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Maxwell's Equations on Lipschitz Domains

Martin Costabel

Abstract

Let u be a vector field on a bounded Lipschitz domain in R3, and let u
together with its divergence and curl be square integrable. If either the nor-
mal or the tangential component of u is square integrable over the boundary,
then u belongs to the Sobolev space H1!2 on the domain. This result gives
a simple explanation for known results on the compact embedding of the
space of solutions of Maxwell's equations on Lipschitz domains into L2.

Let ft C R3 be a bounded simply connected domain with connected Lip-
schitz boundary F. This means that F can be represented locally as the graph
of a Lipschitz function. For properties of Lipschitz domains, see [7], [3], [2]. In
particular, F has the strict cone property.

We consider real vector fields u on ft satisfying in the distributional sense

u 6 L2(tt); div u e L2(Q); curl u e L2{Q) . (1)

We denote the inner product in L2(il) by (•,•).
It is well known that functions u satisfying (1) have boundary values n x it

and n - u in the Sobolev space JH
r~1/2(F) defined in the distributional sense by the

natural extension of the Green formulas

(curlu, v) — (w, curlt;) = <n x tl, v> (2)
(div u, (p) + (w, grad </>) = < n • w, tp > (3)

for all v,ipe
Here n denotes the exterior normal vector which exists almost everywhere on

F, and < -, • > is the natural duality in H~1/2(T) x H1/2(T) extending the L2(T)
inner product.



It is known that for smooth domains (e.g., F G C1'1), each one of the two
boundary conditions

n x u G # 1 / 2 (F) or n • u G # 1 / 2 (F) (4)

implies u G H1^), see [2] and, for the case of homogeneous boundary condi-
tions, [6], where one finds also a counterexample for a nonsmooth domain. Such
counterexamples are derived from nonsmooth weak solutions v G HX{^1) of the
Neumann problem (dn := n • grad denotes the normal derivative)

Av = g e L2(n); dnv = 0 on F (5)

If u = grad v, then u satisfies (1) and n- u = 0 on F, and u G i/s($l) if and only
if v G iJ 1 + 5(0) . For smooth or convex domains, one knows that v G H2(£l). If fi
has a nonconvex edge of opening angle a?r, a > 1, then, in general, the solution
t> of (5) is not in i/1+5(fi) for s = I / a , hence u £ Hs($l). This upper bound s for
the smoothness of u can be arbitrary close to 1/2.

Regularity theorems for (1), (4) have applications in the numerical approx-
imation of the Stokes problem [2] and in the analysis of initial-boundary value
problems for Maxwell's equations [6]. The compact embedding into L2(Q,) of the
space of solutions of the time-harmonic Maxwell equations is needed for the prin-
ciple of limiting absorption. This compact embedding result was shown by Week
[10] for a clctss of piecewise smooth domains and by Weber [9] and Picard [8] for
general Lipschitz domains. In these proofs, no regularity result for the solution u
was used or obtained. See Leis' book [6] for a discussion.

In this note, we use the result by Dahlberg, Jerison, and Kenig [4], [5] on
the H3/2 regularity for solutions of the Dirichlet and Neumann problems with L2

data in potential theory (see Lemma 1 below). Together with arguments similar
to those described by Girault and Raviart [2], this yields u G Hxl2{Vt) (Theorem
2). The compact embedding in L2 is an obvious consequence of this regularity.
If instead of Lemma 1, one uses only the more elementary tools from [1], one
obtains H3/2~€ regularity for solutions of the Dirichlet and Neumann problems in
potential theory and, consequently u G iflyr2~€(Jl) for any e > 0. This kind of
regularity is also known for the case of an open manifold F (screen problem). It
suffices, of course, for the compact embedding result.

The proof of the following result can be found in [4].

Lemma 1. (Dahlberg-Jerison-Kenig) Let v G H1^) satisfy Av = 0 in H. Then
the two conditions

(i) v\reH\T) and (ii) dnv\reL2(T)

are equivalent. They imply v G

i y r r s n V 1.•<• -; - . a .



Remarks.
a.) The first assertion in the Lemma goes back to Necas [7].
b.) There are accompanying norm estimates, viz.

There exist constants Ci, C2, C3, independent of v such that

Ci\\dnv\\L2(r) ^ ll^xgradt; | |L2 ( r ) < C2\\dnv\\L2ir)

c.) The boundary values are attained in a stronger sense than the distributional
sense (2), (3), namely pointwise almost everywhere in the sense of nontangential
maximal functions in L2(T).

Theorem 2. Let u satisfy the conditions (1) in ft and either

nxueL2(T) (6)

or
n-u£ L2(T). (7)

ThenueHll2{Q).
If (1) is satisfied, then the two conditions (6) and (7) are equivalent.

Proof. The proof follows the lines of [2], It is presented in detail to make
sure that it is valid for Lipschitz domains.
Let / : = cuxlu G L2(T). Then d i v / = 0 in ft.
According to [2, Ch. I, Thm 3.4] there exists w G #2(ft) with

curl w = f , div w = 0 in ft. (8)

The construction of w is as follows:
Choose a ball O containing ft in its interior and solve in O \ ft the Neumann
problem: x G H\O \ ft) with

AX = 0 in O \ ft ; dnX = n - / o n r ; dnX = 0 on 8O . (9)

Note that n-f G H"1^2^) satisfies the solvability condition <n-/, 1> = 0 because

Define f0 := / i n ft, f0 := gradx in <p\ft, f0 := 0 in R3\O. Then f0 G L2(R3) has
compact support and satisfies div f0 = 0 in R3. Therefore / 0 = curl w; for some
w G firl(R3) with divtl; = 0 in R3. One obtains w for example by convolution of
/o with a fundamental solution of the Laplace operator in R3 and taking the curl.



Thus (8) is satisfied. The function z := u— w satisfies

zeL2(n) and curl* = 0 in ft. (10)

Since il is simply connected, there exists v G if1 (ft) with

z = gradv . (11)

Then v satisfies
Av = divu G L2(Sl). (12)

We can apply Lemma 1 to vy because by subtraction of a suitable function in
H2(il) , we obtain a homogeneous Laplace equation from (12).

Now, since w \r G i?1^2(r), condition (i) in the Lemma is equivalent to

n x grad v=nxz=nxu— n x w € L2(T)

and hence to (6), and condition (ii) is equivalent to

n • gradv = n • z = n - u— n - w (E 2

and hence to (7). Therefore the Lemma implies that (6) and (7) are equivalent.
Also, v G H3/2(il) is equivalent to gradv G If1^2(ft), hence to

u = z + w = grad v + w G

Remark . The accompanying norm estimates are:
There exist constants Ci, C2, C3, independent of u such that

x ^||L2(r) < Ci (||ti||L»(n) + l|div^l|L2(«) + || curlu||L2(Q) + ||n- fi

< ^2 (||W||L»(O) + || div u\\L*(Q) + \\ curlu||L2(n) + \\n x

< C3 (||W||L2(«) + || div U||L2(0) + || curl 311^(0) + \\ft x u\\mr)) .
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