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Abstract

We define a rich model to be one which contains a proper elementary
substructure isomorphic to itself. Existence, non-structure, and categoric-
ity theorems for rich models are proved. We show that a countable theory
with few rich models is categorical in Ki. We also consider a stronger
notion of richness, and in discussing it prove: "If T is an unstable theory,
then for any saturated model M of T of cardinality > |Z>(XI)| there is an
elementary chain of length u; of models isomorphic to M, whose union is
not Ni-saturated."

We propose here to examine a class of models which we shall call rich models.

Definition 1 A model M is said to be rich if it contains a proper elementary
substructure N such that N = M.

Clearly, any rich model is infinite. Also, if T is a theory, then any universal
model of T is rich (this is most easily seen by noting that if in the definition we
replace "substructure" by "extension" then we have defined the same concept).
What if T has no universal models of a particular cardinality A? The existence
of a rich model of cardinality A is then a little less obvious. One method to prove
existence is to consider some extended language containing a lot of set theory, a
unary predicate (for a model of T) and a function symbol (for an isomorphism
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to a proper elementary substructure of the predicate). A suitably large special
model of this extended theory, and the downward Lowenheim Skolem theorem
then complete the construction. The perceptive reader will wonder why we have
left the details of this construction so vague—read on.

Universal models have additional properties:

Definition 2 A model M is said to be weakly a-rich (a an ordinal) if it
contains a strict chain of length a consisting of proper elementary substructures
Np -< M (/? < a) such that Np^M for all /? < a.

Now it is again easily seen that a universal model M for T is weakly a-rich for
all a < ||M||+. The models produced by the construction outlined above need
not have this property. But it is significant that we did not require the chain in
the definition above to be continuous, and of course for an arbitrary universal
model, there is no reason to suppose that it should be. Instead of banging our
heads against a succession of walls, let us now introduce the most appropriate
definitions of richness, and see what we can say. Perhaps surprisingly, it turns
out that by making the conditions more stringent, we are led to much more
basic proofs of the essential results.

Definition 3 A model M is said to be a-rich (a an ordinal) if it contains a
strict continuous chain of length a consisting of proper elementary substructures
Np -< M (/? < a) such that Np S M for all /3 < a. We say that M is very
rich if it is a-rich for every a < ||M||+

Now that we have the right definition, it is time to begin proving theorems.

Theorem 4 Suppose that T is a theory which has infinite models. Then for
every A > max(No> |r |) there is a very rich model MofT such that \\M\\ = A.

Proof: We may assume, without loss of generality, that T has built in Skolem
functions. The Skolem hull M of a chain X of indiscernibles, order isomorphic
to A is very rich.

To see this, note that for each /? < A+ we can find a continuous strictly increasing
sequence X{ (i < A) of subsets of X, each of which is order-isomorphic to X.
Applying the Skolem functions yields a chain of submodels Mt- within M having
the required properties. •

We presented the proof above, to outline the very simple idea that answering
questions about the existence of very rich models often involves similar questions



concerning other structures, only without the requirement that the appropriate
substructures are necessarily elementary. This idea is also the foundation of the
next result.

Theorem 5 Suppose that T is not superstable, and A > \T\ is regular. Then
for all fi > A, T has 2A very rich models of cardinality fi, none elementarily
embeddable in another.

Proof: For the cognoscenti we remark only that the proof will show that the
standard set of 2A not mutually embeddable models have this property, and
that the argument is essentially the same as the one above.

First we consider the case // = A. We see from [2] VIII.2 (or less technically in
[1]) that 2A models, none elementarily embeddable in another are constructed
as Ehrenfeucht-Mostowski hulls of sets of indiscernibles (for a Skolemization of
T). These indiscernibles have the structure of trees X = W >AU5 where S is
a stationary subset of A contained in the set {6 < A : ciS = a;}. The set S
is construed as a subset of ^A consisting of some fixed increasing sequences j]$
which converge to 6 for each 6 E S. No generality is lost by assuming that these
sequences rjs themselves consist of successors of limit ordinals (which amounts
to restricting the original set to those ordinals which are multiples of a;2). To
avoid overcomplicating our notation, we will identify the indiscernibles with the
corresponding trees.

For such X and M = EM(X)y set

Xo = W>(A - {( 4- 2 : C < A C a limit ordinal}) U S.

It is clear that Xo is isomorphic to X as a tree, (the isomorphism being induced
by a bijection between A and A — {£ + 2 : £ < A £ a limit ordinal} ) and that
the isomorphism may be chosen so that S and all the branches corresponding
to the sequences rjs are fixed. Since these trees are of height u; the isomorphism
preserves the height of each node. Further, beginning with Xo we may also
construct a continuous increasing chain of subtrees of X, each isomorphic to X,
of arbitrary length a < A+. This is accomplished by forming a descending chain
of subsets Ai (i < a) of {£ -f 2 : £ < A £ a limit ordinal} and then setting

Clearly, the Ehrenfeucht-Mostowski hulls of these subtrees witness the fact that
M is very rich.

If A < fj, then our task is easier. This time the models may be constructed as
Ehrenfeucht-Mostowski hulls of indiscernibles X UY where X is as above and

y = «>(/i -A) .



The entire construction can then be carried out inside Y, and since X and Y
are disjoint we do not even have to worry about branches converging to 5. •

Corollary 6 / / \i> A, and M are as above then there is an order preserving
embedding from V(fi) to the set {N : N -< M and N S M). This embedding
can be chosen to preserve arbitrary intersections.

Proof: All notation is as above. We give the proof only for the case p = A,
since again p < A is similar but easier. Let

A={C + 2 : C < A < a limit ordinal}.

Take an infinite subset B C A such that \A — B\ = A and define an order
reversing injection from V{\) to V(A) by taking any bijection / from A to
A- B, and, for T C A define:

Let

Finally, set M r ' = EM(XT)- Observe that for every pair of finite sequences
a, b C w> A, there is an automorphism <p of X fixing a, and mapping 6 into
aUX$ (such an automorphism is induced by any permutation / of A which fixes
the finite set of elements which occur in a, and maps any others which occur in
b to B). Thus if s and T are Skolem terms, and

s(a) = t(b)

then
s{a) = t(<p(b))

(since X is a tree of indiscernibles with respect to the Skolem functions). This
implies that for T C 7>(A),

(one containment is obvious, and the other follows from the fact that u;> B C XT
for all T C A). •

Note that if T has Skolem functions then the embedding constructed above
also preserves suprema (considered as a map into the set of all elementary
substructures of M ordered by inclusion). Note also that any acyclic directed
graph of cardinality < /i, any semilattice of cardinality < n and any distributive
lattice with < n prime ideals can be embedded in V(fi) and hence into {N :



N -< M and N = M) for 2A pairwise non-elementarily embeddable models M
of cardinality //.

With a little more care and a different sort of tree then using results in [4] we
can prove:

Theorem 7 If T is superstable but not totally transcendental, then for each
uncountable cardinal X > \T\ there are at least mmp2,2A) very rich models of
T of cardinality X.

Proof: See [4] for the appropriate trees. •

Now we can use this to prove:

Theorem SIfT is a countable theory, and for some uncountable cardinal X
there is a unique 1-rich model of T of cardinality X (up to isomorphism of
course), then T is categorical in every uncountable cardinal.

Proof: By Theorems 5 and 7 the hypotheses imply that T is totally tran-
scendental In turn this means that the unique 1-rich model of cardinality X is
the unique universal model in this cardinality and is saturated. Using a result
of Shelah ([2] IX.1.14(2)) this implies that T is unidimensional. But a unidi-
mensional and totally transcendental theory is categorical in every uncountable
cardinal (see [2] IX.1.8). •

If T is incomplete then it is possible to have small numbers of rich models
without categoricity. For example take the theory T whose models are the
disjoint union of an algebraically closed field of characteristic 0, and a set with
n or fewer elements. Clearly this theory has n -f 1 rich models in every infinite
cardinal.

Corollary 9 Under the assumptions of the theorem above, T has a unique
countable rich model.

Proof: In [2] IX.2.2 it is shown that the isomorphism types of countable models
of a theory which is categorical in u\ form a chain Mn (n < a;) so that Mn+\ is
a prime extension of Mn. Under these circumstances, only Mw can be rich. •

In the light of all these positive results concerning richness it is perhaps natural
to define a stronger notion (we were only kidding when we said that the previous
definition would be the last one).



Definition 10 A model M is said to be strongly a-rich if, it is a-rich, and
for all (3 < a, and every strict continuous chain Mi (i < f3) of proper elementary
submodels of M, each isomorphic to M, \Ji<pMi — M

The notion strongly a-rich is essentially the conjunction of a-rich, and < a-
strongly limit in the class of models isomorphic to M (see [3]). To prove the
existence of strongly a-rich models one may use the conjunction of a preservation
theorem, and a uniqueness theorem. Thus for example:

Proposition 11 Let T be a theory, and let X be a cardinal, c/(A) = u>. If there
is a special model MofT of cardinality A then M is strongly w-rich.

Proof: Special models of a particular cardinality, when they exist, are unique.
Further, the union of a chain of cf A special models of cardinality A is special. •

Similarly we have:

Proposition 12 Let T be a countable, superstable theory, and let A > Ki. If
there is a saturated model MofT with \\M\\ = A them M is strongly a-rich for
every a < A+.

Proof: See [2] III.3.11 for the appropriate preservation theorem. •

However, on the negative side we get:

Proposition 13 Let T be an unstable theory. If M is a saturated model ofT
and \\M\\ > 2'T' then M is not strongly u-rich. In fact, there is an elementary
chain of models Mn(n £ a;), each isomorphic to M, but UnewMn is not Ki-
saturated.

Proof: Let A = ||Af||. Since the theory T is unstable, there exists n < u, a
formula (p with 2n free variables, and an infinite subset of \M\n which is linearly
ordered by (p. It will be helpful, and not misleading, to assume that n = 1, and
to denote <p(x,y) by x < y. Add to L(T) a new unary predicate U, and form
the theory

V = T U "U is infinite" U "< linearly orders U"
U"No proper superset of U is linearly ordered by <"

Since A > ||T|| > \D(T)\ by [2] VIII.4.7 the existence of a saturated model for
T of cardinality A implies that A = A<A and hence T' will also have a saturated
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model Mn such that 11AfQ11 = A, and in which \UM<>\ = A. We define the subset
B C UM° to be the smallest final segment of UM° such that (7Mo - £ has no
maximal element (B may be empty).

By compactness, and the universality of saturated models, there is an elementary
extension M[ of MQ which is saturated, has cardinality A, and contains an
element a\ such that a < a\ for all a G UM° — B and a\ < b for all b G B. (Note
that by the saturation of MQ, no elements can be added to U which lie above
any element of B in any case). This process can be continued through UJ stages.
If we let M'^ = Un€u> Mn, and if we take the type p to be

{x > ai : 1 < % < u} U {U(x)} U{x<b:beB},

then p is not realized in M^ and hence M^ is not even Ni-saturated. But, by
the maximality of U, p \L(T) is not realized in Mw := M^ \L(T). On the other
hand, for each n < a;, Mn := M^\L(T) is saturated. Since we can embed M&
into M, this completes the proof. •
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