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If fj. is finite on R , i.e. /i 6 M (R ), then the sign conditions in (ii)

reduce to R pt (m) > 0. A measure /i is obviously of strong positive

type if the inequalities in (ii) hold with —SL. j o n the right-hand
1+t*

sides (instead of 0). For further properties of measures of positive

type, see [1, chapter 16].

Strongly positive kernels have their main application in the analysis

of Volterra equations. In these applications it is frequently of interest

to have access to approximations a. of a strongly positive kernel a.

These approximations should be smoother than a, they should converge to

a in a sufficiently strong sense and, in addition, each a, should be

strongly positive with the same constant q as a.

Below we construct such approximations. We formulate three Lemmas;

with different smoothness assumptions on the given kernel. Lemma 1 takes

/x(ds) = a(s)ds with a differentiable; ; Lemmas 2 and 3 consider kernels

with less smoothness. Since the proofs are quite analogous to each other

we only give the proof of Lemma 1.

Lemma 1. Assume that

a € A C 1 Q C (R
+; C™11), a' € L1 (R+;

and let a be of strong positive type with constant q > 0.

00

Then there exist i3^} satisfying
k=l

a. € C° (R+



a, is of strong positive type with constant q, and such that for k -* °°,

a, (t) »a (t) uniformly on R ,

a^ »a' in L1 (R+; S?™),
t r

a/ (t) > a (t) at every Lebesgue point of a.

Proof. Without loss of generality, take a («>) = 0 and q = 1.
9 ' 1 +

Define a(t) = a (t) = 0 for t < 0. Note that since a € L (R ), then

the (distribution) Fourier transform a of a is a function, defined

for to ?* 0. Moreover, the condition a(«>) = 0 implies that the Fourier
transform of a has no point mass at the origin. Write oc(co) = R a (w).

By the fact that a € B U C (R+) fl PT (R+) one has, using Bochner's

theorem, see [1, chapter 16, Theorem 2.6],

(1) a (t) = j f ei(Jt a(co) dw, t 6 R+.

R

In particular, as 0 < |a(o) | < » and a > 0, it follows that a 6 L (R)

Let Tj(t), t G R, be defined by

T)(t) = (cos t - cos 2t), t6 R\ {0},

irt2

, . 3V(o) = gp.

T h e n 77 € C°° ( R ) , r / 1 ) G L 2 ( R ) f o r i = 0 , l , 2 a n d | 7 7 ( t ) d t = 1 .

Moreover,

1, |«| < 1

2 - |«| 1 < |u| < 2,

. 0 |u| > 2.

For k > 0 and t € R, let T^ (t) = kn (kt). Clearly



V € L
In addition, one has 17, (w) = 17 (:-) and so

1, |w| < k,

(3) ^(w) = <2 - || |. k < \w\ i 2k,

0 2k < |w|.

Define f. (t) = (TJ, X a) (t) for t f E. Then

(4) fk ec"(R;

and by (2),

Cla(O)|+||a'||Ll(R+)] || T, ||L1(R)

Thus

(5)

F r

Analogously, f, = a (o) TL + 17, ' ̂  a , which implies

(6) f£ e L1 (R ;

From (3) follows

(7)

a («), |a

[2 - |£|] a («), k <
0 2k

k,

Define E (t) , t € R, by

E (t) =

0 , t < 0,

and g, = E - 17, * E. Then

e t I. t 2 0,

(8)



with

(9)

Obviously

(10)

sup

[g " € L1(R+),

sup

(R )

R gk (o)) =•

0, |o)| < k ,

1+0)

^ ~ 2 I . 2k < |o)|.
1+0)

|o| < 2k,

For t € R, write hfc (t) = ffc(t) + gfc (t). Then by (7), (10) and

since a is strongly positive with constant 1,

R ̂  («) = «

a (w), |G)| < k, w ^ 0,

[2 - |£|] a (W) + J-Q (||| - 1) I > J-o I, k < |o)| < 2k,

2k
1+w

Thus

1+0)
I < R K (o)) < a((o), 0) € R\{0}.

(t) +

Define the approximations a, by
XV

). t > 0,

t < 0.

By (4) - (6), (8), (9),



SUP II £L ' | | l / ( R ) < «>, 2L "6
k

The difference between h, and a, is an odd function. Therefore,

def ~ ~
a, R a, = Rh, and consequently

(11) 9 I < OL (w) < a(G)), (o € R\ {0}.
1 + (0

Thus each 8u is of strong positive type with constant 1. Moreover, each

a, is bounded and uniformly continuous, hence Bochner's theorem applies

and so

(12) a^t) = I J e i W t o^iio), t 6 R+.

R

(1), (11), (12) and Lebesgue's dominated convergence theorem,

up + |a(t) - ak(t) | < I J |«(«) - 0^(0
t € R -.

sup A |a(t) - a^(t) | < - J |a(cu) - aju) | dco ^ 0, k

R

To complete the proof it remains to show that a, converges to a

Write a^t) = [^(t) + gk(~t)] + [fk(t) + fk(-t)] and let E(t) = E(-t),

a (t) = a (-t) for t € R. Simple calculations, which use the fact that

TJ is even, yield for t nonzero,

5t C gk ( t ) + gk (~ t ) ] = ~e"t V +(T]k * E)(t) " (T?k M f)(t)' Since ^k * E

» ( T7(s)ds) E, T)k ̂  E » ( T](s)ds) E in L (R) (and pointwise

R R

for t ̂  0) and since T7(s)ds = 1, it follows that

R

Li(R+)=o.



Analogously,

If C fk (t) + fk("t)] = \ ^ ' - T , k « a ' - » a ' - a ' in LJ(R),

and so

(13) lim || a - ^ ||L1 ( R + ) = Q

r

Since we have pointwise convergence in (13) at each Lebesgue point of a

the proof is complete.

For the case where |a(0+) | = °° it is useful to have the following

result^

LEMMA 2. Assume that

and let

a be of strong positive type with constant q > 0.

CO

Then there exist {^/i. _ i satisfying



8

sup

6 L 1 (R+; C 1 ^ ) , i = 1, 2, ....

a^ is of strong positive type with constant f > 0,

and such that for k —» °°

; ^ »a in L2(R+ ;

£u (t) » a(t) at every Lebesgue point of a.

If n does not satisfy any regularity assumptions the method above

only yields a rather weak form of convergence:

LEMMA 3. Let \x 6 M (R+ ; C1™1) be of strong positive type with

constant q > 0. Then there exist /^ G CW(R+ ; (D11^) satisfying

£ e L V ; d™), 1 = 1,2

/LL is of strong positive type with constant q > 0,

and such that

l\ » fi in S .
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