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Abstract We want to show existence of indiscernible sets in
models, without assuming the theory of the model is stable. Among
other things we prove the following theorem:

Let M be a model, and let X be a cardinal satisfying }JL^=X.
If fi does not have the a>-order property then for every ACM, |A|<X,

and every ICM of cardinality X+ there exists JCI of cardinality X+

which is an indiscernible set over A.
This is an improvement of a result of S. Shelah.

Partially supported by the NSF. I would like to thank Michael Albert,
and John Baldwin for suggestions to improvement of presentation.
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Indiscernible sequences and sets are a major tool in model theory.
There are many existence theorems (e.g. I 2.8 [Shi], I 5.2 [Sh2], [Sh3], and
[Sh4]). The aim of this paper is to present another existence theorem.
We work in f i rst order logic, however since we don't use this fact
strongly, and we never use the compactness theorem, our results easily
extend to L^ and other more general contexts (like L^ ^ ).

S. Shelah in (generalizing a result of M. Morley) has shown in
Theorem I 2.8 of [Sh 1 ]=

Theorem 1 If T is stable, and Ml=T is stable in X, then for

every ACM of cardinality < X, and every ICM of cardinality X+ there

exists JCI of cardinality X+ which is an indiscernible sequence over A.

In Theorems 1 5.1, and I 5.2 of [Sh2] he considered a
generalization of Theorem 1. Is it possible to waive the assumption that
Th(M) is stable? Is it possible to obtain the conclusion of Theorem 1
from a weaker assumption? He had a partial success, proving a
theorem which had a weaker conclusion than Theorem 1. Our aim here (see
part (1) of the main theorem) is to prove a result which has the same
conclusion as Theorem 1. Our argument is quite different from Shelah's.
But f irst we need a definition.

Definition 2 Let k be a positive integer, and let x be a cardinal
number.

(1) M has the (x.k)- Order property iff there exists a formula

f(x;y)el_(M), and there exists {a : CX<K}<=M, such that for all cx<x w

have JKx)=JL(y)=Jl(a )=k, and

for every cx,£<x cx<£ <=̂> M f̂»[a ;aR].
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(3) M has the Order property iff M has the X -Order property
for some infinite X.

Proposition 3 If X>ji>Ko then "M has the X-order property"
implies "M has the jj-order property" .
Proof Trivial.

Notice that in the terminology of [Shi] T has the order property
iff there exists MN=T which has the order property.

Main Theorem Let M be a model, let K=|L(M)|, and let X be a

cardinal satisfying XX=X.

(1) If M does not have the o> order property then for every

ACM, |A|<X, and every ICM of cardinality X+ there exists JCI of

cardinality X+ which is an indiscernible sequence over A.
(2) The conclusion of (1) is valid when X i s a strong limit

cardinal, X^=X, and M fail to have the X order property.

(3) Let X,X be given cardinals such that XX=X, and X>22 »

If M fail to have the X+ order property then or every ACM, |A|<X,

and every ICM of cardinality X+ there exists JCI of cardinality X+

which is an indiscernible sequence over A.

(4) Let XA satisfy X>K, X*=X, and X>22 . If M fail to have

the X+ order property then or every ACM, |Aj<X, and every ICM of

cardinality X+ there exists J C I of cardinality X+ which is an

indiscernible sequence over A.

Remarks (1) It is possible to get an indiscernible set instead a
sequence by proving first the above theorem and then copying the
argument from the proof of Lemma II 2.16 in [Shi].
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(2) We work inside a given model M, so all notions are relative to

it. E.g. tp(a,A):=tp(a,A,M), and if ACM then S(A)={tp(a.A) : aeM}.
(3) Notice that part (2) of the main theorem gives an alternative

proof to Theorems 2.1 and 2.2 of [Sh3] (take X=the Hanf number of

(4) Part (4) of the main theorem appears implicitly in chapter 1

of [Sh2], we decided to mention it here since it is obtained easily from

the other results, and our argument is sufficiently different than

Shelah's.

(5) It is natural to ask whether X+ in the statement of the main

theorem , can be replaced by any regular cardinal? A partial answer is in

Theorem 8.

The main tool to obtain indiscernible sequences is the notion of
splitting of types.

Definition 4 Let A,, A2 be sets of formulas, ACB and a be
given. We say that the type p^tp(a.B) (A1.A2)~ splits over A
if there are b, c e B such that tp A (b,A)=tpA (c.A) and there

exists a formula <p(x;y)eA2 such that <p(x;t>)ep and ^<p(x;c)ep .
When A1=A2=L we say p splits over A.

Lemma 5 Let <p(x;y) be a formula in L(M), lKy;x)-<p(x;y), and A={<p,y},
and let {A^CM = cx<X} increasing such that for every BGA such that

|B|<X, peSA(B)=> p is realized in A +1 . H 3peS(U A ) such that for
o< i o < < ^ ex

every <x<X PlAo<+1 ( W . W ^ s p l i t s over every subset of A^ of

cardinality less than X then M has the X order property.
Proof Let d be such that p=tp(d,UA ). By induction on cx<X

define {a^.b^.c^ e A2 ( x + 2 }. At stage ex; let B
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I.e. there are a ^ E ^ , such that tp^Ca^ .B^ tp^Cb^ .B^ ) and

^ ] . Let c^ e A2(X+2 t»e an element realizing the type

Let d^—a^ 'b^c^ , we want to show that

When p(xl>x2>X3;y1>y2,y3)
 := [<P(x1;y2^(P(x1;y3)], we have that

Clearly it is enough to show that J3<cx <=> Mt=<p[cR;a ]«—><p[cR;b ]],

(a) Since l=<p[d;a ]A-.<p[d;b ], by definition of c we have

that

(b) By the choice of a and b we have in particularand b

Lemma 6 (1) If M does not have the a)- order property then for

every X satisfying XK=\ , M is stable in X. Moreover for every

finite set of formulas A, M is A- ji -stable for every

(2) When X |S a strong limit cardinal, and X^=X the conclusion
of (1) follows if 11 fail to have the X order property.

(3) If M does not have the X+ order property then for every X

satisfying XX=X, and 2 <X^=X M is stable in X. Moreover for every
?X v

finite A M is A- j i stable for ji satisfying 2 <|iA=|i.
Proof (1) Suppose there exists ACM such that |S(A)|>X=|A|.

Let X be a cardinal satisfying XK=X , let A be of cardinality X

such that |S(A)|>X+. Fix {9JM<K }=L(M).

Consider the natural function f:S(A) -• X iSr^ UA) = i<x }.
ir j /
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It is easy to check that f is one to one. Hence IX iSr^ i(A) : i<x }|>X .

Since \K=\ there exists io<x such that | S ^ j(A)| > X+ Let <p:=<P0,

Clearly it is enough to show:

Claim For every ji>Xo, if there exists ACM such that |A|=ji and

\5(Q(AP'\I+ then M has the a>- order property.

Proof Suppose that A refute the claim. Since |S^j(A)| > p+

f ix {a^ i<ji+} be such that i ^ j ^ H p ^ a j . A ^ t p ^ t e j . A ) .

Define {An = n<0)} by induction on n<oo with the following properties:

(i) ACAn<=An+ , ,

(ii) lAJ^ji, and the main requirement:

(i i i) for every f inite BCAn, and for every

p € S {<P(x;y) } ( B ) U s i^ y \<p(y;x) } (B ) t h e l y p e p i s r e a l i z e d by a sequence

from A^+ 1 .

Since ls{cp(x-u)}(B)us {(p(n-x)}(
B)l i s f in i te the inductive definition

of sets as above can be carried out.

Sub Claim There exists i<j i+ such that for every n<0) and every

f ini te BCAn the type tp^(pj(a j,An+1) ({y-(y;x)},{<p(x;y)})-splits over B

Proof For the sake of contradiction suppose that for every i< j i+

there are n(i)<a> and a B J C A ^ Q of cardinality less than a) such that

the type t p ^ j ( a j , A n ( j ) + }) does not ({<f(y;x)},{f (x;y)})-spl i t over Bj.

Since j i + is regular, and there are at most j i many f in i te subsets of

there exist SCji+ of cardinality j i + , no<oo and B C A R such

that ies => nCO n̂o and BpB. Since BCAn is f inite, by requirement

( i i i ) there exists a f in i te set C, BCcCA n + 1 such that every
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peS {V I / (M-X)}^ ' S r e a ' ' z e c I bU a n element of C. For i<jj+ let

Pj;=tp(aj,An + 1 ) . Another use of the pigeon hole principle gives an S'QS

of cardinality \i+ such that i*jeS'=>pj|C=p|C; denote the latter type

by p. Let <x*£eS\ since P^IA^PRIA there exists aeA such that

f=tp[a ;a] and l=--<p[aR;a] . By the choice of C there exists a'eC such

that tpr^(u.xyi(a,B)=tpr^/u.x\j(a\B) , since p does not split over B

we have that <Kx;a)ep<=>-<p(x;a')ep ; since l^f fa^a] and t=-*<p[a«;a]

also f=<p[a ;a'] and t=--f[aR;a1]. But the last conjunction contradicts

ex p J

p IC=pR|C . Let i<ji+ be from the subclaim, apply Lemma 5 to obtain the

order property.

(2) When X 1S strong limit repeat the argument of (1) when u>
is replaced by X a n d "finite" is replaced by "of cardinality less than
X". The assumption that X*=X is used in (iii), the assumption that X
is strong limit is used in the choice of C.

(3) As in (1) we want to use Lemma 5 to obtain the order property
from instability in j i . Repeat the proof of the Claim with the following

changes: define {A^ = cx<X+) increasing and continuous such that (i)

ACA . (ii) |A l=ji, and (i i i) for every BCA of cardinality <X
CX CX ON

P(U'x)}^ t h e ^Pe P 's r e a l * z e d bU a sequence

Since ISf.pCx^MCBWsWy^^^j^B)! < Z^KBSA^ =
the construction is possible. After fixing BGA^ as

from A ^ , .

in the subclaim, choose CCA of cardinality <2^. Since the number
(XQ

7X
of { f } - types over C is at most 2 which is less or equal to \i, the

choice of S'Cji+ is possible. The rest is as before. n6
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Notation We call NKM x + relatively saturated i f f for every BCN

of cardinality x every type over B which is realized in N is realized in

N. We denote this by N-<VM. When N is relatively x saturated we

denote this by N-<<XM.

Lemma 7 (1) Suppose M does not have the a) order property. Let

N-< M of cardinality X (when X satisfying XX=X). If peS(N) then

there exists BCN of cardinality at most x such that p does not split

over B.

(2) Let X b e a strong l imit cardinal such that X^=X. If M does

not have the X order property then for every N<^r1, and every peS(N)

there exists BCN of cardinality at most X s u c h that p does not split

over B.

(3) Let j i ,x be cardinals such that j i^=j i>x+2 . Suppose M does

not have the X+ order property, and let U< M. If peS(N) there

exists BCN of cardinality at most j i such that p does not split over

B.

(4) Let X>* (= |L(r1)|), and N^^N. Suppose that M fai l to have

the X+ order property. If peS(N) then there exists BCN of

cardinality at most X s u c n t h a t P does not split over B.

Proof (1) If for every BCN such that |B|<x p spl i ts over B, we

can define by induction on i<x+ AjCN such that |Aj|<x, for every f inite

A, every peSA(Aj) is realized in A j +1> and p|Aj + 1 splits over Aj. By

Lemma 6(1) |SA(Aj)|<x; in general it is possible that there exists a A

type p over Aj which is not realized in N, so we use here the
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assumption N< (1. Suppose <Pi is the formula which exemplifies the

fact that P|Aj+1 spl i ts over Aj. There exists SCx+ of cardinality x+

and a formula <f> such that ieS=><J>j=<P- By renumbering, we may assume

without loss of generality that S=x+. Since {A :
 <X<K+} and <p

satisfy the hypothesis of Lemma 5, M has the K + - order property. Hence

by Proposition 3 M has the <JI> order property.

(2) Similar to (1).

(3) Define {Aj ^ N = i<ji} |AJ|=JI, such that for every f inite A

peS(Aj) p is realized in A j + 1 . This is possible by Lemma 6(3), as

before now we can get the ) i+ order property.

(4) Carry out the argument of Lemma 5 inside the model N. For

the sake of contradiction suppose that peS(N) is such that for every

GN of cardinality X P splits over B. Define {a ,b ,c e N : cx<X+}
O\ (X O\

c x B B B ' a n d ^cx 6 1 ^ ) s u c h t h a t t n e f a c t t h a t P

splits over B is demonstrated by 9 , and a , b . c is chosen

as an element realizing p|A (possible since N<VM). Since X+

there exists S^X+ °^ cardinality X+ s u c n that cx^^eS =» <p =«Po. The

rest is like Lemma 5. dy

Proof of the Main Theorem (1) Let A, and I be given.

Suppose I={aj = i<X+}. Define { Mj-<M : i<X+} increasing and

continuous such that

(i) M0=>A,

(i i) IMjl=X,

( i i i ) n j + 1 <K M, and

(iv) M j+1=>MjU{aj}.
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Since XX=X, and Lemma 6(1) the construction, can be carried out. By

Zermelo - Konig's Theorem since XX=X we have that X>x, hence the

set {8<X+ = cf8=x+} is stationary. Observe that for 8<X+ of

cofinality x+ we have that n 8 < x M.

Consider f(8) = Min{i<X+ = tp(as,Mg) does not split over M(}. By

Lemma 7(1) f(8)<8 for every 8<X+ of cofinality x+ . By Fodor's

theorem there is a stationary set S and i0 such that 8eS=>f(S)=i0.

Denote ps=tp(ag,Ms). Since by Lemma 6 M is stable in X, there is

S'<=S of cardinality X+ such that <x,£eS' => pJMj + I=PR|MJ + 1 •

For SeS' let BgCMj be the set provided by Lemma 7 i.e. pg does not

split over Bg. Since the number of subsets of tij of cardinality x is

X x which is X by the assumption on X; there exists S"QS' of

cardinality X+ , and BCMj such that SeS"=>B8=B. Recall:

Fact (see [Shi]) Let n<a> , Let A<=L(M), let A be a set, and

let I={a| : i<cx} be a set of f inite sequences all of the same length. Let

Aj--=AU{a: : j< i } , and let pj-tp(aj,Aj). If for every \<<x Pj does not

split over A and i<j => Pj^P; then I is an indiscernible sequence

over A.

Let A:=L(M). Thus, it is enough to show that o<<^eS"=>pc<CpD. Suppose
c <

this is not the case, i.e. there exists y(x;a) s u c h that y(x;a)ep and

- lf(x;a)epR. Since Ms + 1 < M there exists a'eM: . , such that

tp(a',B)=tp(a,B). Since both p and pR do not split over B we have

that yCxiaOep^ and -^(xiaOep^. Hence pJMj + 1 *PR|MJ + l which is a

contradiction to the fact that both o< and £ are members of S'.

(2) Exercise.
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(3) Repeat the argument in (1) using Lemma 7(3), when ji:= 2

(4) Define {Mj = i<X+} increasing and continuous, Mj+1<L,ri, and

IIMjll=X. Use Lemma 7(4) to show that f is regressive, apply Lemma

6(3) that there few types over Mj . This completes the proof of

the main theorem, n

Theorem 8 Let N a given model, let A be a f inite set of formulas in

L(M). If X is regular greater than |L(M)| , X<IINII , and M fait to have

the o> order property (or alternatively X i s a strong l imit cardinal,

such that X^=X, and M fai l to have the X order property) then for

every AQM of cardinality less than X, and every IQM of cardinality X

there exists J C I of cardinality X which is an indiscernible sequence

over the set A.

Proof By Lemma 6(1), M is A - j i stable for every X>p>J^,. A

similar argument to that in the proof of Lemma 7 shows:

(*) for every N<N, and every peS^(N) there exists a f ini te BCN such

that p does not split over B.

Now look at the proof of the main theorem, and make the fol lowing

changes: I={3| : i<X}, define {Nj<F1 : i<X} increasing and continuous

such that (1) M0=>A, (2) Hr1jIK|i|+|A|iL(M)|, (3) M j + 1 <M, and (4)

I.e. X+ is replaced by X, x + is replaced by X,,, since {8<X = cf8=Xo}

is stationary the Fodor lemma argument can be carried out when (*)

replaces Lemma 7. When X ' s strong l imi t use the failure of the X

order property to show
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for every N<< XN, and every peSA(N) there exists a B^N of

nality less than X s u c h t h a t P d o e s n o t s P l i t o v e r B-

sst of the proof is easy. • 8

It is easy to verify that the following variant of the main theorem is

rem 9 Let M be a model, let X be an inaccessible cardinal

er than |L(M)|.

(1) If M does not have the o> order property then for every

, |A|<X, and every ICM of cardinality X there exists JC I of

nality X which is an indiscernible sequence over A.

(2) The conclusion of (1) is valid when X *s a strong l imit

nal, X*=X, and M fai l to have the X order property.

(3) The conclusion of (1) is valid when M fa i l to have the X+

property, and

o. 1978.
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for every N<<XM, and every peSA(N) there exists a

nality less than X s u c t l that p does not split over B.

ast of the proof is easy.

QN of

J8

It is easy to verify that the following variant of the main theorem is

rem 9 Let M be a model, let X be an inaccessible cardinal

er than |L(M)|.

(1) If M does not have the a) order property then for every

, |A|<X, and every ICM of cardinality X there exists J C I of

nality X which is an indiscernible sequence over A.

(2) The conclusion of (1) is valid when X 's a strong l imi t

la l , X^=X, and N fai l to have the X order property.

(3) The conclusion of (1) is valid when M fa i l to have the X+

property, and X^=X. nQ
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