3) has a unique continuous extension

K : 3 -• Clo Rng K} (2.10)

and this extension is a uniform homeomorphism. For every df 6 Sub 3 we have

/^(CIo df) = Clo *>{&), ^(BHy df) = Bdy K^df). (2.11)

The inverse of K is given by

/T(x) = {9 G U3\ *>{$>) = Rng « n / for some (2.12)

JT 6 Fr(Rsp K) with x 6 / }

for all x 6 Clo Rng K.

We note that (2.12) reduces to

n^ l x 6 /c>(^)} = uT(x) K «T(x) (2.13)

when x € Rng *, as it should.



12

3. Improper Transplacements and Placements

We now consider a class Tp of mappings which is obtained from Tp by joining certain

"improper transplacements".

The class Tp is determined by the following requirements:

( f i) Every p 6 Tp is a continuous invertible mapping whose domain Dom p and range Rng p

are subsets of Euclidean spaces Dsp p and Rsp p, respectively.

(T2) We have Dom p G Fr for every p G Tp.

(T3) Every p G Tp has a continuous extension p : Clo Dom p -• Clo Rng p.

(T4) Let p G Tp and 9t G Fr (Dom p) be given. Then

CloSt
is injective

31
G Tp.

The following facts are easy consequences of (Ti) - (T4):

(T5) For all p G Tp and A G Tp with Rng A = Dom p} we have p o A G Tp.

(Te) For every p G Tp, Rng p is open (but not necessarily regularly open) and p is a

C 2—diffeomorphism.

Definition 1: The contact set of a given p G Tp is defined by

Cts(p) := {x G Bdy Dom p \ p ({p(x)}) is not a singleton}. (3.1)

PiOPOSiTioi 1: We have

Tp = {p G Tp I CtB(p) = 0}. (3.2)
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P*OOF: Let A€Tp be given. It follows from (Ti) - ( T 3 ) that A has an invertible continuous

extension J : Clo Dom p -> Clo Rng p. In view of (T7), it follows that A satisfies ( T i ) - ( T 4 )

and that Cts(p) = 0.

Now let p € Tp be given and assume that Cts(p) = 0. Then p is injective. Hence, using

(T4)with St = Dom p, it follows that p G Tp. D

The mappings in Tp\Tp, i.e. the mappings p € Tp with Cts(p) i 0, will be called

improper transplacements. Figure 1 illustrates a situation in which Cts(p) = {x,y} is a

doubleton.

Figure 1.

Remark 1: Let p € Tp and a point z 6 Bdy Rng p be given. One can prove that p ({z})

cannot contain more than two points that belong to the reduced boundary Rby Dom p of the

domain of p. Figure 1 shows a situation when /^({z}) = {x,y} consists of exactly two such

points. It is easy to construct situations in which /^({z}) has more than two points, but then

there must be points in p ({z}) at which the boundary of Dom p has no tangent in any sense. •

Let p be any mapping whose range is an open subset of a Euclidean space. We use the
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abbreviation

Icr p := Int Clo Rng p. (3.3)

Clearly, Icr p is regularly open and we have

Rng p C Icr p. (3.4)

If p 6 Tp then Rng p is regularly open by (T4) and hence Icr p = Rng p. The situation

illustrated in Fig. 1 shows that one can have Icr p = Rng p even when p e Tp is improper.

Figure 2 illustrates a situation in which p € Tp and Icr p t Rng p. The points on the dotted line

Figure 2.

belong to Icr p but not to Rng p.

Paoposmoi 2: Let p € Tp and A € Tp with Icr p = Dom A be given and put

A>(Rngp)
p (3.5)
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Then p' € Tp ,

Icr p' = A>(Icr p) = Rng A, (3-6)

and

(3-7)

PEOOF: It is clear that p' satisfies (T^, (T2). By (T2), noting that Rsp p = Dsp A, we may

choose a homeomorphisms <p: Rsp p -» Rsp A such that

Since (p is a homeomorphism, we have

Rng p) = Clo = Clo Rng p' (3.9)

and

^ ( I c r p) = Int Clo (^(Rng p)) = Icr p'. (3.10)

If p is the continuous extension of p postulated by (T3), it follows that

p ' : = tp
<p^(Clo Rng p)
n i * o p : CloDomp -» Clo Rng p'
Clo Rng p

(3.11)
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is a continuous extension of p' to Clo Dom p = Clo Dom p' and hence that p' satisfies (T3).

Now let Si € Fr (Dom p) = Fr (Dom p') be given such that p ' | ™ & is injective. Since

tp is invertible, it follows from (3.11) that p | rn 0 g> is injective. Hence, since p satisfies (T4),

we have p € Tp. It follows from (T4) that pA$) € Fr and hence, by (T7), that

/»>(*)

3t
)

€ Tp. Using (T5), we conclude from (3.8) that

P' = A > 6Tp ,

which shows that p' satisfies (T4).

The assertion (3.6) is merely another form of (3.10). The assertion (3.7) follows from

(3.11) and the fact that <p is invertible. B

Definition 2: Let a continuous body with placement—class Pl(3) be given. We then define the

extended placement-class F I (^ ) by

:= {p o K I K € Tl{3), p € Tp, Dom p = Rng «}. (3.12)

It is an immediate consequence of (T5) that

PI {3) = {p 0 K I p € Tp, Dom p = Rng «} (3.13)

for every K e P l ( ^ ) . Since Tp c Tp, it follows from (1.5) that P l ( ^ ) c Tl(3). The elements of

will be called improper placements of 3.

The following facts are immediate consequences of corresponding facts for improper
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t r ansplacement s:

(Fi) Every 6 G ¥!{$) is a homeomorphism whose domain is 3 and whose codomain is an open

subset of a Euclidean space Rsp S.

(F2) Every 6 G FI(*2?) has a continuous extension

7: 3F -» Clo Rng 6.

(F3) Let 6 G FI(#) and 9 G ft^ be given. Then

6
isinjective => 6

Definition 3: The contact set of a given 6 G FT(^) is defined by

Cts(5) := {X G 3F\J? I ^({^(X)}) is not a singleton }. (3.14)

Remark: The condition (P3), and the condition ( f 4) from which it is derived have the following

significance: If 9 is a part of 3 which does not "feel" the contacts produced by p, then the

placement of 9 induced by p is not improper. B

The following two Propositions are immediate consequences of Props. 1 and £ above.

PiOPOSiTioi 3: We have

Fl{3) = {6 G FI(J?) I Cts{6) = 0}. (3.15)

PEOPOSITIOI 4: Let 6 G FI(<#) and A G Tp with Icr 6 = Dom A be given and put

(Rngtf)

6
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Then 6f e

Icr 6' = A>(Icr 6) = Rng A, (3.17)

and

Cts(tf') = Cts{6). (3.18)

Proposition 5: Let p 6 Tp be given. For every 91 e Fr(Dom p) we have

= Rng p n Int Clo /?>(#) (3.19)

Proof: Since p is a homeomorphism (see (Te)), it follows that p preserves interiors and

relative closures. Since the closure of a subset G/ of Rng p relative to Rng p is given by

Clo <2f n Rng /?, (3.19) follows from the fact that Int Clo & = fft for all Si G Fr(Dom p). m

The following is an immediate consequence of Prop. 5 and (3.13).

Proposition 6: Let 6 € Vl(3t) be given. For every 9 6 Cl^ we have

= Rng 6 n Int Clo 6^0) (3.21).
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4. Bodies Obtained by Separation

We assume that a continuous body 3 with placement class V\{3) is given. We also

assume that a mapping a with the following property is given;

(S) There exists K G Pl(#) and p G Tr\Tr such that Icr p = Rng K and

(4.1)

The following result states, roughly, that the placement K for which (S) holds can be

chosen arbitrarily.

PEOPOSITIOI 1: If a given mapping a satisfies the condition (S), then for every n G Pl(^) there is

a p G Tr\Tr such that Icr p = Rng K and (4.1) holds.

PROOF: Since a satisfies (S), we may choose 7GPl(v#)and aGTr\Tr such that

Icr a = Rng 7 and

^ a . (4.2)
7

< (Rngp)

Now let K G Pl(^) be given. By (B2) of Def. 1 of Sect. 1, we have

A := K o 7" G Tp , Dom A = Rng 7 = Icr a, (4.3)
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and hence, by Prop. 2 of Sect. 3,

and Icr p = Rng A. Since Rng K = Rng A by (4.3), it follows that Icr p = Rng /c. On the other

hand, it follows from (4.4) that

p O K , " - P = ^ o A " | R n 6 a o « | R ^ 6 P
«^(Rngp) ' A .

Since A*" = 7 o K~ and Rng p = A (Rng a), we conclude that

l/c<(Rnga) l 7
< ( R n g a )

i.e. that (4.1) is valid, D

PROPOSITIOI 2: The set

3' : = D o m a (4.5)

is a open subset of 3 and we have

^ =3. (4.6)

P*OOF: Choose K and p such that (S) is valid. By (4.5) and (4.1) we then have

3' = /^(Rng p). Since Rng p is open by (T7) and since K is continuous, it follows that 3' is
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open in 3. Since Icr p is dense in Rng p and since K~ is a homeomorphism from Icr p to i 3

it follows that 3' = (*") (Rng p) is dense in 3, i.e. that (4.6) holds. B

Since Rng a = Dom p 6 Fr by (T2) when K and p are chosen according to (S), it follows

from Prop. 1 of Sect. 1 that

P1QG»') := {A o a | A e Tp, Dom A = Rng a} (4.7)

endows 3' with the structure of a continuous body. We say that the continuous body 3'

obtained in this way is obtained from 3 by separation via a.

Pitfall: It may happen that 3 = 31 and yet a t Pl(^), so that P1Q(^) i Pl(^). In fact, this

is the case if and only if p in (S) can be chosen such that Icr p = Rng /?. An example of an

improper transplacement p with this property is indicated in Fig. 1 of Sect. 3. In such a

situation, one must consider two distinct continuous bodies having the same underlying set of

material points. H
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5. Bodies Obtained by Contact

Again, we assume that a continuous body 3 with placement class ¥\(3t) is given. We

also assume that an improper placement 6 6 FI(cS?)\Pl(,#) (as defined in Sect. 3) is given such

that Icr 6 6 Fr. For every x 6 Icr 6> we put

Sl3 | x 6 Int Clo( £>(*$>))}. (5.1)

Proposition 1: For each x G Icr £, the collection $x is a filter. If x € Rng 6 we have

= {9 6 U3 | ^(x) 6 9} (5.2)

and hence $ is a fundamental filter.

Proof: Let x e /cr S be given. The fact that $ x is a filter is an immediate consequence of the

definition (5.1).

Now assume that x € Rng 6. By Prop. 6 of Sect. 3 and (5.1) we then have, for all

Since 6 is invertible, it follows from (2.9) that $ x = £*~(x), which is a fundamental filter.
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Remark: It may happen that $x is a fundamental filter for a given x e Icr 6 even though

x I Rng 6. An example may be read off from Fig. 1, when we put 6 = p o « for a given

K 6

Figure 1.

However, one can show that $x is not fundamental when x 6 2 (Cts(<}>)).

We now put

(5.3)

Using the identification X H X of material points in 3 with their corresponding filters (2.9), we

may regard 3 as a subset of 3.

It is easily seen that the mapping

(x H $x) : Icr 6 -> 3 (5.4)

given by (5.1) is injective and hence invertible. We denote its inverse by

6:3 -» Icr 6, (5.5)
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and we put

:= {A o 6 | A 6 Tp, Dom A = Icr p). (5.6)

Since Icr p 6 Fr by assumption, it follows from Prop. 1 of Sect. 1 that (5.6) endows 3 with the

structure of a continuous body. We say that the continuous body 3 obtained in this way is

obtained from 3 by contact via 6.

Pitfall: It may happen that 6,6' 6 ¥1(3) lead to the same set 3 of filters and yet V\jf^3)

PI fi,{3). An example can be read off from Figure 2., in which K 6 Pl(*#) is given and

p := 6 o /c~, p' := 6' o*~. Therefore, contacts as well as separations can lead to distinct

continuous bodies having the same underlying set of material points.

Figure 2.

It may even happen that 3 = 3 and yet Pl(^)

1 of Sect. 3 when p = 6 o tt for a given K 6 Pl(^). a

, which is illustrated by Figure
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6. Restorations and Reformations

We assume again that a continuous body 3 with placement class ¥1(3) is given.

Theorem 1: Let the continuous body 3', with placement class PI a (3 ' ) , be obtained from 3 by

separation via a mapping a satisfying the condition (S) of Sect. 4. Then 3 can be restored

from 3' by contact via an improper placement 6 of 31. Infacty if n and p are chosen as in

Rngp
condition (S), we may take 6 to be 6 := K

3'

Proof: Let 3' be the body obtained from 3' by contact via 5 := K . It follows from

Prop. 1 of Sect. 5 that the mapping 6 described by (5.4) and (5.5) satisfies 6

3'
Rngtf

= S when
3'

31 is considered as a subset of 3'. Since Rng 6 = Rng p, it follows that 6 agrees with K on

3' and that K~ O 6 : 3' -» 3 is an invertible mapping that can be used to identify 3'

with 3. m

Theorem 2: Let the continuous body 3} with placement class PI r(^), be obtained from 3 by

contact via a given improper placement 6 of 3. Then 3 can be restored from 3 by separation

via a mapping a satisfying the condition (S) of Sect. 4 relative to 3. Infact} we may take a to

be any placement of 3 (regarded as a subset of 3).

Proofc As in the previous proof, we have S
Rng 6

3
= 6. Put p := 6 o a~. Then

a = p o 6= p o
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which shows that the condition (S) is satisfied for 3 because (4.1) holds when K there is

replaced by Sel?l^3). Observing (4.7) with 3f replaced by 3, we see that ¥la(3) =

Pl(^), i.e. that 3, as obtained by separation from 3 via a, retains the original placement

class. H

If 3' is obtained from 3 by separation, then 3' may be a proper subset of 3, i.e.

some fo the material points of 3 may "disappear". If 3 is obtained from 3 by contact, then

3 may be a proper subset of J&, i.e. some of the material points of 3 have been "created" (by

means of filters). However, the system Q^ of parts of 3 does maintain its identity after

separation and contact in the sense described by he following result:

Theorem 3: Assume that the continuous bodies 3' and 3 are obtained from 3 by separation

and contact, respectively. Then the mappings

9 H (&n3') : Q^ -* Qa, (6.1)

and

{9 H Int

are order-isomorphisms with respect to inclusion and hence . material-system-isomorphismt.

Many familiar alterations involving continuous bodies can be described mathematically as

the result of a separation followed by a simultaneous contact. An example is sliding, as illustrated
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in Figure L

separation contact

* I i

Figure 1.

If a separation followed by a contact leads to a body having the same set of material points as the

original body, but perhaps a different placement class, we say that the resulting body is obtained

form the original one by reformation.

To describe reformations more explicitly, we consider a class Rf of mappings obtained

from the class Tp as follows:

Let p,p' 6 Tp be given such that

(i) Dom p = Dom p',

(ii) Icr p, Icr p' e Fr,

(iii) the mapping

P := p' o p'*~ : Rng p -4 Rng p' (6.3)

has an invertible continuous extension

£ : CloRngp -• CloRngp'. (6.4)
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If the conditions (i) and (ii) are satisfied, it is easily seen that /^( Icr p) = Icr p' and that

(6.5)
Icr p

is a homeomorphism from Icr p to Icr p'. We denote the class of all mappings a obtained in

the manner described by (6.3) — (6.5) by Rf and call its members reformings. It is clear that

Tp c Tp c Rf.

Theorem 4: Assume that a placement class Pl'(cS?) is obtained from the original placement class

Pl(^) by a reformation, ie. a separation followed by a contact that preserves the set 3. Then, for

every K 6 Pl(^), there is a <r e Rf such that Dom a = Rng K and

= {A o a o K | A € Tp, Dom A = Rng a}. (6.6)

Remark 1: Even though a reforming is a homeomorphism, it need only be "piecewise" of class C2.

Figure 2 illustrates a situation where the gradient of a reforming has a jump—discontinuity along

a plane surface.

A

Figure 2.
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Even if a reforming is a C2—diffeomorphism, it need not belong to Tp. An example can be read

off from Fig. 2 of Sect. 5 when a is obtained from p and p' as described by (6.3)-(6.5). D

Reformings can serve to describe the underlying geometry of acceleration waves, shock

waves, phase boundaries, etc.
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