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Abstract
String-like static solutions of the Einstein-matter-gauge equations have in-

teresting implications in cosmology. It has been shown recently that, at a
critical coupling phase, this system of equations allows a reduction into a cou-
pled Einstein-Bogomornyi system. In this paper, we prove that, in the impor-
tant case where the underlying two-dimensional Riemannian manifold is either
compact or asymptotically Euclidean, the two systems are actually equivalent.
Moreover, we show that the standard assumption that the strings reside in a
conformally Euclidean surface will give us a metric which fails to be asymp-
totically Euclidean. In particular, in the radially symmetric case, we establish
under the finite energy condition the boundary behavior of the metric. These
results may indicate that a string solution will inevitably lead to nonflatness of
the space at infinity even on the cross section.

AMS subject classifications (1991): 58G03, 83F05, 81T20.

1 Introduction

It is well-known that an important role played by the string-like solutions of the
Einstein-matter-gauge (EMG) equations is that these solutions may provide an un-
even distribution of magnetic excitation and matter, and hence, are seeds for galaxy
formation in the early phase transition stages of the universe [8],[20]. However, the
EMG equations are difficult to solve exactly and only plausible argument and nu-
merical simulations about their properties axe available in the literature. The new
light came when Linet [9],[10] and Comtet and Gibbons [4] showed that, at a critical
phase called the BogomoPnyi coupling, the second-order EMG equations allow a re-
duction into a mixed second- and first-order Einstein-BogomoPnyi (EB) equations.
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Namely, the solutions of the EB equations also solve the EMG equations. Further-
more, Comtet and Gibbons [4] proved that the EB system can be put into a scalar
elliptic equation in R2 with an interesting superimposed critical nonlinearity. In [17]
Spruck and the author have succeeded in using a special shooting method [16] to
rigorously construct for the first time a continuous family of string solutions of finite
energies. An interesting question arises: Are the solutions of EMG equations always
the solutions of the EB equations? The purpose of the present paper is to give an
affirmative answer to the above question in two physically important cases. More
precisely, we shall show that the EMG and EB systems are actually equivalent if the
underlying two-dimensional Riemannian manifold in which the strings reside is either
compact or asymptotically Euclidean. Such equivalence problem has a rich history
in classical field theories. When the gauge group G is nonabelian, the answer is in
general negative [2],[19],[15],[13]. On the other hand, when G = C/(l), the work of
Taubes [18] (see also [7]) established the equivalence of the full equations of motion
of the abelian Higgs model and the reduced first-order Bogomol'nyi system in R2.
However, when R2 is replaced by a curved two-manifold M which is usually assumed
to be compact [11],[1],[5] or asymptotically Euclidean [21], the equivalence is still an
open question. The main difficulty is due to the lack of a suitable Pohazaev type
identity for finite energy solutions on M.

In this paper we show the equivalence of the full EMG equations and the EB
equations on M using the method of [18],[7]. The presence of the Einstein equations
and the form of the string solutions determine the structure of the energy-momentum
tensor of the theory (in the matter-gauge sector) which in turn gives us something
like a pointwise version of the Pohazaev identity. This feature plays a key role in our
proof of the equivalence.

We then study the behavior of the solutions of the EB system at infinity with
the standard assumption of the underlying Riemannian manifold being conformally
R2. It is proved that in this case a finite-energy1 string solution cannot yield an
asymptotically Euclidean metric. Thus the equivalence theorem of the paper says
that strings cannot live in a surface that is both conformally and asymptotically
Euclidean.

An outline of the contents of the paper is as follows. In Section 2 we state our
problem and the equivalence theorem. In Section 3 we present some preliminary
results. In Section 4 we finish the proof of the theorem. In Section 5, we study the
boundary behavior of a finite-energy solution of the EB system. In particular, we will

*By this we always mean finite energy per unit length of a string as usual.



consider a solution with radial symmetry. We show that a solution of this type leads

to a metric vanishing at infinity in a suitable sense.

2 The Equivalence Theorem

Let r\av be the metric tensor of a four-dimensional Minkowskian spacetime, Rul/

the Ricci tensor, and R the scalar curvature. Then the Einstein tensor takes the form

The standard U{\) matter-gauge Lagrangian in the Bogomol'nyi coupling is de-

fined in the expression

C = i iT' iT^F,. , + iiT(DM*)(A,*r + \W -1)2'

where <j> is a complex scalar matter field, Du<j> = d^ — iAu</> is the gauge-covariant
derivative, Au is a gauge vector field, and F^ = d^Av — d^A^ is the electromagnetic
field.

The Euler-Lagrange equations of the action

are the coupled EMG equations

uv — •* ut/ ?
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where

is the energy-momentum tensor of the matter-gauge sector.
We assume from now on the string ansatz that

d52 =

= -d*2 + dz2 + gjkdxidxk, j , k = 1,2,



where g = (gjk) is the metric tensor of a two-dimensional Riemannian manifold M,
and that A^, <f> depend only on the coordinates on M and

A,> = (0,0, AUA2).

Then TMI/ verifies

Tu = %G> T" = ~

Tjk = tfvFj

where

%G = l^'9kk'FikFilk, + i^(IP^)(I>^)* + i(M2 - I)2

is the energy density of the matter-gauge sector. Besides, if we use Kg to denote the
Gaussian curvature of the two-manifold (M,<j), the Einstein tensor is simplified to

Gti = —GZZ = Kg,

G^ = 0 for other values of //, v.

As a consequence, the string version of the EMG equations become

-Lfl

The unknown is the metric-matter-gauge triplet (5, <£, A). Denote by Vj the covariant
derivative with respect to the metric g and J* the current vector

Then, in terms of the skew-symmetric Levi-Civita tensor Cjk with ei2 = y/g, we have

%G = i^'a"' (F* ± !*;*(M2 - ! ) ) (Fi'*' ± \^M\<f>\2 -1))

+ ^ ' * ( A ^ ± '^Dy<i>){Dk<t> ± iek
k'Dk,<f>Y



This decomposition enables Comtet and Gibbons [4] to show that (2.1) can be reduced

to the following EB system

^ j = 0,

Dj<j>±iek
jDk<f> = 0, x e M (2.3)

Namely, any solution of (2.3) is a solution of (2.1). We shall prove the converse: Finite
energy solutions of (2.1) also verify (2.3) provided that (M,p) is either compact or
asymptotically Euclidean [14],[3],[12].

DEFINITION. The Riemannian manifold (M, <j) is said asymptotically Euclidean if
there is a compact set K C M such that M—K is the disjoint union of a finite number
of subsets Afi,...,Mm, called the ends of Af, each diffeomorphic to the complement
of a contractable compact set in R2. Under this difFeomorphism the metric tensor of
Mi C M takes the form

gjk = fijk +

in the standard coordinates (xJ) on R2 and

hjk{x) —• 0 as r = \x\ —• oo.

It is often convenient to identify the end Mi C M (£ = 1, ...,m) with the corre-
sponding set in R2.

We now state

Theorem 2.1. In the category of finite-energy field configuration triplets (g^<f>^A)

for which (M,g) defines either a compact or asymptotically Euclidean Riemannian

manifold, the systems (2A) and (2.8) are equivalent.

The proof of the theorem will be carried out in the following two sections.

3 Preliminary Results

In this section we use the notation of Section 2. Assume that (5, ̂ , A) is a finite-
energy solution of the EMG equations (2.1) so that the Riemannian manifold (M,g)
is either compact or asymptotically Euclidean.



Lemma 3.1. On M, either \<f>\ = 1 or\<f>\<l.

Proof. Let A denote the (negative) Laplace-Beltrami operator

An = lFdj{y/gg?kdku), u € C\M)

induced from g. Then (2.1) gives us

A(M2 - 1) = 2gik{Dj<f>){Dk<l>y + \4\\\+\* - 1)
(3.1)

> \<f>\*(\<f>\> - 1 ) , x e M.

If M is compact, then the maximum principle and the above elliptic inequality imply

that \<l>(x)\2 < 1 for all x € M.

We next assume that (M,g) is asymptotically Euclidean. In order to simplify the

notation, let us prove the lemma assuming that M has only one end, say Mo, which is

identified with the complement of a contractable compact set in R2. Hence, if r0 > 0

is sufficiently large, then

R2 - Bro C Mo,

where

Bro = {x € R2 | |*| < r 0 } .

Let M - Mo = K. Set

ftr = K U (Br n Mo), r > r0.

Define a function rj € Co°(R) with the properties

1, |*| < r0,

0, \s\ > 2r0,

and 0 < T) < 1. Since
M = n r o U ( R 2 - B r o ) ,

we can define a function r)T € CQ>{M) (r > ro) by putting

i, x € nro,

Let %l> G Wj'2(ft) where fi is a bounded open subset of M. Then we have

^ = 0. (3.2)



For r>r0 define t/v € WiJt2(fl2r) by

where 6+ = max{0,6}. Let

n+ = {x e n, | |*(*)| > i}.

Define / = */|*| on M+. Then / /* = 1 and on ft£

îVv = WtfrXI*! - 1)/ + mm + [1*1 - l)Dif)Vr.

Replacing V> in (3.2) by Vv> we have

(3.3)

r} = 0.

From (|*| — 1) < (|*|2 — 1) (on £l£r)
 an<i t^e Schwarz inequality, we obtain

(3.4)

However, using the simple inequalities

where C > 0 is a constant independent of r > ro, we get

L (^*«i«?rft|*|)9 x/?dx < d § /V*Pi*)(P**)* V^dx. (3.5)

Inserting (3.4) into (3.3) and using (3.5) we obtain

4\ + (1*1 - i)|*|^fc(A/)(^/r + \{\4\ - i

Letting r —• oo we find vol(M+) = 0. Hence the bound |^| < 1 again follows.
Finally, applying the strong maximum principle (or the Hopf theorem, see [6]) to

(3.1) in view of |<£| < 1, we see that either |<£| = 1 or |<£| < 1 on M. D



Lemma 3.2. On M, either e>kFjk + (\<f>\2 - 1) = 0 or ejkFjk + (|<£|2 - 1) < 0.

Proof. The last equation in (2.1) can be rewritten as

dj^Fyv) + itjj>gj>k\<f>[Dk,<f>}' - <P[D,,4>]) = 0. (3.6)

Therefore

^{y/g^d^'F^]) + J-diiy/g^iD^Y - <f>\Dk<t>)]) = 0.

Thus
A(e*i^) - \<t>\2{ejkFjk) + 2ie*(Dj<t>)(Dk<t>y = 0. (3.7)

From (3.1) and (3.7) we obtain

- 1]) = \t\\JkFik + [\4>\2 - 1])

i' (3-8)

Hence if M is compact, we can use the maximum principle in (3.8) to conclude

Suppose now (M, g) is asymptotically Euclidean. Use the notation in the proof of
Lemma 3.1. Then from (3.8), for any u € Wo

ll2(ft), we have

- 1]) + u|*| V**i*

k(Dj<f> + ief D ^ X D ^ + «*»•} (3-9)

= 0.

Since (M,g) is asymptotically Euclidean, we have by virtue of Lemma 3.1 and
(3.6) the estimate

rW'X'Fj,* + [|<̂ |2 - l ] ) * ^ * " ^ * - + [|̂ |2 - 1])}

PFpFf* + (\<t>\2 - l)
(3.10)
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where

ftj. ={xe ft2r | JkFjk + (\<t>\2 - 1 ) > o}.

Introduce as before the trial function u r € Wo*(fl2r) denned by

Then, replacing u in (3.9) by u r and using (3.10), we have

h{gikdiUdkU + |<£|2tf 2 + Ugik{Dj<t> + i^D^D^ + iek
k'Dk,<t>)*}

- Cl T L
(3-11)

However, each term on the left-hand side of (3.11) is non-negative, thus letting r —• oo

we find M+ = 0. Consequently there again holds as in the compact case U =

By virtue of the strong maximum principle and the inequality (3.8), we see that

either U = 0 or U < 0 on M. •

L e m m a 3.3. On M, either e>kFjk - (|<£|2 - 1) = 0 or e>kFjk - (|<£|2 - 1) > 0.

Proof. From (3.1), (3.7), and a straightforward calculation, we get the following dual

version of (3.8):

" 1]) = M V f c i ^ " IM2 ~ 1])

-j\Dj<l> - iJ-DyfliDki - ieZDvW (3.12)

- 1]).

Thus we can duplicate the proof of Lemma 3.2 in (3.12) to obtain the desired conclu-

sions. •

4 Proof of Equivalence

Let (<?,<£, A) be a finite-energy solution of the EMG equations (2.1) discussed in

Section 3. We shall show that it also solves the EB equations (2.3).



In fact, a lengthy calculation gives us

(ejkFjk + [\<f>\2 - l ] ) ( c * v F i W - [\<f>\2 - 1]) = 4gjkTjk = 0 in M.

Therefore for any fixed p € M , either

Jk -l))P = 0 (4.1)

or
(e*Fjk-[\tf-l))p = 0. (4.2)

If (4.1) holds, then Lemma 3.2 says that it must be true for all p € M; while,
if (4.2) holds, then Lemma 3.3 says that it must be true for all p € M. Hence we
conclude that either (4.1) or (4.2) holds for all p G M. Now we recall (3.8) and (3.12).
It is seen that, correspondingly, either

or
Dj<f> - \t)Dk<t> = 0.

As a consequence, the Bogomol'nyi sector in the EB equations (2.3) is recovered.
From this fact and the expression of Sy^Q given in (2.2), we immediately see that the
first equation in (2.3) also holds.

The proof of the theorem is complete.

5 Nonexistence of Conformally and Asymptoti-
cally Euclidean Metric

In [17], we have constructed a class of cosmic string solutions of (2.3) (or (2.1)) so
that the string metric defines a surface which curls up at infinity with the Gaussian
curvature assuming a nontrivial value there. A natural question then arises: Is there
a solution realizing a string metric which yields an asymptotically Euclidean surface?
The answer to this question is negative under a further standard assumption of the
surface being globally conformally Euclidean. Namely, we shall show that the EMG
equations (2.1) do not allow a finite-energy cosmic string solution triplet (</, <£, A) so
that (M,g) is both conformally and asymptotically Euclidean. This fact seems to be
striking. The result is stated as follows.
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Theorem 5.1. Let (#,<£, A) be a finite-energy cosmic string solution of (2.3) so that

(M,<j) = (R2,ec6jfc). Besides, assume that there hold the usual uniformity properties

at infinity:

#,<(*)- • 0 and djdkCix)-**} /orj,jfc = l ,2 as \x\ -> oo. (5.1)

Then g cannot be asymptotically Euclidean. More precisely, one or both of the fol-
lowing cases must occur:

limsupC(x) = oo, (5.2)

liminf C(x) = —oo. (5.3)

Proof. Suppose that the strings are located at pi,...,j>m € R2 with local winding

numbers ni > 1, ...,nm > 1 and N = rti H h nm > 0 be the total string number.

Then it is well-known that u = In |<£|2 and ( satisfy the elliptic equations

Au = e < ( e « - l ) ] ^ ,
tel x £ R2. (5.4)

, AC = J ( e C [ e « - l ] - A e « ) ,

Assume otherwise that ( does not verify (5.2) and (5.3). Then the range of £ lies

in a compact interval of R. Using this fact, the condition (5.1), and a specialization

of the proofs in [21], we can show that u = 0 at infinity (or equivalently |<£|2 = 1 at

infinity).

Set

and u = uo + v. Then (5.4) become

Av = e^e"04* - 1),
x € R2. (5.5)

AC = } ( e c [ + ] ^

Inserting the first equation of (5.5) into the second one, we arrive at

O inR2.^ + T
4 4

Put

4 4
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Then V is harmonic in the entire R2 and

i m _ U m

->oo In | x | |*|-*oo In \x\

N .

= y>0-
In particular, V(x) —» oo as |x| —> oo. However, by the maximum principle, there

does not exist such a harmonic function on R2. D

We next show that the property (5.3) is most likely to happen in reality.

Theorem 5,2* Let (g,<f>,A) be a finite-energy radially symmetric solution of (2.3)

so that the N > 0 strings are all superimposed at the origin and (£, u) is a solution of

(5.4) depending only on the variable r = |x|,x € R2. Then there is a sequence {rn}

(n = 1,2,...) so that rn —* 00 as n —• 00 and

Urn C(rn) = - 0 0 . (5.6)

Proof* First we note that the proof of Lemma 3.1 can be used to show that u =

In \<f>\2 < 0 (namely |<£| < 1) everywhere. From (5.4) and £ £ 1 n^pi = N6(x), we see

that u(r) is a solution of the equation

urr + i u r = ec(e* - 1), r > 0 (5.7)

satisfying the boundary condition

lim ru r(r) = lim ̂  = 27V. (5.8)
r— 0 V ' r-+0 I n r '

Using (5.7)-(5.8), we obtain

rur(r) = 2N + f pe^(eu^ - 1) dp, r > 0. (5.9)
Jo

We have two possibilities to study.

Case 1. There is an r0 > 0 so that Ur(ro) = 0.

It is easily seen that such an ro is unique. In fact since rur (r)—2N is nonincreasing

by (5.9), if there is an ri > ro to make u r(ri) = 0, then

I'1 pe«p\euW-l)dp = 0.
Jro

As a consequence, u(r) = 0 for r € (ro , r i) . The uniqueness theorem of the initial

value problem of ordinary differential equations says that u(r) = 0 for all r > 0,

contradicting (5.8).

12



Thus rur{r) < 0 for r > r0. However, rur(r) is monotone decreasing (see (5.9)),

therefore setting rt > r0 and e = —ritxr(rx) > 0, we have

rur(r) < — e r > rv,

or
tx(r) < u(rx) - eln —,

In particular, u(r) —• —oo as r —» oo.
On the other hand, the finite energy condition implies the convergence of the

integral
/ ( )

Jo
Thus the conclusion of the theorem follows.

Case 2. For any r > 0, we have ur(r) > 0.
Hence there is a constant a < 0 so that

Hmu(r) = a. (5.10)

Suppose otherwise that
inf ((r) > -oo . (5.11)

Since (C>u) is a solution pair of the equations (5.4), we see that the argument in the
proof of Theorem 5.1 applies. In other words, (5.10)—(5.11) will imply that

T7 ^ 1 N. . . 1 uV = C-4tx + yln|*| + -e*

is harmonic in the entire R2 but V —» ex) as |x| —> oo. This is false. So (5.6) must
hold for some sequence {rn} as stated in the theorem. D

Remark 5.1. Combining Theorems 2.1 and 5.1, we conclude that an asymptot-
ically Euclidean metric might only be obtained from a cosmic string solution on a
Riemannian manifold which is not globally conformally Euclidean.

Remark 5.2. In [17], Spruck and the author have constructed a family of radially
symmetric string solutions of the EB system (2.3) so that the surface has a nonvan-
ishing curvature at infinity (hence non-asymptotically Euclidean) and is characterized
by the property

lim C(r) = -oo . (5.12)
r—>-oo v ' v '

Theorem 5.2 says that, in the category of radially symmetric solutions, our solutions
are probably the only finite-energy solutions that one can expect to get. In other
words, the boundary condition (5.12) is "almost" the best possible condition one may
impose at infinity. This fact should have interesting implications in physics.
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