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Abstract: Let / : ft x RN x RNxN —> [0, oo) be a Borel measurable function such that
/(x, u, •) is polyconvex in the last variable f for almost every x £ ft and for every u € Rv.
It is shown that if / is continuous and F(u) := /n /(x,u(x),Vu{x))dx, u € VF^ft^R*),
then F is weakly lower semicontinuous in WltP, p > N — 1, in the sense that F(xt) <
lim jtof^ti, ,) for u^u € Wx'N(ft,RN) such that u» — u in Wl*. On the contrary if /
is only a Caratheodory function then in general F is not weakly lower semicontinuous in
Wl* for N > p > N - 1. Precisely, it is shown that if F(u) := fK \det(Vu(x))\dx where
if is a compact set, then F is weakly lower semicontinuous in WltP, N > p > N — 1 if
and only if mea$(dK) = 0.
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1 Introduction.

Let N > 2 be an integer number, ft C RN be an open bounded set and let / : ft x HN x
RNxN —• [0, oo) be a Borel measurable function. We set

F(u) := / R / ( X , U ( X ) , Vu(z))dz, « € W^(ft,RN) := Wl*.

If one uses the direct method of the calculus of variations to obtain existence of minimum
for F, one needs to show that F is weakly lower semicontinuous in Wl%v. Since Morrey's
works ([Mol], [Mo2]) and later Acerbi-Fusco ([AF]), Marcellini ([Ma2]) and others, it is
well known that if 1 < p < oo and if

0 < / ( x , u , O < a + *>lfP\ V(x,u,0€ ft xRN xRNxN (1)

then F is weakly lower semicontinuous in Wl*p if only if / is quasiconvex with respect to
the last variable £. We recall that / is said to be quasiconvex if it verifies the following
Jensen's inequality

-- /
Si JQ

Vu(x))dx >

for almost every xo € ft, for every (uo,£o) € RNxRN x N and for every it € W0
1|OO(0,RN). As

it is very hard to check whether or not a given function is quasiconvex, following Morrey's
work Ball introduced the notion of polyconvex function which is a sufficient condition for
quasiconvexity. A function /(xo ,uo , •) is said to be polyconvex if /(xo ,uo ,-) is a convex
function of all minors of the matrix f. (See Definitions 1.2 and see [Da] for more details
about poly convexity and quasiconvexity). We recall that quasiconvexity does not imply
weakly lower semicontinuous of F in Wl%r> if the growth condition (1) fails. An example
due to Tartar, is given in [BM]. Recently Dacorogna and Marcellini in [DM] proved that
if / (x ,u , f ) = /(£) > 0 is polyconvex, with no particular growth condition, then

for uv,u £ W ^ f t ^ * ) such that uu — tx in W1* provided p > N - 1. Actually in [DM]
the most interesting case to study is N — 1 < p < N. The case p > N is easily proved.
Indeed, using the convexity of / in the last variable ( we can approximate / by a non
decreasing sequence of smooth functions fj such that

(see Lemma 2.3). Then we apply Proposition 1.3 to /j(x,u,£) for j fixed and when j goes
to infinity we obtain

F(u) < lim inf F(uy).



In the case where p < TV — 1 we cannot expect weak lower semi continuity of F. In fact,
Maly proved in [Mai] that for each p < TV — 1 there is a sequence

-»u in

verifying
lim inf / \det{Vun(x))\dx < I |dei(Vu(x))|<fx, u{x) = x.

In this paper we study the general case where / is a non negative function polyconvex in
the last variable and

We prove that if / is continuous in ft x RN x RNxN then F is weakly lower semi continuous
in W lfP, TV — 1 < p < TV in the sense that

Flu) < Urn inf F ( u A

for u,,,!* € iya 'N(ft,RN) and uy — u in W1*. This generalizes [DM] result to include the
case where / depends on (x,u). Continuity is a necessary condition. Indeed if / is not
continuous but is simply Caratheodory function then in general F is not weakly lower
semicontinuous on W1>p, TV — 1 < p < N. To illustrate this, we show that if K is a
compact subset of ft and TV — 1 < p < TV then

meas{dl<) ^ 0

if and only if

K m j b f ^ \det{Vun{x))\dx < J \det(Vu{x))\dx,

for a suitable u^u € iy1 'N(ft,RN) such that uy — tx in

We give some definitions relevant for this work.

Definition 1.1 Let TV, M > 1 be two integer numbers, ft C RM an open set. A function
f : ft x RN x RNxM — • R t5 said to be a Caratheodory function t//(-,ix,V0 is

measurable for every (tt,V0 € RN x RNxM and /(x,-,-) is continuous for almost every
x € ft.

Definition 1.2 (See [Da] ; .
Let f : HNxM —• R be a Borel measurable function defined on the set of the N x M real
matrices.

• f is said to be convex iff(H+{l-X)r]) < A/({)+(l-A)/(if) for every ^ e RVxM

and every A € (0,1) .



• f is said to be polyconvex if there exists a function h : RTlN*M) —• R convex such

that f(() = h(T(tj) for every te*NxM,wher* T(N, M) = ZI^^SM) ( f ) ( * ) .

T(£) = {pdjity • • •, ad/min(Ar ,Af ) £ ) fl^rf <*4?«£ stands for the m a t r i x of all s x s m i n o r s of£.

When N = M = 2then T(() =

• / i s said to be quasiconvex if p fa f(£ + W ) > /(£) /or every £ 6 RAxM, /or

every Q CRN open bounded set and for every <f> € W<Jf0° (ft) , (" it is equivalent to assume
the previous inequality for one fixed open bounded ft C R^ )•

For completeness we state some well known results.

Proposition 1.3 Let N,M > 2 be two integer numbers, $1 C RN an open bounded set
and f : ft x RM x RNxM —• R a continuous function such that /(x,ti,-) is quasiconvex
for each (x,u) 6 fi x R^. Assume further more that f satisfies for 1 < q < p < oc

-o(|u|« + \t\') - f{x) < /(x,ii,0 < a(|u|' + |^|p) + 7(«)

where a > 0, 7 € L1

«;/icrc 9̂ > 0 and

where v is a continuous increasing function with i/(0) = 0. Let

F(u) := Jj(xM*),T(Vu(x)))dx, u € W1*

F is weakly lower semicontinuous in WltP.

Proof: For the proof we refer the reader to Theorem 2.4 in [Da].

Lemma 1.4 Let <f> : R —> R 6c a bounded lipschitz function. Let fi C RA' be an open
bounded set and V € C£°(fl,RT). VP > N ~ 1^ */«v ,« € W ^ n . R * ) and »/«„ — u in
Wl* then

lim

Moreover the results stands for p = N — 1, JV = 2. //ere < ; > ts Me 5ca/ar product in
fN\2

R T ( I

Proof: Lemma 1.4 is obtained as a slight modification of the proof of Lemma 1 in [DM].
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2 The case of continuous integrands*

Let us first state the main result of this section.

Theorem 2.1 Let N > 2 be an integer number, ft C RN an open bounded set, r(N) =

( A/A2

] . Let / : fi x RN x Rr(N) —> [0, oo) 6c a continuous function such that

/(x,tx,-) is convex for each (x,u) g f i x HN. Let

F(u) := / f{x,u(x),T(Vu{x)))dx, u € Wl*(Sl,RN) := Wl*.

Then,

F(u) ^limJm^FK), (2)ifu^u e WlJ*(fl,RN) and uv — u in W1*, p > N - 1. Moreover , if N = 2 ffte re^
ts true even ifp = ^ — 1 = 1.

We recall that T(Vtx) stands for the matrix of all minors of Vu.

Remark 2.2
1.- The case p > N is well known. Indeed, as / is convex in the last variable £, using
Lemma 2.3 we can approximate / by a non decreasing sequence of smooth functions fj
such that

os/ifou.oscifouxi+ier).
Then we apply Proposition 1.3 to fj(x^u^) for j fixed and when j goes to infinity we
obtain

Flu) <l im inf FfuA

In the general case (2) would be obvious if we knew that T(Vuu) —* T(Vu) Ll. However
this is not necessarily true. In [DM] there is an example where u» —* u in WltP, N > p >
N - 1 and JXVu,,) y- T{Vu)Ll (cf abo [BM]). For instance if JV = 2, ft = (0,1)2,1 <

tx,, = iz—^l -ynsini /x ,cos i /x) — (0,0) in Wl*.

Then ^ ( V u ^ ) = —i/*(l — y)21'"1 is not bounded in Ll if p < 2, and so it does not
converge in L1 weak to det(Vu) = 0, even if p = 2.

2.- The assumption that u^u € W l fN is important. It can be useful to extend the
definition of F(u) to functions u € W ^ p < JV (cf [Mai]). Also Theorem 2.1 is false if
one omits this assumption (cf [BM]).



3.- If 1 < p < iV - 1, and N > 3, then F is not necessarily weakly lower semicon-
tinuous (cf [Mai]). But if p = JV — l,iV > 3, the question to know whether or not
F is weakly lower semicontinuous is still open. However MaJy proved in [Mai] that if
u,uv € WlfN~* are sense preserving diffeomorphisms such that u» —* tx in W1^"1, then
F(u) < lim inf Ffa).

4.- The basic idea to prove Theorem 2.1 is the following: in the first step, we write /
as a sum of functions in form a(u)g(xy T(Vu)), with <j(z, •) > 0 being convex. This can be
done using Weierstrass's Approximation Theorem (see Lemma 2.4). In the second step,
changing variables we write a(u)p(x,T(Vu)) on form h = h(xyT(Vv)). Then, following
the idea of Dacorogna and Marcellini in [Da-Ma] who studied integrands of the form
h = h(T(Vv)), we conclude the theorem.

Lemma 2.3 ( De Giorgi's Lemma. )
Let N, T > 1 be two integer numbers, fi C R^ be an open bounded set, and g : £2 x RT —>
[0,oo) be a continuous function such that g{x,-) is convex for each x € Cl. There exists a
non decreseasing sequence of functions (gk) of class C°° such that:
i)9k>-l]
ii) gk converge uniformly to g in every compact subset of ft x RT;
Hi) gk is convex in the variable T\

v) Drgk(^'iT) is uniformly bounded in k in every compact subset of ft x RT by a constant

which does not depend on x, where Djgk = ( arT̂ î *" • * afvP*) •

Proof: For the proof we refer the reader to [Ma2].

Lemma 2,4 ( Weierstrass's Approximation Theorem )
Let f : [0,1] —• R be acontinuous function. Then,

and the convergence is uniform.

Proof: For the proof we refer the reader to [Kl].

Remark 2.5

non1.- If / is non negative, then the sequence gn(u) = Y^p<k<n ( L I /(^)wfc(l - u)n~k is

decreasing.
2.- One can deduce from Weierstrass's Approximation Theorem that for h > 0. a real



number, N an integer number and / : [— h,h]N —> [0,oo) a continuous function, there
exists a sequence (/n)n of non negative functions of class C°°(RN) such that

/-"at A
kszO

i = 1,2,

Proof of Theorem 2.1 We give the proof of Theorem 2.1 only in the case where
N > p > N — 1 since the case p > N is well known (see Remark 2.2). In the first step of
the proof, we truncate the functions (u,,),, and u to get a new sequence which is uniformly
bounded in L°°. Then we write f as a sum of functions of the form a(u)p(x, JT(VU)), where
9(xr) > 0 a r e convex. In the second step we study the particular case where f has the
form a(u)g(x,T(Vu)). In the last step we study the general case where f satisfies the
hypotheses of Theorem 2.1.

First step.
a) Fix h > 0 and 6(h) « 1. Truncate u and uv by considering ^(u), where <j> is given by

and t/> G C°°(R,R) is defined in the following way

{ -h si f < -ft - 6(h)
t if \t\ < h
h if t> h + 6(h),

0 < rl>'{t) < 1 for every t € R and xf>'(t) = 0 if and only if |t| > h + 6(h).

b) By Lemma 2.4 and Remark 2.5 we get

n

n—*oo,u,T) = Urn S X t O / ^ T ) V(«, u,r) 6 f lx [-2A,2*]W x RT, (4)

with

and
a;€C°°(R,R), a}>0 , i =



Using explicitly Weierstrass's Approximation formula it is easy to see that fj(x*£) is in
the form bj / (x , ̂ , (). Therefore /j(x, •) is convex in Rr for every j = 1,2, • • •.

Second step. We show that for all j

Um^/^^W^K^Cx^CVK))) > J^aj(u)<f>\u)fj{x,T(V(u))). (5)

- If lim^inf/ aj(u i /)^(u i /)/ j(x,r(V(u i /))) = oo then (5) is trivial.

- Assume that lim inf / ai(tX|/)^'(u1/)/j(x,r(V(ul/))) < oo. By Lemma 2.3 we can ap-
proximate fj by a sequence of non decreasing functions (/*)* which converge uniformly
to fj in every compact set of fi x RT and such that {fj)k verifies all properties given in
Lemma 2.3. Without loss of generality we may assume that fj verifies

/i€C~(ftxir,[(>,oo)),

fj{xr) is convex,

/j(x,') = 0 if dist(x,d£l) < — for a suitable k ,

Drfj{x,T) is uniformly bounded in every compact set of Q x RT independly on T. (6)

We can also assume that it € C°°(ft,RN). If this wasn't the case then it would suffice to
replace u by ut € C°°(ft,RN) such that \\uc — u||vyi.* < £ following the proof with the
suitable modifications.The convexity of fj implies that

Urn inf / C j ^ j /

> lim inf / o i (« l ( ) /

+ Urn inf / ajM+'M < DrfsfaTiVtuWiTWu,)) - T(V(u)) >

+ limmlJ^iuM'M < W,r(%)));r(VK)) - T(V(ti)) >,

where we used Fatou's Lemma and the fact that

) —> aj{u)<f> (u) a.e.

For T € RT, we set T = ( f , t ) , t € R. For fixed i 6 fi , let Df/j(x,-) denote the matrix
of the partial derivatives of fj(xy') with respect to the r — 1 first variables in RT. Let #
be the functional defined on 0, x RN x RNxN by

));f (0 -



It is easy to see that H and — H are quasiconvex in the last variable. Using the fact that
u € C°°(ft,RN), (6) and the fact that \4>(uy)\ < 1, we get that H and -H verify the
assumptions of Proposition 1.3. We deduce that

lim inf / ajMt'M < Cf/j(i,r(V(«)));f(VW) - f(V(«)) >= 0. (7)

On the other hand setting

vl . AJ(iKtii)), v* = A}(tf(u')), where Aj(t) = / ' ^ a} o r l(*)&,

then we obtain
t;1 a.e.,

and

By Lemma 1.4 we obtain

lim jj^jf/(*,«.

> lim inf̂  / (E«iK)^(u1,)/i(x,r(VK

jasO

When n goes to infinity, Lebesgue's Monotone Theorem and (4) give

limjjn^ jf/(^ii^rCVu^)) >Jj'(u)f(x,u,T(V(u))).

Letting h go to infinity in the previous inequality we obtain (2).

= Km m^ ĵf iffaTViuHfaWM) - det(V(v)))

) - o^tt)*'^)) ̂ / ,(x, rv(«))«to(V(ti)) j = o

which together with (7), yields (5).

Third step.
Let n € N be fixed. By (4), (5) and the definition of \j> we deduce that



3 The case of Caratheodory integrands.

We state the main result of this section.

Theorem 3.1 Let N > 2 be an integer number, N -1 < p < N, ft C RN and open
bounded set, and K C ft a compact set. The two following assertions are equivalent:

meas{dK) ^ 0, (8)

limninf/ \det(Vun(x))\dx < j \det{Vu{x))\dx (9)

for a suitable u^u € Wa 'N(ft,RN) such that uv — u in

Before proving Theorem 3.1 we begin with some remarks.

Remark 3.2
Let us recall that if F(u) = fK \det(Vu(x))\dx and K is a compact set then, for p > A\
F is weakly lower semicontinuous on WliP even if meas(dK) ^ 0 (see Proposition 1.3).
For p < N — 1 then F is not weakly lower semicontinuous on W l tP even if rneas{dK) = 0
(see [Mai]).

We state and prove the following lemma that will be used to prove that (8) implies (9).

Lemma 3.3
Let N, r > 2 be two integer numbers, ft C RN an open bounded set and K C ft a
compact set such that meas(dK) > 0. Let p < N be a real number. Then there exists a
sequence uk G W ^ f t , ! * * ) such that

i) Uk->u = id in W1'p(ft,RAr) with id{x) := x,

u) \det(Vuk(x))\ < 1 on K,

Hi) meas{xedK: det(Vuk{x)) ^ 0} < ^- .

Proof: we divide the proof into five steps. We assume without loss of generality that
ft = (0,1)*.
First step. We construct the sequence uk. Let k G N be fixed. Using Vitali's Covering
Theorem we find two sequences (xt*)t C dK, (/?*), C (0, ̂ r) such that

10



meas
/ xr \ ^ meas(dK)
(Nk) < —^+1 '

tacl

for i = l ,

(11)

is an

(12)

where T(k) is a constant depending on k. Now we want to change the centers xf by
other centers which belong to the complementary of K. Using (10), (11), (12) and the
fact that xf € dK, we deduce that there exist an open set Nk and two sequences of G
B(xl ft) \ K, 0 < cf < ft, such that

£(x,/?) stands for the open ball in RN with center x and radius fi and
open set. Since A" is a compact set we have

dKcNk\J[ U *(*?,#)),

dK
A=T(k)

cNk\J[ U B(o?,e?)), (13)

- mea»(dK)) <

Since U \ K is an open set and a* € ) \ K, there exists Sj- > 0 such that

and

We define

(16)

(17)

is easy to see that uk is a diffeomorphism from I?(a*,6*) into £(a*, ef) and u* maps
(a?,e?)\ £(«?,#) into dB(a$,ef).

11



Second step. In this step we show that uk £ . As

and

we have

and since

we conclude that

is continuous on J9(a*,e*),

= x on

Using the definition of u* on ft \ (U't=i ^(a?>c?)) it is obvious that

J9(a?fef)),
f=:l

which together with (18) and (20) yields

(18)

(19)

(20)

(21)

(22)

Third step. We show that, up to a subsequence, tx* —* u = id in W lfP(fl,RN). Using the
definition of n* on $7 we obtain

|ufc(x) - x| < ^ - for every x € ft, (23)

and

€ *(«?,«?

where Is is the identity matrix in RNxN . For a, b € RN, a ® b denote the N x N matrix
with component at-6j and \a\ = yja\ + V a%. Cleary, there exits a constant C = C( Ar)
such that k

12



Thus by (15) and (16) we have

L

where wN = measB(O,1). Recalling that B(af,cf) does not intersect £(a£,e*) for t
and B(ak, cf) C ft = (0, l ) w we conclude that

(24)

Therefore (ujt)* is bounded in WltJ> and by (23) we deduce that, up to a subsequence,

uk^u = id in

Fourth step. We show that \det(Vuk(x))\ < 1 a.e. on A'. Indeed (E) implies that

.=T(fc)

dc*(Vu*(*)) = 1 a.e. x € f t \ ( |J £(a?,e*)). (25)

We know that uk € Cl[B{ak
i,e

k
i) \ B(ak,6k),RN) and

|u*(«) - of | = ek Vx € 5(«f, ef) \ J5(af, 5,fc).

As u* is the identity on dB(a^ cf) we obtain

uk(B(alek) \B(ak,6k)) = a£(a,fc,ef).

Therefore uk is not invertible at any point x € B(ak,ek) \ B(ak,6k). We conclude that

det(Vuk(x)) = 0 a.e. x 6 £(o?f«?) \ B(a?,^fc), (26)

•which, together with (17) and (25) implies that

0 < <fet(Vut(x)) < 1 a.e. x € K. (27)

Fifth step. We claim that meas{x € dK : det(Vuk(x)) ^ 0} < mea^aA">. By (13). (17),
(25) and (26) we have

: det(Vuk(x)) ? 0} C Nk (28)

13



and the result follows now from (14).

Proof of Theorem 3.1.
We prove that (8) implies (9). Assume that meas(dK) ^ 0. By Lemma 3.3 there exists
a sequence uk € W^llN(n,RN) such that:

») t*it — u in W1*(n,RAr), u(x):=x,
it) \det(Vuk(x))\ < 1 a.e on K, (29)

Hi) {xedK: det(Vuk(x))?0}<±;. (30)

(29) and (30) imply that

f \det(Vuk(x))\dx = f \det(Vuk(x))\dx + f \det(Vuk(x))\dx

< p + meas(K \ oK)

and so

lim inf f \det(Vuk(x))\dx < meas(K\dK)
*-*<» JK

< meas{K) = / \det(Vu(x))\dx,

and we conclude (9).

In order to prove that (9) implies (8), we assume that meas(dK) = 0. It is easy to
construct a sequence an € C°(Sl,RN) such that (see [Ga])

) a.e x € ft, (31)
0 < on(x) < an+1(x) < lK(x) a.e x € fl (32)

Let uk,u € H^-^^R^) be such that uk — u W^1>J)(ft,RN). Theorem 2.1 implies that

/ an(x)|<fet(Vu(x))|<fx < Urn inf / an{x)\det(Vuk(x))\dx

< lim inf / \det{Vuk(x))\dx,

for each fixed n. Using (31), (32) and Fatou's Lemma we conclude that .

/ \det(Vu(x))\dx < limmf^J \det(Vuk{x))\dx.

I
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