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1. The theorem.
When studying surface effects vithin the framework of continuum

mechanics one is often confronted with terms of the form

(d/dt)[f(x,t)da(x), (1).

where A(t) is a surface which evolves with time t, f(x,t), defined
for all X€A(t) and all t, is the density (per unit area) of a
superficial quantity such as energy, and da(x) is the area measure on
surfaces in R3. The evaluation of (1) is nontrivial when £(t) evolves
within a fixed region QcR3 and d£(t)cdQ is nonempty, for then a
portion of (1) must balance an outflow of f due to the transport of
portions of £(t) across dQ.

We assume that £(t) is smooth and oriented by n(x,t), a
particular choice of continuous unit-normal field, and we write V(x,t)
and K(x,t) for the normal velocity and total curvature. (Total
curvature is twice the normal curvature.) It is the purpose of this
note to prove the transport theorem:1

1An argument in support of (2) is contained in the vork Moeckel [1]. Moeckel
assumes that the interface can be identified vith a "fictitious" (sic) evolving
membrane whose boundary coincides vith the boundary of the interface at each
time, and then appeals to a standard transport theorem for membranes.
Unfortunately, Moeckel expresses the outflow in terms of the membrane
velocity, which is not intrinsic, and which obscures the influence of the
confining region Q. Moreover, the existence of such an evolving membrane is
not at all obvious, and, in fact, seems to constitute a mathematical problem
more difficult than the original problem of verifying (2). Angenent and Gurtin
[2] establish (2) for an evolving curve in a two-dimensional space, but their
proof does not extend.
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(d/dt){fda = J(f°-fKV)da - outflow(f.d,8(t)), (2)

outflow(f,d£(t)) - JfVp(1-p2nds. p « n - v .

Here f is the normal time derivative of f as defined below, ds is
the measure of length on curves in R3, and v(x) is the outward unit
normal on dQ.

2. Assumptions and preliminary definitions.
It is convenient to identify RH with R3xR.
We assume that QcR3 is a bounded, open region with smooth

boundary dQ, and write v(x) for the outward unit normal on dQ.
We assume that A(t )cR 3 is defined for all t in an open interval T
and: (SI) £(t) is the intersection with Q of a smooth,
nonintersecting, oriented surface, and d£(t)cdQ; (S2) n(x,t), the
unit normal to ,S(t), satisfies ln(x,t)-v(x)l * 1 on d£(t); (S3) the

A set

£ T = {(x,t) : X€A(t), t€T }

is a smooth three-dimensional surface in RH with normal never
parallel to the time direction.

We assume that f(x,t) is a smooth scalar field on £ T .

We write N(x,t) and U(x), respectively, for n(x,t) and v(x)
considered as unit vectors in R\ and E for the unit vector in R"1

in the time direction:

N - (n.O). U «(v,O), E-(O.I). (3)

By (S3) there is a scalar field V such that N-VE is normal to £ T ;
the field V represents the normal velocity of the surface in the
direction n. We write M for the unit vector in the direction of

( N-VE:

-2arr».



h - q(N - VE). q = (1 + V2)"*. (4)

Then M(x.t)1 is the tangent plane to AT at (x.t). We write E*

for the normalized projection of E onto M1 :

E* « q(VN + E). (5)

Given any field $ on AT, ve write V4> for the surface

gradient2 of * on AT: V*(x, t) is a vector in M(x.t)1 if $ is

scalar-valued; it is a linear transformation from MCx.t)1 into R1*
if 4> is vector-valued. For • a scalar field, we define the normal
time derivative $• through

$• * V* - (VN + E). (6)

We write div for the surface divergence on AT: if $ is a
vector field on £TJ div4>«trace[PV<t], where P(x,t) is the

projection of R4 onto M(x.t)1. It is not difficult to verify that

K = -divN (7)

is the total curvature of A(t).
The identity

d ivE* « -qicV (8)

is useful. Its verification is not difficult: since Vq«-q3VVV and
q - q V - q 3 , (5) and (7)2 yield

2Many of the definitions and identities that ve use concerning surfaces can
be found in [3,4].
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divE* = qVdivN + q'VV-N - q3VVV-E - -qVK + q3VV-(N - VE)

which implies (8). since N-VE is normal to £ T (cf. (4)).

3. Proof of the transport theorem.
Given a time interval R-tt^t^CT, the surface divergence

theorem applied to the vector field fE* on

£R « Ux.t) : X€A(t), t€R }

has the form

JfE*-WdA2 = Jdiv(fE*)dA3. (9)

Here dAn (n = 1.2) is the "area" measure on n-dimensional surfaces in

R\ while W is the outward unit normal to d£R. d^R is the union

of the sets

topUR) - { ( x . p :
botUR) = {(x.t0): 0

s1deUR) - { (x, t ) : X€da(t). teT},

whose intersection has zero Admeasure, and, trivially,

E * - W - 1 on topUR), E * - W - - 1 on botUR). (10)

The computation of E*-W on sideGSR) is not so simple. Since

p « n-v « N-U, (11)

(4) and (5) yield

( U- r l -qp, U-E*-qpV. (12)



If A = U - (U - M)M, the projection of U onto M 1 , then W - A / I A I
on sideC8R). Thus, using (12),

W = ( 1 - q V P ( U - qpM) on sideUR). <13)

and, since M-E*=O and

(1 - q2p2) = (1 - p2 + V2)/(1 + V2), (14)

a simple calculation using (12) leads to

E*.W = Vp(1-p2 + V 2 n on sideUR). (15)

By (5), (6), and (8), div(fE*) = q(-fVK + f ) ; thus (9) yields

JfdA2 - JfdA2 + JfVp(1-p2 + V2)"?dA2 = fq ( f - fKV)dA3.
topUR) botUR) sideUR) &R (16)

Further,

| fdA 2 - [ fda, ffdA2 - Jfda. (17)
topU R ) A ( t t ) bo tU R ) A ( t 0 )

The final step is to rewrite the remaining terms in (16) as iterated
integrals. For any function g on AR,

fgd<\ - j { Jg (E* -E ) - 1 da}d t « J { fgq" 1 da}d t , (IB)
&R t0 MX) t0 MX)

where we have used (5). On the other hand,

JgdA2 = I { Jg(B-E)"1ds}dt. (19)
sideUR) t0

where B(x,t) with B-E>0 is that unit vector in the tangent plane to



side(d^R) which is normal to d*(t). In fact, B-C/ ICI . where C is

the projection of E* onto W 1 :

C - E* - (E»-W)W.

By (4)2 and (15).

Further, since E*.M = U-E = O, (4). (5). (12). and (13) yield

E* - E = q. E* - W = qpV(1 - q2p2) ' i E - W = q2pV(1 - q2p2) ' i

and hence, using (14),

Thus (19) yields

JgdA2 = I { Jg{(1-p2 + V 2 ) / ( 1 - p 2 ) > W } d t . (20)
sideUR) t0 d£(t)

Finally, in view of (17). (18). and (20). (16) reduces to

t i 1 t i

Jfda - {f da + J { J fVp/(1 -p2 )^ds} dt - J { J ( f - fKV)da} dt;
^(t,) Mi0) t0 d^(t) t0

and differentiation with respect to t1 yields (2).

Remark 1. £(t) is the intersection with Q of an oriented
surface trt(t); let |i(x.t), a tongent vector to Tft(t) at X€iTl(t).
denote the outward unit normal to d£(t) as a curve in Kl(t). The
calculation of the outflow term in (2) is essentially the calculation of

( the velocity o(x.t) of d£(t) in the direction ji(x.t). In fact. If
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consider an arbitrary (smoothly-evolving) patch A(t) of an evolving
surface Tit(t), then

(d/dt)Jfda - ( ( f - fKV)da - j fods. (21)

Remark 2. It is important to identify the term outflow(f,d£(t))
in (2) as a term representing an outflow of f(x.t) due to the
transport of portions of £(t) across dQ. If one writes, e.g., balance
of energy for a continuous body Q consisting of two phases separated
by an interface Mi) with interfacial energy f, then a term of the
form outflow(f,d^(t)) should appear (cf. Gurtin [4]). Moeckel [1] fails
to include such an outflow in his balance laws. Fernandez-Diaz and
Williams [5] point this out, but unfortunately the outflow term they

? i
propose is incorrect, as it does not include the scale factor (1-p ) 2.

Remark 3. It is possible to write the transport identity (2) in
terms of a non-normal velocity. Indeed, for v = Vn + u with u«n = O,

(d/dt)Jfda = J ( f + fdivu)da - outflow(f,d£(t)). (22)
* ( t ) MX)

where f °»V f» (v + E) is the derivative following v, div is the
surface divergence, and

outflow(f,d*(t)) » Jf[Vp(1-p2r^ + u-v(1+p2 r^ ]ds. p . n - v .
(23)
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