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Abstract

When one wants to treat the time-harmonic Maxwell equations with variational
methods, one has to face the problem that the natural bilinear form is not coercive
on the whole Sobolev space H1. On can, however, make it coercive by adding
a certain bilinear form on the boundary of the domain. This addition causes
a change in the natural boundary conditions. The additional bilinear form (see
(2.7), (2.21), (3.3)) contains tangential derivatives of the normal and tangential
components of the field on the boundary, and it vanishes on the subspaces of H1

that consist of fields with either vanishing tangential components or vanishing
normal components on the boundary. Thus the variational formulations of the
"electric" or "magnetic" boundary value problems with homogeneous boundary
conditions are not changed. A useful change is caused in the method of boundary
integral equations for the boundary value problems and for transmission problems
where one has to use nonzero boundary data. The idea of this change emerged from
the desire to have strongly elliptic boundary integral equations for the "electric"
boundary value problem that are suitable for numerical approximation [12], [13].
Subsequently, it was shown how to incorporate the "magnetic" boundary data
and to apply the idea to transmission problems [3], [7], [5]. In the present note we
present this idea in full generality, also for the anisotropic case, and prove coercivity
without using symbols of pseudodifferential operators on the boundary.

1. Introduction

Let ft C R3 be a bounded domain with boundary F 6 C1'1. This means that the exterior
normal n can be extended to a Lipschitz continuous vector field of unit length on a
neighborhood of F.

Consider the time-harmonic Maxwell equations

(1.1) curli? = itofxH; curli? = —iu>eE in (7.



Here to is a constant, and e and fi are in general (3 x 3)-matrix valued functions which
we assume to be in (^(ft). Further assumptions on e and \i will be made later on. All
functions are complex-valued. The electric field E satisfies the second order equation

(1.2) curlacurlE - u2eE = 0 in ft,

where a = pT1. Since also
(1.3) diveE = 0 in ft

holds, E satisfies

(1.4) PE - OJ2SE : = curl a curl E - e* grad(s div eE) - u>2eE = 0 in ft,

where e* is the adjoint of e, and s G C1(ft) is an arbitrary function.
The natural bilinear form associated with the second order elliptic system (1.4) is

(1.5) ao(E,F) := f j(acurlE) • curlF + s(diveE)(diveF)\ dx.

Let us denote the L2(ft) inner product by (•, •), for scalar as well as for vector func-
tions:

(E, F) := / E(x)-F(x)dx.

By <•, •> we denote the L2(T) inner product

, v> := / uvds,
JT

where ds is the surface measure on F.
Green's formulas are

(1.6) (curlu, v) — (u, curlv) = <n x w, v>

(1.7) (divil, </>) + (w, grade/?) = <n-u , <p>

Thus the bilinear form a0 is related to the differential operator P by

(1.8) ao(E,F) = (PE,F)- <n x (acurl 15), F> + KsdiveE, n - eF> .

This leads to the well-known (see e.g., [9], [14]) weak formulations of the standard
boundary value problems for the operator P:
Let

(1.9) X :=

(1.10) Y :=



Then for / € £2(0), the weak form of the "electric" boundary value problem

(1.11) PE = f in ft; n x £ = 0 on T

is: Find E € X such that

(1.12) ao(E, F) = (/, F) for all F G X.

From (1.8), we see that then E satisfies in the weak sense the natural boundary
condition
(1.13) diveE = 0 onT.

Similarly, the "magnetic" boundary value problem

(1.14) PE = f inO; n • eE = 0 on Y

has the weak formulation: Find E £Y such that

(1.15) ao(E, F) = (/, F) for all F e Y.

The natural boundary condition is

(1.16) n x (acurlJ5) = 0 onT.

It is well known (see [9], [11]) that, under suitable hypotheses on e, // and 5, the
bilinear form ao is coercive on both subspaces X and Y of H1^). Thus both boundary
value problems can be numerically approximated using finite element methods. Also the
spectral theory for strongly elliptic boundary value problems is available and can be used
for the analysis of the corresponding time-dependent problems.

The bilinear form ao is, however, not coercive on the whole space Hx(fl). This causes
problems, e.g., if the boundary value problems are to be solved by boundary element
methods (see [12], [13], [1], [2]), or if corresponding transmission problems are studied
[7]-

The boundary integral equations of the first kind studied in [12], [13], [1], [2] are
an elliptic system of pseudodifferential equations which, due to the non-coercivity of a0,
is not strongly elliptic. In [1], [2], the problem was therefore treated as a saddle-point
problem and a mixed finite element method for its solution was devised. In [12], [13],
it was found that the system can be transformed into a strongly elliptic system which
is then treatable by ordinary finite element methods. This transformation corresponds
to a change in the natural boundary condition (1.13). This together with an analogous
change in the other natural boundary condition (1.16) was shown in [3] for the case



e = ^ = 5 = l t o correspond to a change in the bilinear form a0 which makes it coercive
over all of #x(ft) .

Transmission problems in a more general, but isotropic case, are studied in [7] by
boundary integral equation methods and in [5] for inhomogeneous problems by a coupling
of boundary integral equation and finite element methods. In [7], the strong ellipticity
of the system of pseudodifferential operators is proved by computing their principal
symbols.

In this paper, we prove the coercivity (strong ellipticity, Garding's inequality) for the
modified bilinear form in the general case just by using Green's formula. Thus we need
less regularity for the boundary F than in [7]. There is even a result for polyhedra and
piecewise C1'1 boundaries.

In section 2, we begin with the simplest case e = fi = s = 1 and generalize this then
to physically more meaningful isotropic homogeneous cases.

In section 3, we treat the anisotropic inhomogeneous case.
In section 4, we show corresponding results for piecewise smooth boundaries.

2* The isotropic case

We will need the following notations:
For a vector field u defined on F or on a neighborhood of F, the tangential and normal

compnents are

(2.1) uj : = — n x (n x u) = u — unn ; un : = n • u.

Her n is the unique extension of the exterior normal vector field on F to a neighbor-
hood of F as a Lipschitz continuous vector field of unit length (Recall that we assume
F 6 C1'1 unless stated otherwise). It follows that

(2.2) curln = dnn = 0.

We need the surface divergence divy uj on F which we define as follows

(2.3) divT uj := div uT = div u — un div n — dnun = div u — n • (dnu) — un div n.

A little vector analysis together with (2.2) shows that

(2.4) divj uj = n • curl(n x u).

From Green's formulas (1.6), (1.7) we obtain for <p supported in a small neighborhood
of T

<divT UT, V?> = <^ x curl(n x {£),
(2.5) = (curl(n x u), grade/?) = — <u T , gradT</?> .



This formula shows that the mapping w H-> divy WT \r can be extended from smooth
functions w to u 6 HX(Q), defining a continuous mapping : H1^) -» jff~1/2(r).

Similarly, the mapping (p H-> gradT <p fr is continuous from if1 (ft) to H~~XI2(T). The
brackets <•, •> then denote the natural duality between H"1/2^) and H1!2^). We
use the usual Sobolev spaces on ft and T (see e.g. [9]), and we use the same notation for
spaces of vector-valued functions. Thus, e.g.,

(2.6) \\u\\2
mW = (gradu, grad w) + (w, w) = f { £ \9juk\

2 + E \uA dx.

Theorem 2.1. Define ai(u,v) by

di(u,v) := (curlu, curl0) + (divw, divv)

(2.7) + <gradTun, vT> — <divTw-r, vn> .

Then a\ is coercive over H1^), i.e., there exist constants 7 > 0 and c such that

(2.8) i i *

Proof, Since at is continuous on -ff2(Q) and C°°(TT) is dense in jfiT^fi), we need to
show (2.8) only for smooth u.
From the formula

grad(a • 6) = a x curl 6 + b x curl a + (a • grad)6 + (b • grad)a

together with (2.2) it follows that

(2.9) grad un = n x curl iZ + ^nt2 + (u • grad)n.

Now we apply Green's formula (1.8)

(curlw, curlv) + (divu, divv) = (—Aw, v)— <n x curli/, vj> + <divu, vn>

to ax and obtain

ai(t?, v) = (-Aw, v) — <n x curl u — gradT un, vj> + <div u — divT uy, vn> •

With (2.3) and (2.9) this reduces to

a^u^v) = (—Aw, v)+ <dnu+ (it* grad)n, tTT> + <n • dnu + wndivn, vn>
(2.10) = (-Aw, v)+ <dnu, v> +b(u,v)

with
(2.11) 6(w, v) = <(wT • grad)n + wn(divn)n, v> .



Now we apply Green's formula for the Laplace operator

(2.12) ( - A M , V) = (grad iZ, grad £ ) - <dnuJ v>

and obtain

(2.13) «i(w, v) = (grad u, grad v) + b(u, v) .

From the Lipschitz continuity of n we obtain an esimate

(2.14) \b(u,v)\ < C\\n\\LHry\\v\\v(r),
where C is determined by an upper bound for the derivatives of n on F.
The trace lemma implies with (2.14)

16(3,3)1 < C||u||2H,(JJ)

for any s > 1/2. It follows that for every rj > 0 there is a Cv with

(2-15) 16(3,3)1 < VWHH<I) ~ Cv\\u\\h{n) •
This gives with (2.13)

ReOl(3,3) > (1 - 17)113113̂ (0, - (1 + C,)||3||i,(0).

The following well-known result is an easy consequence of Theorem 2.1.

Corollary 2.2. The bilinear form (curl u, curl v) + (divu, divv) is coercive on the
subspaces X and Y ( see (1.9), (1.10)) 1

Proof. From the definition (2.7) it follows immediately that the two boundary terms
in ai(u, v) vanish if either un = vn = 0 or Uy = vj = 0 holds on F. Thus

Ol(u, 3) = || curl 3|||a(n) + || div u|||2(n) for all u € X U F.

I

Remark 2.3. The bilinear form a\ provides weak formulations of the following two
boundary value problems:

Let fe L2(n), p € #- 1 / 2 ( r ) and j r € #- 1 / 2 ( r ) be given. Then the condition

(2.16) ai(u,v) = (/, v) + (/>, vn) for all v e X
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is the weak form of the boundary value problem

(2.17) —Au = f in fi; divu — divT uj = p onF .

The condition
(2.18) ai(t?,v) = (/, S) + (^T, *r) for all v G F

is the weak form of the boundary value problem

(2.19) — Aw = / in Q,; — rax curl iZ + gradT un = -0T on F.

We see that the boundary terms in (2.7) correspond to a change in the natural boundary
conditions. Thus the set of "Cauchy data"

(uj) un> —n x curlu, divil)

is replaced by the equivalent set

(t/j, wn, — n x curl u + gradT un, div u — divj Ur) •

Of course, this change is only seen if (2.17) and (2.19) are completed by the addition
of inhomogeneous stable boundary conditions. On the spaces defined by homogeneous
stable boundary conditions, i.e., X for (2.17) and Y for (2.19), one obtains the familiar
form of the "electric" and "magnetic" boundary value problems, respectively.

Now we generalize Theorem 2.1 in several steps.
First we note that ai(u, v) is actually hermitian: According to (2.5) we have

ai(u,v) = (curlu, curlv) + (div 5, divv)+ <gradTun, vj> + <uT, gradT vn>,

hence for u = v, a\ is real:

(2.20) a^u.u) = ||curl€f||i2(n) + || div u\\2
L2{Q) + 2Re <gradTun, vr> .

Theorem 2.4. Let a,/3 <E C, 0u92 G R be such that

0<01+$2< 2min{Rea,Re/?}.

Let a,2(u,v) be defined bey

a2(w, v) := a (curl 5, curl v) + fi (div u, div v)

(2.21) +^<gradT t /n , vT> -02<divTUT, vn> .

Then a2 is coercive over



Proof. The boundary terms in a2 give

Re (0x <gradT un, uT> + 02 <uT, gradT un> ) = (0X + 02) Re <gradT un, uT> .

Thus with 0 := (0i + 02)/2 we have

Rea2(u,u) = (Rea - «)|| curlu||^(n) + (Rei9 - «)|| divt2||ia(ll) + ^(tT^S)

> #Reai({?, u),

and the assertion follows from Theorem 2.1. I

Now we can treat the isotropic homogeneous case of Maxwell's equations. Thus
assume that a, e, s are scalar constants and there exists 0 such that 0e £R and

(2.22) 0 < 0e < min{Rea,Res|e|2}.

Then with ft = s\e\2 and 0\ = 02 = 0e we can write a2 as

a2(u, v) := (a curl u, curl v) + (5 div ew, div ev)

(2.23) + <0gradTeun, vT> - <divTuT, 0evn> .

Again, on the subspaces X and Y, the boundary terms in a2 vanish. If

(2.24) (ujy eun, —an x curlu, ^diveu)
are the natural Cauchy data corresponding to the bilinear form ao (see (1.5)), then the
addition of the boundary terms to a2 in (2.23) can be interpreted as a change to the set
of Cauchy data

(2.25) (UT> 0eun, —aft x curl u + 0 gradT eizn, -diveu — divy MT)-
0

In [7], the case a = s|£|2 was considered. In this case, the operator P (see (1.4)) is the
scalar operator —aA. The Cauchy data (2.25) correspond to [7, (5.8)], and the coercivity
under the condition (2.22) is shown there using symbols of pseudodifferential operators
on the boundary T(see [7, (5.13)]).

The strong ellipticity of the system of boundary integral equations discussed in [7] can
be inferred from Theorem 2.4 using the general theory of strongly elliptic transmission
problems presented in [7, Section 2].

In Theorem 2.4, the possibility of complex constants a and e was emphasized in order
to include the important case of a perfect conductor. There a > 0 and e = ia/u), where
cr > 0 is the conductivity. According to (2.22), we obtain a coercive bilinear form a2 if
we choose 0 = —ir with 0 < r < ct/\e\ and s = a/|£|2 .
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Another consequence of Theorem 2.4 is the possibility of solving the boundary value
problems involving the Cauchy data (2.25) by boundary element methods using boundary
integral equations of the first kind [8],

Finally, on can use the coercive bilinear form a2 for the numerical solution of an
interface problem by a coupling of finite element and boundary element methods as
explained in [4], [5], [6].

In all these cases, the set of Cauchy data determining the boundary conditions is not
uniquely given by the bilinear form a2. If (WT> wn, ̂ T , VVI) a r e the Cauchy data for w,
where w corresponds to stable and i[) to unstable (natural) boundary conditions, then
the condition is

(2.26) a2{u\i?) = (Pu\ u2)+ <$-, w\> + < # , w2
n> .

Thus instead of (2.25), we can also choose (with Oi + 02 = 0)

(UTJ £wn, —an x curl u + 0\ gradT £un, s diveu — 02 divy uj)-

In any case, the mapping from the standard Cauchy data to the changed Cauchy data
as well as the inverse mapping are given by tangential differential operators.

3. The anisotropic case

The anisotropic case of Theorem 2.1 requires a new proof which then will also include
the isotropic but inhomogeneous case. The proof follows [11] where the coercivity of the
bilinear form a0 on the space X is shown.

We make the following assumptions:
e and fi are selfadjoint positive definite (3 x 3) matrix functions Jn C1(0); e is real

(the case of nonreal e is left as an exercise for the reader); s 6 C1(ft) is a scalar real-
valued function, and there exist positive constants c*i, £j, Si such that with a = ft"1 and
K = e"1 det e there holds for all x G H, £ G C3

For a vector field u we define the tangential vector field

(3.2) i ? e : = ^ ; n x ( / c ( n x u ) ) .

We see that ue\r= 0 holds if and only if uj \r = 0 holds. Thus the space X could be
defined in terms of ue instead of uy. For scalar e, we have ue = SSUT-

Instead of the normal component un = n • w, we need here the conormal component
n • eu, and we define the space Y as in (1.10).



Theorem 3.1. Let a3(u,v) be defined by

a3(u, v) := (a curl u, curl v) + (s div eu, div ev)

(3.3) + <gradT(n-et2), v€> - <divT ue, n-ev> .

Tien a3 is coercive over if1 (ft).

Proof. Let a0 be defined as in (1.5). Then, according to (1.8) and (3.1), we have

Reao(w, u) > Re(s/ccurlu, curl u) + (sdiveu, divu)
(3.4) = Re (curl SK curl u — e grad s div eu, u)

+ Re <—sn x (Accurlu), u> +Re <5div6:u, n • eu> .

Now we use the formula (see [11])

(3.5) Ac(a x b) = {ea) x (eb).

This implies

(3.6) s curl AC curl u = e grad(^ div eu) — s(divegrad)(eu) + ^ (u) ,

where di(u) contains derivatives of s and £, but only first order derivatives of u, and it
is linear in u. We will denote a similar function below by ^(w).
From (3.4) and (3.6) we obtain

Keao(u,u) > Re(—5(divegrad)eu, u) +Re(rfi(w), u)

(3.7) +Re <—sn x (>ccurlu), u> +Re <5divew, n-

Now we use partial integration for the strongly elliptic operator —s div e grad e. For this
purpose we need the positive selfadjoint square root S of e:

S G C^H), <52(x) = e{x) for all a: G 0.

Then we have

(—s(div e grad)eu, u) = (55 grad ̂ u, grad 6u)

(3.8) + (rfi(u), u) — <s(n • e grad)eu, u> .

The first term on the right hand side causes the coercivity:

(3.9) Re(5egrad<5w

and there exists 71 > 0 such that
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The terms (dj(u), u) can be estimated by

| (djiu), u) I < C||u||^(fi) • ||u||t2(n) < v\W\h(a) + Cv\\n\\lHQ)

for any 77 > 0. Thus they do not disturb the coercivity.
From (3.4)-(3.9) we obtain

Reao(u,u) > 7N|#i (n ) - CII^IIL^)

(3.10) +Re{ <— sn x (/ccurlu), u> + <sdiveu, n-eu>

— <s{n • £grad)eil, u> } .

We have to show that the boundary terms on the right hand side of (3.10) coincide up to
compact terms with the negative of the boundary terms in the definition (3.3) of a3. We
denote by ri, r2, etc., expressions containing derivatives of e, s and n, but no derivatives
of u. Then for the terms <rj(u), U> , we will have estimates similar to (2.15) above,
hence these compact terms will not disturb the validity of Garding's inequality.
From (3.5) above we obtain

n x (/c curl tl) = n x ((sgrad) x (eu)) + ri(fi)

(3.11) = (e grad)(n • eu) - (n • £grad)(£rt2) + r2(u).

This gives for the boundary term

<—sn x (Accurlu), u> + <sdiveu, n- eu> — <s(n- £grad)eil, u>
(3.12) = <sdiveu, n - eu> — <sgrad(n • eu), eu> — <r2(u), u>

, n- eu> — <gradT(n • eu), s(eu)T> + <r3(u), u> .

In the latter equality we wrote eu = (eu)j + n{n • eu) in the second term and used the
definition (2.3) of divy which shows that the terms <sdn(eu)n, (eu)n> cancel.
Now the form of the boundary terms achieved in (3.12) is already similar to those in the
definition (2.7) of aj. In fact, for s = e = 1, they coincide with those in (2.7). We could
have defined a3 using the boundary terms from (3.12) which are simpler in form than
those of (3.3), and they contain only tangential derivatives, too. We would not consider
this satisfactory, however, because the tangential components (eu)r appearing in (3.12)
also contain the normal component of u. Thus it is not true in general that the boundary
terms in (3.12) vanish on the space X.
By definition of u€ and (3.5) we have

(3.13) ue = -z^-^7 n x ((en) x (eu)) = -=^z; (n - eu)en + seu.
n- en n-en

11



This gives for the first boundary term in (3.3) for u = v

<gradT(n • eu), u> = <-—-(n • egrad)(n • eu), n • eu> + <sgrad(n • eu), eu> .
n • en

From (3.13) follows for the term divT ue:

divT u£ = div u€ + r4(u)

(3.14) = -z^-z; div((n • 6u)en) + s div eu + r5(u)
n • en

= ——^(n- egrad)(n- eu) + sdiveu + r6(u).
n • en

Hence the two boundary terms in (3.3) together give

(3.15) <gradT(n- eu), ue> — <divT ue, n • eu>
= <s grad(n • eu), eu> — <s diveu, n • eu> + <r7(u), u> ,

and this coincides with the negative of (3.12) up to compact terms. Therefore, taking
(3.10), (3.12) and (3.15) together, we obtain the desired Garding inequality for a3. |

4. Polyhedra and piecewise smooth domains

In this section we want to show that all previous theorems remain true for piecewise
smooth domains.

By a piecewise smooth domain we mean here the image of a polyhedron in R3 under
a C1'1 mapping. The statement needs some explanation, because on a piecewise smooth
domain the tangential and normal components of even a smooth vector field are in general
discontinuous and therefore the tangential derivatives appearing in the definitions of the
various bilinear forms need to be explained. Of course, also the proofs as given above
will not work, because one of the main tools, namely the extension of the normal vector
field n to a neighborhood of F, is in general not available.

The piecewise smooth boundary T is, however, composed of smooth (C1'1) faces FJ,
j = 1 , . . . , J: F = U^iT-7, such that T \ \JT^ is the union of all corners and edges
of F. On each face F-7, the normal n is Lipschitz continuous and can be extended
to a neighborhood of F-7. Thus on each face separately, the quantities needed in the
statements of the theorems make sense. For example, in the definition (2.7) of ai(u, 0),

J

we now interpret <gradun, vj> as ^ <gradun, vj> j , where <•, •> j denotes the
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extension of the L2 scalar product on F-7:

(4.1) <gradun , vT>j := / gradT un • v^ds.

The first Green formulas (1.6), (1.7), (1.8) are, of course, valid for any Lipschitz
domain. The only formula that is definitely not true in general is the formula (2.5) for
partial integration on the boundary.

Instead of repeating the proofs of all the theorems for piecewise smooth domains,
we present a stronger version of Theorem 2.1 for the case of a polyhedron and leave its
generalization to C1'1 images of polyhedra as well as the generalizations of Theorems 2.4
and 3.1 to the reader.

If fl is a polyhedron, then the faces F-* are subsets of planes. Therefore the normal
on each FJ is constant.

Theorem 4.1 . Let fl be a polyhedron and let a±(u, v) be defined by

o>4(u,v) := (curl u, curl v) + (div tt, div v)
j

(4.2) + ]T { <gradT un, vT>j- <divTWT, vn> j} .

Then for all u,veH

(4.3) a4(w, v) = (grad w, grad v).

Proof* The right hand side of (4.3) is continuous on J?1(0), and the left hand side is,
according to (4.1), defined by continuous extension from the case of smooth functions.
Therefore it suffices to show (4.3) for u, v G C2($I). Since the Green formulas (1.8) and
(2.12) hold and the boundary data are continuous on each face F-7, we obtain

a4(w, v) = (—Au, v) — <n x curlu — gradT unj vT> + <div u — divT uT , vn>

(4.4) = (grad tz, grad v) — <dn#, v>

— <n x curlu — gradT un, vT> + <div u — divT uT, vn> .

Now on each face F J , the normal n is a constant vector. Therefore on Yi (compare (2.4),
(2.9))

divy uj = div u — dnun

and
grad un = n x curl u + dnu,

13



hence with n - dnu = dnun on r j we obtain

—(n x curl u — gradT un) • tJy = dnu • vy = dnu • i; — (9nun)v^"

= dnu - v — (divT u — div u)t^.

Therefore the boundary terms cancel on each F J , and thus (4.4) implies (4.3).

The identity (4.3) implies of course coercivity:

(4.5) aA(uyu) = | |u| |^i (n ) - HuHia^).

Since the bilinear form a± coincides with

ao(u,v) = (curlu, curlv) + (div 5, divt;)

on the subspaces X and Y of ff1(fi), one obtains as a corollary that a0 is coercive over
X and Y for every polyhedron Vt (and then also for every piecewise smooth domain fi).
One must be careful, however, not to mistake this coercivity result for a regularity result.
It is, in general, for polyhedral fi, not true that every distribution u G L2(Q) for which
curl u G L2{0) and div u G L2(il) hold and either Uj = 0 or n • u holds on Y (so that

a4(u, u) = a o (5 , u) = || curl u\\2
L2(Q) + \\ div u\\2

L2(Q)

is defined), is contained in £T1(fl). If one denotes the Hilbert spaces of these distributions
by if(div) n H0(CVLT\) and ifo(div) C\ if (curl), respectively (see [9]), then the coercivity of
a4 implies that X (with the iJ^fi) norm) is a closed subspace of //(div) Pi #o(curl) and
Y is a closed subspace of .flo(div) 0 //(curl), and that the two norms are equivalent on
these subspaces, but in general these are genuine subspaces of infinite codimension due
to edge singularities.

The situation is analogous to the well-known fact (see [10]) that the quadratic form
II^WIIL2(Q) ^S c o e r c i v e over H2(Q.) for every polyhedron and every convex domain in Rn,
whereas the corresponding H2 regularity result holds for convex and smooth domains,
but not for general polyhedra.
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