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1. Introduction Fine scale morphology or microstructure is implicated in the macroscopic

behavior of many materials, but the manifestations of this are often unclear1*2. We are in need of

improved methods for studying this frequently encountered situation. In this report we describe in

an expository fashion the initial developments of one such technique which has been applied in

several instances especially related to certain alloys or other crystalline materials. Good examples

where defect structures consisting of fine scale morphology are relatively simple are certain phase

transformations of displacive or structural type and the mechanical behavior of shape memory

alloys. Martensitic materials, in particular, exhibit fine twinned microstructures, often appearing as

layers or layers within layers3. Although we often refer to microstructure, we are confronted with

a primarily continuum phenomenon for which some authors use the term mesoscale. In these

considerations, one issue is paramount: the presence of spatially oscillatory behavior and the

means of understanding it constitutes the bridge from the fine scale to the large scale.

Crystals are idealized as materials with a high degree of conflgurational order. As a

consequence, the continuum energy densities ascribed to them are invariant under discrete groups

and have multiple potential wells. Such densities are not lower semicontinuous. The infimum of

energy may be obtained only in some generalized sense, while a minimizing sequence may develop

successively finer oscillations. Said in another fashion, when the material deforms owing to

change in its environment, the conflgurational order acts as a constraint resulting in the creation of

a defect structure, which in this case is a complicated spatially oscillatory fine structure. The limit

1 Supported in part by the Army Research Office.
2 To appear in the proceedings of the Tenth Army Conference on Applied Mathematics and Computing. H , _ ._ ,_ ,*
3 For illustrations of oscillatory behavior in alloys and other materials see [1,23,4,5,27,53]. ! r s! U
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deformation alone need not be sufficient to characterize many of the properties of the limit

configuration.

A feature of the constitutive theory under discussion is that surface energies, magnetic

domain wall energies, and similar effects are neglected, although the highly nonlinear potential well

structure for the material has a prominent role. Thus fine phase laminar twin systems and fine

phase magnetic domain structures may tend to limits of infinite fineness. The theory in this

formulation delivers useful information about variant arrangement and location as well as

macroscopic state functions like energy and stress. It is particularly useful in deciding where in the

body fine structure will arise.

At the analytical level, we apply a recently developed averaging method, briefly explained

in §2 below, which accounts for rapidly spatially varying systems and accomodates the fine scale

microstnicture. A configuration which minimizes a given variational princple is described in terms

of generalized moments of the minimizing sequence, or equivalent^ oscillatory statistics. The

most important property of the method is to unify energetic and kinematic considerations by

compelling the statistics to be consistent with the variational principle.

Examples of this sort of analysis served to generalize the crystallographic theory of

martensite, Ball and James [1], and to compute the relaxation of energy densities in the presence of

symmetry, Chipot and Kinderlehrer [9] and Fonseca [26]. It has subsequently played a role in

many discussions related to microstructure, eg, [2,4,5,10,12,13,14,15,25,27,28,30,31,32,

33,35,39,40,41,45,47]. A treatment of the variational foundations of this method is given in

[29,36,37,38]. Kohn [42,43] has shown how these ideas and those of relaxation in, general are

consistent with the treatment of Khachaturyan and Roitburd, eg. [34,49]. Here we shall briefly

explore two examples: a theory for highly magnetostrictive iron/rare earth alloys and a

mathematical example of evolution of fine structure. A major impetus for these investigations is to

provide a basis for the numerical computation of configurations with complicated microstructure.

A few selected results of these efforts will be reported.

2. Local spatial averages Young measures. We describe the portrayal of microstructure or

fine structure by local spatial averages or Young measures. We also explain the mechanism by

which these averages serve to unify energetic and kinematic considerations. Since this may not be

familiar to most readers, we give some examples as well. A bounded sequence of functions or

more general fields, scalar, vector, or matrix valued,

f*: O -> RN, k = U (2.1)

may describe a spatially oscillatory structure or system in the region ft. For example, if Q is a

cube, {Q a fixed periodic function, and
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f*(x) = £>(kx),

the system represents spatial oscillations modulated in some fashion by fo- A specific one
dimensional example is

f*(x) = sinrckx, 0 < x < 1, k = 1,2,3.,. (2.2)

Another one is

. _ I

k . X k 1 < j ^ k, 0 < x < 1. (2.3)

The general sequence ( f*) may fail to converge pointwise or even in the mean, as the

examples (2.2) and (2.4) above illustrate. This, it turns out, is characteristic of the minimizing

sequences for functional which lack lower semicontinuity and in particular of variational problems

associated to crystalline solids in the context of finite elasticity.

The behavior of the sequence may be grasped by computing limits of averages

f(a) = lim to - ^ - JfMx, (2.4)

where I Bp I stands for the volume of the ball of radius p. This tells us only the average limit of

the sequence, however, and does not inform us of its particular oscillatory behavior. The technical

name for this convergence is weak* convergence. To overcome this, we calculate generalized

moments. Let \\f be any continuous function and consider the sequence (Y(f*9). Although this

sequence need not converge, we may ascertain* as above, a weak limit function

lim lim - J - Jy(f*)dx. (2.5)

The association

V -> V(a)

gives rise to an integral representation (a probability measure) on y,

(2.6)
RN

which has the property

J y(fk) dx -» J v dx for any subset E c fi. (2.7)
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This collection of measures v = ( v x )x € Q summarizes the statistics of the spatial
oscillations of the sequence. It was introduced by Young [54] to study control problems. Its first
use in differential equations is due to Tartar [50,51] who studied hyperbolic conservation laws.
They are measures defined on the range of the sequence ( f*) which depend on the point x e Q.

In particular, it is generally incorrect to suppose that the limit of a minimizing sequence
realizes the infimum of energy in a variational principle whose minimizing sequences are highly
oscillatory. The minimum energy must be evaluated using (2.6).

Examples

For example, both the sequences of (2.2) and (2.3) have f(x) = 0. On the other hand, for
(2.2),

1
- i f dX
V(a) = i V (X) T = = . 0 < a < 1, (2.8)

while for (2.3),

y(a) = i( \p(- l) + y(l)) , 0 < a < 1. (2.9)

The oscillatory statistics of the two sequences are thus quite different.

Let us now give a simple well known example of how oscillations may arise in the
mathematical context The first of these is the familiar Young-Zermelo tacking problem, [54]. Let
<p(X) be a double well potential with equal wells at -1 and 1 as depicted in Figure 1 and, with £2
= (0,1) an interval, set

~(<p(V) + v 2 ) dx. (2.10)

A minimizing sequence (u*) for this functional wishes to enjoy both -gr = ± 1 for all k and

uk —» 0 in ft. The result is the generation of oscillations, with a typical minimizing sequence

given by uk with

^ = f* in Q, (2.11)
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Figure 1 A typical double well potential in one

variable.

with the f* defined in (2.3). The Young

measure solution of the minimization problem

is given by, cf. (2.9),

v = i ( 8 . i + 5+i). (2.12)

In this example, oscillations are created by

competition between the two terms of the

functional. In multivariable problems, side

conditions, like boundary conditions,

are sufficient to give rise to an

oscillatory structure.

Interestingly, it is difficult to decide this

from a computational standpoint

because the additional

competition between the grid orientation and the particular kinematics organization of the

configuration requires a sufficiently large computational domain as well as certain other features.

We are examining these issues with Nicolaides.

The propagation of oscillations, and even the convection of oscillations is an important

issue. Tartar has investigated this in some detail [52], recently introducing the H measure to

account for aspects of the frequency distribution of a sequence as well.

3. Magnetostriction A remarkable feature of ferromagnetic materials is that the single

domain state is generally unstable. This constrasts with martensite, where the single variant

configuration is stable for arbitrarily large samples. In the blue phase of cholesteric liquid crystals,

the failure of stability of the uniform stale relative to an array of defects is iexmcA frustration. Our

theory here could be interpreted as one possible interpretation of this phenomenon at a macroscopic

scale. The frustration in our system arises from the competition of an anisotropy energy which

demands constant magnetization strength and direction with an induced field energy which prefers

to tend to zero. A consequence of this is to promote development of a fine scale structure which

seeks to compromise the constraint of constant magnetization strength.

Certain iron/rare earth alloys display both frustration and a huge magnetostriction. There
are cubic Laves phase RFe2 (R = rare earth) compounds, for example, where magnetically
induced strains "overwhelm the conventional thermal expansion of the material'*, Clark [11].
TbDyFe2 (terfenol) solidifies from the melt with a complex highly mobile domains consisting of
structural domains and magnetic domains. Typical growth habits result in configurations with
parallel twinned layers, cf. Figure 2, that persist in the magnetostrictive process. We have been
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studying this with a theory of magnctoelastic interactions based on the micromagnetics of W. F.

Brown, Jr. [6,7,8] and the symmetry considerations introduced by Ericksen [16-24]. For a

complete discussion, we refer to James and Kinderlehrer [32]. It has some similarities with

Toupin's theory of the elastic dielectric [54]. We then apply it to the equilibrium microstructure of

TbDyFe2. The primary mechanism of magnetostriction appears to be an exhange of stability of

mechanical variants under the influence of a change in the magnetic field, but we do not discuss

this in detail here.

For relatively rigid materials one may assume the free energy to depend on magnetization

alone, [30,31]. The theory in this case gives good qualitative agreement with experiment,

explaining why cubic magnets have a few large domains and why uniaxial ones have a fine

structure. Domain refinement at the boundary is also predicted when the normal to the boundary

has a suitable orientation with relative to the crystal axes, in agreement with observations.

Figure 2. Schematic depiction of the microstructure in a sample of TbDyFe2
illustrating the herringbone structure of two sets of laminar fine structures.
Crystallographic directions are with reference to the high temperature
nonmagnetic phase.

The variational principle is formulated in terms of a stored energy density which depends
on the deformation gradient F e M, 3 x 3 matrices, magnetization (per unit mass) m e R3, and
temperature 9 e R We suppose it given by a nonnegative function

W(F, m, 6) F € M, m e R 3 ,9 e R, (3.1)

subject to the condition of frame indifference

W(QF,mQT,e) = W(F,m,8), Qe SO(3), (3.2)

and material symmetry

W(FP, m, 9) « W(F, m, 9), P € P, (3.3)

where P is a crystallographic point group.

Requiring W to depend on the deformation gradient F = Vy and magnetization m but

not on V2y and Vm indicates that any energy associated with mechanical twin walls and Bloch

walls is neglected. In this formulation, there may be infinitely fine twins or infinitely fine magnetic
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domains, as we have suggested earlier. Since on a macroscopic level, the materials of interest

display highly mobile domain configurations, any wall energies need be very small. The analytical

benefit is that in the limit of infinite fineness we are able to determine rather accurately the

arrangement and location of variants within the material, although not their dimensions.

Let y denote the spatial variable and H and M denote the magnetic field and the

magnetization (dipole moment per unit volume), respectively. In the spatial configuration,

Maxwell's equations hold. In addition, material is magnetically saturated. For an appropriate

choice of units, and introducing U(y) as a potential for H,

divy(-VyU + M) = 0 inR3 , (3.4)

and the field energy density is given by

The saturation constraint leads to

I - I = f(9) in the body, (3.5)
P

where p is the density.

The domain Cl is interpreted as an undistorted single crystal above the Curie temperature.
By an abuse of notation, let y(x) denote the deformation of Q to y(Q), assumed for the
purposes of discussion to be 1:1. Since p(x) = l/detVy(x), the magnetization per unit mass
previously introduced, m = det Vy M, so the constraint (3.5) assumes the form

Iml = f(9).

We assume f(8) = 1, without loss in generality.

In this fashion we may write the virtual energy of the configuration y = y(x), m = m(x)
in the mixed reference/spatial form

E(y,m) = fw(Vy,m,9)dx + \ | l V y U I 2 d y (3.6)

subject to the constraints,

divy (-VyU + — - — m) = 0 in R3. (3.7)
det Vy

Iml = 1 in y(Q).

from (3.7), we may also write the energy in the form
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E(y,m) = fw(Vy,m,e)dx + \ f — ~ - m-VyU dy . (3.8)

Both for computational and analytical reasons, it is useful to express this in terms of
reference variables alone. For this, introduce u(x) = U(y(x)), so Vu(x) = VyU(y(x))F(x),
F(x) = Vy(x). With C « F ^ , the constraint equation (2.9) becomes

+ mF-T) = 0 in R3, (3.9)

and the saturation condition is simply

Iml = 1 in Q. (3.10)

The virtual energy of y = y(x), m = m(x) in reference form is

E(yjn) = fw(Vy,m,9)dx + \ f Vu C^-Vu det F dx, (3.11)

subject to (3.9) and (3.10). Analogous to (3.8), we may also write (3.11) as

E(y,m) = fw(Vy,m,9)dx + \ fVumF-Tdx. (3.12)

The symmetry condition (3.3) induces a potential well structure on W. The arrangement
of these potential wells determines the possible fine structure. Our schema for understanding this
well structure begins by choosing for P the symmetry group of a putative high temperature non-
magnetic parent phase of the material. For example, in the case we shall consider here, P is the
cubic group of order 24: relative to a cubic basis, these are the proper orthogonal matrices of the
form P = (pij), pij s ±1 or 0. This is the appropriate assumption for TbDyFe2. For 9 <

T60, we assume there exists a pair (Ui,mi) with I mil = 1 and Ui = Ul positive definite

satisfying

W(Ui,mi,9) < W(F,m,e) for Fe D, Iml = 1. (3.13)

Generally, Ui and mi depend on temperature. The conditions (3.2) and (3.3) imply the

existence of other minima by (2.9). Assume that the full set cf minima is determined by the orbits

o/(Ui,mi) under these actions. Thus

infW = W(RUiH,miRT,e) < W(Fjn,9) for Re SO(3), He P

and Fe M, Iml = 1, with (F,m) # (RUiH,miRT). (3.14)

The potential wells are described as

), R e SO(3),
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), R e SO(3),

(RUn,mnRT), R € SO(3),

where

An orbit of the form (RUi,miRT), R e SO(3), will be called a variant by analogy to martensitic

transformations.

Our idea of a variational principle is to find a pair (yon) such that

E(yon) = inffEOMi): (TUO subject to (3.9)}.

However, in our situation, with the material, in essence, uniaxial, this will not be possible.

Instead we must content ourselves with this result, whose verification relies on an explicit

construction:

infE = minWIftl . (3.15)

4. The variational context

4.1 The variational context: energetics

Consider the minimization question associated to (3.8) subject to (3.9). By choosing a

special sequence of magnetizations, one may show that

infE(y,m) « minWIQI , (4.1)

as discussed at the end of §3. However, because of the competition between the field energy and

the stored energy, there cannot be any pair (y*,m*) with y* affine and

E(y*,m*) = minWIQI . (4.2

We are led in this manner to consider a sequence of deformation fields and magnetization
fields (yk,mk) subject to (3.9) for which (dependence on 8 suppressed)

E(ykjnk) -+ minWIQI. (4.3)

and

Vyk -» Vy and mk -> m,
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where the convergence is in the sense of (2.4), or equivalently, (2.7).

The only way for (4.3) to occur is if

W(yk,mk) -> minW and \ f l V y U k l 2 d y -» 0. (4.4)

Since

W(yk,mk) -* W(x), for x € Q,

W(x) J
MxS2

we must have that the set of (A,|i) charged by v, that is the support of the measure v, is

contained in the minimum energy wells described by (3.17). In analytical terms we write

suppv c {(A41): W(A4i) = minW} = I . (4.5)

In addition, (4.4) provides via the constraint equation in (3.9) that

divy J — mk -> 0 in H-*(R3). (4.6)

det Vyk

(4.5) and (4.6) place severe constraints on the possible forms of Vy and m.

4.2 The variational context: kinematics

An easy integration by parts shows that if ( y k ) is a sequence of deformation fields with
bounded derivatives, then for any minors M(Vyk) of the matrices Vyk,

M(Vyk) -» M(Vy)

in the sense of (3.4), that is, in the weak41 sense. Thus minors are special functions y(A) which

are continuous with respect to this convergence. They are, of course, the null-Lagrangians. The

Young measure relation also holds. So, in the present situation, combining (4.5) with the Young

measure representation gives

Vy(x) = JAdvx(A,ji) , (4.7)

adjVy(x) = f adj A dvx(A,ji) , and (4.8)

detVy(x) = |de tAdv x (A , j i ) , (4.9)
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where adj A stands for the classical adjoint of A and det A stands for the determinant of A.

Formula (4.7) is simply a restatement of (3.4) in this case and is included to provide a complete

listofnull-lagrangians. We refer to (4.7) -(4.9) as the minors relations.

These relations place extremely strong restrictions on the nature of possible equilibrium

configurations because they assert that the limit statistics of equilibrium configurations must be

compatible with the potential well structure of the macroscopic bulk energy.

It is worthwhile pointing out that for the special case of an infinitely fine laminate supported

on two deformation gradients Mi and M2, that is,

fv(A)dvx(A,n) = (l-G)v(Mi) + 6y(M2), (4.10)

for some 0, 0 < 0 < 1, the minors relations imply that

M2 - Mi = a®n = rank one, (4.11)

and the { Mj} may represent the deformation gradients of twin related variants with normal n. A

sequence of deformations which determines (4.10) with 0 = | is given by

Vyk(x) = Mi + (̂1 + f*(x-n))a®n, xe Q, (4.12)

where f^t) is defined in (2.3).
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The Phase Transition in TbDyFe2

High 6: one stable variant

Low 6: many stable

variants; jenergy not convex;
oscillatory structures

Figure 3 The phase transition in terfenol.

Analogous formulas hold for any problem in thermoelasticity, but in magnetostriction we

also have a relation about magnetization owing to (3.12). This relation is most useful in reference

coordinates. Recall that

m(x) (4.13)

The new relation is that
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m(x)Vy(x)-T = U A - T d v x ( A ^ ) , (4.14)

with

div(£(Vy)-T) = o in R3. (4.15)

4.3 Application

In Terfenol-D, onset of ferromagnetism is associated with a stretch of the unit cell along a

main diagonal parallel to the magnetization. In simplified kinematics, we find a pair (Uijni)

satisfying (2.15) provided by

Ui = l + £mi®mi and mi = -^(1,1,1), le i small, (4.1)

V3

for a suitable choice of coordinates. The other potential wells are determined by

Ui = 1 + e mi ® mi, i = 23,4, with (4.2)
m2 = 7=(- l , l ,D, m3 = - p ( l - U ) , nu = - p ( U . - l ) .

\3 \3 \3

Since -mj is also an admissible magnetization, there are a total of eight potential wells.

We regard the coordinates chosen so that this represents the lower laminate in Figure 1. The upper

laminate is obtained from it by a rotation about the mi axis. Note that this is not a symmetry

operation of the original energy and, although holding invariant the well of (Uijni), gives a

different set of wells. To save space, here we discuss only the lower laminate. To properly treat

the entire system, we must introduce an inhomogeneous energy W(Fan,8,x), x e £2, cf. [32].

To establish our result we wish to check that we may produce a minimizing sequence

(ykjnk) for the energy E(yon) with the potential well structure determined by (4.1) and (4.2)

whose statistics, as determined by the "minors relations1' and their generalizations, (3.13) -

(3.15), (3.20), and (3.21), deliver the observed crystallographic data, for example, of the lower

laminate of Figure 1. We are able to do this using the wells determined by (Ui,mi) and

(U2,m2).

Given any pair of transformation strains

Ui « 1 + e £ i ® £ i and U2 = 1 + e£2®£2>

I £i I = 1, £1 and £2 independent,

then the type I and type II twins (or twins and reciprocal twins) have normals

n+ = £1 + %2 £
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(4.3)

In this case with £i = mi, n+ = (100) and n~ = <011), in agreement with the observations of

D. Lord [44,53].

A coherent laminate may be constructed from the deformation gradients Ui and R+U2 or

from the deformation gradients Ui and R-U2, cf. also (3.16) - (3.19). We may construct a

compatible sequence of magnetizations mk with mk = ±mi in the Ui regions and mk =

± m2(R+)T in the R+U2 regions with the property that the limit average m = 0 so that

lim E(yKmk) = min WI Cl I,

cf. Figure 2 below.

- • (-211 >

Figure 4. The equilibrium microstructure of a laminate with parameters predicted
by the theory. The gray arrows represent directions of the magnetization within
the mechanical layers. In the Ui layers they are ± mi where mi is a < 111 >
direction and in the shaded layers they are ± m2(R+)T where 012 is a < -111 )
direction.

It is possible to deduce, moreover, that the only magnetization distributions consistent with
the mechanical laminate have m = 0. One may explicitly write a Young measure solution

where 0 < X < 1.

Our analysis suggests however that Figure 2 above is not the only solution and need not be

the only one the laboratory photographs show either. A laminate may also be realized with
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deformation gradients U3 and RU4 which has the same appearance on an (01-1) plane. Note

that 1113 +1114II (100). This configuration has the property that it is exactly compatible across the

(111) plane whereas compatibility of the Ui andRU2 laminate is only in the fine structure limit

and requires X constant. Interestingly, the fine structure laminate might display greater

magnetostriction.

The computation of configurations is underway by Ma, who has successfully reproduced

hysteretic behavior in linearly magnetostrictive models. Previously, Luskin and Ma, [45], studied

the rigid ferromagnet.

5. Evolution Evolution problems for potentials which are not convex may be considered

within this framework. The basics of an existence theory were given in [40] and has been

significantly advanced by Demoulini and Walkington, in work which has not been published.

Walkington, in particular, has adapted method for computing solutions of the Young-Zermelo

problem to evolution, for reasons which will become clear momentarily.

Consider 9 as in Figure 1, a scalar valued potential for example, and ask for a solution of

the problem, q(X) =

- d i v q ( V u ) + ^ = 0 in ftx(0,~)

u |nx(0) = »<> <51>

ulanx(o,~) - °

A classical solution need not exist because the equation may be backward parabolic in some

regions, but we may seek a Young measure solutions along the lines we have been discussing.

We find this solution by adapting an implicit scheme.

The functional

I(v) = J (<p(Vv) + i (v - w)2) dx, h > 0, (5.2)

is only slightly different from (2.10). Given h > 0, set tjc = kh and uh<° = Uo. Solve

iteratively for Young measures v 0 ^ and underlying deformations un^ by the minimization

procedure

J (9 (V v) + ±fy - uh*-*)2) dx -> min (5.3)

where the competing v e H*(Q), for example. The vh* and uhJc satisfy
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f (q> + i ( v - iM- 1 ) 2 ) dx = mi

tfx) = U(X)dvh
x'k(X) .with

(5.4)

suppvhi c = <f**(k)}. (5.5)

where <p** denotes the convexifled <p, which is its relaxation in this situation. Moreover, it is

possible to show that

-div qh + J 0, where (5.6)

Jqh(X)dvh
x'ka) .

We next assemble the v*1* and uh»k, defining un to be the linear interpolant of the

and vh the piecewise constant in time measure equal to v^ in (k - l)h < t < kh. We

obtain in this fashion a family of approximants which are "maximally dissipative" because of (5.5)

and converge to a Young measure solution of (5.1).

It turns out that the solution u*1* of

the basic variational principle is the unique

solution of the relaxed problem for this

principle which is strictly convex in v, but

not in Vv. Some convex analysis thai tells

us that uh is unique and so is its limit u as

h—»0. The Young measure need not be

unique.I
Figure 5. The relaxation <p** of 9 plays an
important role in the solution of the problem.
Where <p is different from <p** is shown in
dotted lines.

This is an opportunity to study

the pure generation of oscillations in a new

context The underlying solution is known.

What statistics are possible for the sequences

which generate this solution and can we compute them? How do they evolve in time? Using an
algorithm specifically designed to compute Young measures by Nicolaides and Walkington,
Walkington has computed several examples of this behavior, shown in Figure 6. Although in
these pictures, the solution decreases monotonically to its limit

u(x,«0 = { j *
0 < x < 0.5
0.5 < x < 1
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Figure 6 Computation of the solution of (5.6) by a Young measure algorithm.
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this is not the case for general initial values u(x,0), although the energy integral is a decreasing

function of t We refer also to their article in these proceedings.

The author wishes to thank his colleagues and coworkers, especially R. James, R.
Nicolaides, P. Pedregal, and Noel Walkington, for their assistance and advice in preparing this
account
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