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Abstract

Cameron has introduced a natural bijection between the set of one way infinite binary sequences and
the set of sum-free sets (of positive integers), and observed that a sum-free set is ultimately periodic only
if the corresponding binary sequence is ultimately periodic. He asked if the converse also holds. In this
paper we present necessary and sufficient conditions for a sum-free set to be ultimately periodic, and
show how these conditions can be used to test specific sets; these tests produce the first evidence of a
positive nature that certain sets are, in fact, not ultimately periodic.

1 Introduction
There is a natural bijection between the set of binary sequences and the set of sum-free sets of positive
integers. In [2] Cameron observed that a sum-free set is ultimately periodic only if the corresponding binary
sequence is ultimately periodic, and asked whether the converse is also true. This question is still open;
however there do exist relatively simple sets for which it would appear that the answer is no; that is, the
sets correspond to ultimately periodic binary sequences, but the sets themselves are apparently aperiodic.
A major dificulty is that while it is a relatively simple matter to determine that a set is ultimately periodic
(requiring only a finite number of terms) no method is presently known that will show that a sum-free set
is not ultimately periodic, from a consideration of only finitely many elements of the set.

In this paper we introduce two new functions gs(n) and gs(n) defined on the positive integers, and we
show that the behaviour of these functions determines whether a set is ultimately periodic or not. More
precisely, we prove that, if its corresponding binary sequence is ultimately periodic, then a sum-free set 5 is
ultimately periodic if and only if gs(n) is bounded, and that if it is not bounded then gs(n) grows at least
as fast as logn.

2 Definitions
A set 5 of positive integers is said to be sum-free if there do not exist x,y, z G S such that x -f y = z.
Observe that we do not require x, y to be distinct. We shall denote the set of sum-free sets of positive integers
by S.

A sum-free set is said to be ultimately complete if for all sufficiently large n, either n G S or there
exist x,y £ S such that x + y = n. A sum-free set is periodic if there exists a positive integer m such that
for all n > 1, n G S if and only if n -f m G 5. A sum-free set is said to be ultimately periodic if there
exist positive integers m, n0 such that for all n > n0, n G S if and only if n -f- m G S.

If S is ultimately periodic, then there is a unique minimum period; indeed, if mi,m2 are both periods
for the elements of S greater than no then the greatest common divisor of mi, 7712 is also a period for S.
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If 5 is a periodic subset of IN then let S denote the set

S = {«i,«2,...,**} (mod m)

where m is the least modulus for which s G 5 if and only if s = Si (mod m) for some s* G 5. If 5 is
ultimately periodic, let S be defined similarly, in that for some n0 for all s > n0, s G S if and only if s = s,-
(mod m) for some S{ G S.

For example,
S = {1,3,5,7,9,...} is periodic, S = {1} (mod 2)

S = {1,5,7,9,...} = {1,3,5,7,9,...} \ {3} is ultimately periodic, § = {1} (mod 2)

5 = {1} U {5,8,11,14,17,20,...} is ultimately periodic, 5 = 2 (mod 3)

3 The Fundamental Bijection*
Define the bijection 9 between the set 2m of binary sequences and the set S of sum-free sets as follows.

Let a be an element of 2W , say <ri<72<73... where <T{ G {0,1} for every i. We now construct sets St-, Ii , J7*;
start with So = To = Uo = 0.

For i = 1,2,3,... perform the following operations. Let n* be the least element of
N \ (S^ U U-i U t/i-i). Then

f 5,- =5MU{n t}
if<rt- = 1, put

if ^ = o, put ^ T;- =Ti-i
{ Ui = ^ i U { n , - } .

Let 5 = U»5,> then, since each 5,- is sum-free, and since Si C Si+i, 5 is also sum-free. Let 6 be the
mapping from 2W to S defined by these operations, so that, for example

9:
9:
9:
9:

11111111...
01010101...
10101010...
1010010101...

- {1
~ {2
" {1
-> {1

,3,5
,5,8
,4,7
,4,8

,7,9,11,13,15,...
,11,...}
,io,...}
,11,14,...}.

It is natural now to ask whether 9 is invertible; in essence, since each entry in a binary sequence a
corresponds to exactly one element of S U (IN \ (S + 5)), this is easily seen to be the case; indeed, let S be
a sum-free set, and construct an infinite binary sequence as follows: define a ternary sequence r by setting

{ 1 i fnGS
* if n G S -h S
0 otherwise

Convert this sequence to a binary sequence by deleting all *'s. It is an easy exercise to check that this is the
inverse of the mapping from 2W to S defined above. We have thus defined a bijection 9 from 2W to S.

We shall now make some observations about this bijection:
1. It is very natural: if asked to construct a sum-free set, we would be quite likely to do it in an element by
element fashion, making a choice whether or not to include each element of IN. An element would only be
considered for inclusion if it didn't cause a violation of the condition that S be sum-free. If we now consider
the elements of N in the obvious order (1, then 2, then 3, then 4,...) we obtain exactly the bijection 9
between lists of choices made (binary sequences) and sum-free sets.

2. There is a natural metric on the set of sequences 2^: two sequences are at distance 2~fc if they differ
for the first time at the (k -f l)-st place; there is also a natural metric on the set of sum-free sets: two sets
are at a distance 2"* if k + 1 is the least element in Si A S2 = (Si U S2) \ (Si D S2). -



The bijection 9 is clearly bicontinuous with respect to the induced topologies, so we have a homeomor-
phism between 2W and S. An open ball of radius 2~* about cr in 2W consists of all sequences whose initial
segment of length k agrees with cr. An open ball of radius 2~* in S about So consists of all sum-free sets S
such that 5 D {1,2,3,. . . , i } = 5b fl {1,2,3,. . . , Jb}.

3. IfS is ultimately periodic then 0"1(S) is also ultimately periodic: further, the period of 0~1(S) divides
(period of S - no. of elements in a period which are ultimately sums of smaller elements of S).

To see this, suppose that for all n £ S, n > no we have

n = Si+ mk for Si £ {«i, s2i..., sr} = So> 0 < $i < s2 < . . . < sr < m,

and that every n of this form, n > n0 is in S. Then S is ultimately periodic, and there exists an ni dependent
upon m, n0, such that for every n £ W, n > ni(n0,m) we have
(a) n E S if and only if n -f m £ 5
(b) n ^ 5,3#, y £ 5, x -f y = n if and only if n -f m £ 5,3x', y' € S,x' + yf = n+ m
(c) n £ S, fix, y £ 5, x + y = n if and only if n + m $ S fix', y7 £ Syx' + y' = n + m

Thus the set of numbers n satisfying (a), those satisfying (b), and those satifying (c), are all ultimately
periodic. Therefore the ternary sequence T\T2TZ . . . = r where

f 0 if«
r<= < 1 iff £ 5

if % £ S + 5

is ultimately periodic. Then by deleting all occurences of * from r we obtain an ultimately periodic binary
sequence; this however, as noted above, is nothing but ^~1(5). Thus, if S is ultimately periodic, then 9~1{S)
is also ultimately periodic.

4. S is ultimately complete if and only if the sequence $"1(S) contains only finitely many zeroes. Indeed,
in the construction given for a sum-free set from a binary sequence, an element is not included if and only
if it is either a sum of smaller elements already in the set, or the corresponding term in the binary sequence
is zero. Thus if 5 is ultimately complete then we can only have finitely many elements excluded because of
zeroes in ^~1(5).

This immediately implies that the set of ultimately complete sum-free sets is countable. By way of a
contrast, we have

Proposition 3.1 The set of maximal sum-free sets (i.e. those sum-free sets for which for every n £ S there
exist x, y £ 5 such that either x + y = n or x -f n = y) is uncountable.

Proof Consider the set

{9,11,14,16,19,21,24,26,29,...} = {n\n = 5ib ± 1, k = 2,3, . . .}.

This set is clearly sum-free. Further, if we add to this set the element 2, we find that the only solutions
to the equation x + y = z are of the form 2-f5fc— l = 5fc + l. Consider now an arbitrary partition of
{2,3,4,5,...} into two parts, say N\)N2- Then the set SpfltN2 given by

{2} U {5Jfc - l | i £ Nx} U {5Jk + 1|* £ N2}

is sum-free, since by definition iVi O iV2 = 0. Then none of the integers bk — 1, k £ N2 or bk + 1, k £ Ni can
be added to the set SN1}N2I ^ t n e v are respectively differences or sums of pairs of elements in SNltN2- Now
extend SN1}N2 to a maximal sum-free set, say TJV1>JV2

: it is immediate from the preceding comments that
the sets TN1,N2^MlyM2

 a r e distinct if N\ ^ M\: as there are uncountably many partitions of {2,3,4,...}
we have proven the proposition. I

Corollary 3.1 There exist uncountably many aperiodic maximal sum-free sets of positive lower density.

Indeed, the lower asymptotic density ofTjsrl)N2
 1S a t least g-. This answers a question of Stewart (personal

communication), regarding the existence of aperiodic maximal sets of positive density.



4 Periodicity of Sum-free Sets

We shall now consider one of the most intriguing questions regarding sum-free sets, namely the relationship
between the periodicity of a binary string cr, and the periodicity of the associated sum-free set 0(<r): Cameron
[2] asked whether it is true that that 0~1(S) is ultimately periodic if and only if 5 is ultimately periodic.

In Lemma 4.1 we prove that if a sum-free set 5 is ultimately periodic, then so is 0~1(S). In Lemma
4.2 we show, essentially, that if a set S appears to be ultimately periodic for long enough, and if it has an
ultimately periodic input sequence 0~1(S) then S is ultimately periodic.

We introduce new functions, g(n) = gs(n) and gs(n)'- in Theorem 4.1 we show that if 0"1(S) is ultimately
periodic, then S is ultimately periodic if and only if g(n) is bounded. In Theorem 4.2 we show that if 0"1(S)
is ultimately periodic, and g(n) is not bounded, then for n > no, <js{n) > clogn.

4.1 When is a sum-free set periodic?
Cameron(personal communication) has asked whether any of the following statements are true:
(i) A binary string a is ultimately periodic if and only if 0(a) is ultimately periodic,
(ii) <j has only finitely many zeroes if and only if 0(<r) is ultimately periodic and ultimately complete.
Clearly (i) = > (ii), but not necessarily vice versa.

Each of these questions is still open; however, since they were first suggested, we have found evidence to
suggest that (i) is false, and Cameron [2] has found evidence that (ii) may also be false.

Before presenting this evidence, we shall prove the following lemmata: Lemma 4.1 shows that in each
of the questions, the "if' part holds, and Lemma 4.2 shows that in order to prove that a sum-free set is
ultimately periodic, we need only consider a finite prefix of the set.

Lemma 4.1 (Cameron[2]) If 0{&) is ultimately periodic then <x is also ultimately periodic.

Proof. Suppose that 0{cr) = 5, and that the periodic part of 5 is S (mod m). Then

5 = T U {si + Arm, s2 + km,..., Si + km\k > kQ}

where
5 = {*i, s2i..., Si} (mod m), 0 < Sj < m

and
T = S H {1,2,...,

For every n > 1 construct r(n) as follows:

{ 1 if n
0 if n
* if n

es
r(n)={ 0 if n£S and flx>y e S,x + y = n

S and 3x,y eS,x + y = n.

Then the sequence r = r(l)r(2)r(3). . . is an infinite ternary sequence; further, if we erase the *'s in r
then we obtain exactly a — 0'~1(S). (We note that the sequence obtained from r by replacing each * with a
0 is exactly the characteristic function of the set S.) Thus, if we prove that r is ultimately periodic, then it
will follow immediately that a is ultimately periodic.

Consider an element n > 3fcom. Then

L if n = «i, «2,..., or s,- (mod m)
/ \ I * if 3* € T, Sj G {si,..., Si} such that n = t -f Sj (mod m)

' or if 3sjt, Sj2 G {«i,..., Si} such that n = Sjx -f Sj2 (mod m)
0 otherwise.

Observe that the value of r(n) depends solely upon the congruence class of n mod m, since T, {s\,...,«,}
are both finite sets. Thus r(n) is periodic (mod m) for n > 3ifeom, and we deduce that a is also ultimately
periodic. •
This lemma proves exactly the "if' direction.



Where will we run into difficulties when we try to reverse this proof? The crucial step involves the erasing
of the *'s in r: given a periodic sequence a it is easy to insert *'s in such a way that the resulting ternary
sequence is most definitely aperiodic (for example, insert a * after every p^th 1, where pk is the Jfcth prime).
Of course, it is unlikely that such insertions would leave a sum-free set: statement (i) states essentially that
only by inserting in a periodic manner is it possible to ensure that S is sum-free.

In order to prove the "only if" direction, it would be necessary to show that certain sets are ultimately
periodic; in certain circumstances this is possible. The following Lemma shows that if a set 5 is ultimately
periodic, then we need only consider a finite prefix of 5, along with the binary sequence 0"1(S) in order to
prove that S is ultimately periodic.

Lemma 4.2 Suppose that a = 0~1(S) is ultimately periodic, and

Sn{l,2y...,An} = TUSiUS2US3

where

T = S n { l , 2 , . . . , n }
S\ = S C\{n -
52 = S fl {2n

53 =

Suppose further that

53 = {s + 2n\sESx}

and that
r( min s), r( min s), r( min s)

each correspond to the same point in a period in 0 1(S). Then S is ultimately periodic, and the period of S
divides n.

Proof. We shall show by induction that An + k G S if and only if k = s (mod n) for some s £ S3.
First, An -f 1 G S if and only if 3n + 1 G 5; indeed, 3n + 1 G S if and only if

flteT, seS2 such that t + s = 3n -f 1

and JBsi G £1, s2 E S\ such that s\ + s2 = 3n + 1

and the corresponding bit of 0"1(S) is a 1.

Similarly, An + 1 G 5 if and only if

fiteT, se S3 such that t + s = An + 1

and /Ssi G £1, s2 £ S2 such that si -f 52 = 4n + 1

and the corresponding bit of 0"1(S) is a 1.

It is clear that these three conditions are equivalent, since Si is constant (mod n).
Exactly the same argument may now be used to prove that if An + i G S if and only if i = s (mod n)

for some s G S3 for each i < k, then An + k E S if and only if k = s (mod n) for some s E S3. •
In order to test Cameron's conjectures, we generated the sum-free sets corresponding to periodic binary

inputs, with period at most 7. For all inputs with periods of length at most 4, the corresponding sum-free
set was ultimately periodic, with a small (usually fewer than 10 terms) non-periodic part, and a small period
(always less than 25). Of the 30 inputs with periods of length 5 (all strings of length five except for 00000 and
11111, which have period 1), all but 3 inputs were quickly periodic; the ones which were not are 01001, 01010,



10010. Similarly, for inputs with periods of length 6, 7 or 8, the only inputs which did not become quickly
periodic, with a small period, were 010001, 011001, 011100, 100010, 101001, 101011, 0010001, 0010010,
0011011, 0100001, 0100010, 0100100, 0100101, 0101010, 0101011, 0101101, 0101110, 0101111, 0110001,
0110011, 1000010, 1000100, 1000110, 1000111, 1001010 and 1010100.

The behaviour of these potential counterexamples to Cameron's conjecture is in striking contrast to that
of the ultimately periodic sets, where in every case, it is clear within the first few terms that the resulting set
will be ultimately periodic. The first of these possible counterexamples to be found was the set corresponding
to the input sequence OlOOi1.

The set 0(6lOOi) = {2,6,9,14,19,26,29,36,39,47,54,64,69,79,84,91,...} certainly appears to be ape-
riodic; for example, considering the sequence of differences between consecutive elements of the set, this
exhibits long strings which are repeated, separated by short "glitches" which seem to show no sign of set-
tling down to be periodic. Furthermore, extensive calculations by Cameron and by the author have failed to
find a period for any of these sets. Cameron's calculations, in particular, have included computing 400,000
terms of one set, without establishing a period! This, of course, is all evidence of a rather flimsy type: it is
essentially of the form "we looked, but we couldn't find anything"; we shall now present a theorem which
gives evidence which is more concrete in nature that certain sum-free sets are aperiodic. It may also be used
to show that a sum-free set is ultimately periodic without actually having to find the period. Using the
functions gs(n), gs(n)> we will provide positive evidence that <r(6lOl6) is aperiodic.

Define functions gs(n), gs(n) as follows:

0 if flx, y G S such that x + y = n
min x such that x - f t /=n , x, y G S if there exist x,y G S such that x + y = n

and

Theorem 4.1 S is ultimately periodic if and only if a is ultimately periodic and gs(n) is ultimately constant,
i- e- gs(n) is bounded.

Proof. Suppose that S is ultimately periodic. Let

5 = TU5iU52U53U...

where T= Sf) {1,2,... ,n}, Sx = Sn{n+ l ,n + 2, . . . ,2n}, and S i + 1 = 5, + n = {s + n|s G Si} for every i.
If gs(n) > 1) then 3x, y G S such that x -f y = n. Thus, either

x €T,y G Si for some i,

or x G S,-, y G Sj for some i, j .

If the former holds, then gs(n) < maxteT t.
If the latter holds, then some x G Si, y G Sj-i+i also satisfy x -h y = n. Thus, if gs(n) > 1 then
9s(n) < maxsqsts, and we have shown that if S is ultimately periodic then gs(n) is bounded.

To prove the converse, suppose that gs(n) < k Vn. Let

T=Sn{l,2,...,*}.

Then, for every n, n is expressible as a sum x + y = n, x,y G S if and only if n is expressible as a sum
t + y' = n> t G T, yf G S. Let the input sequence 0"1(S) have ultimate period p, and suppose no is
sufficiently large that n0 corresponds to the periodic part of 0~l(S).

Define

Then, for n > n0, Sn+i is determined by the triple {T,Sn,in) where, (mod p) we have reached the inth
stage of a period.

1 We use here the familiar periodic decimal notation to indicate the periodic part of a binary sequence by placing a dot over
the initial and final terms of a period



Now let
Tn = {s-n + l\seSn}

There are at most 2k possibilities for the set Tn for each n, and there are p possibilities for the integer fn;
thus, since there are infinitely many values of n, there must exist n, j such that

Then, since Tn+i is determined by (T,Tn,in), it is clear that then (Tn+i,*n+i) = (rn+j-+i,in+y+i)i and
similarly that for all m > n, (Tm,im) = (Tm+j,im+y) Thus, from n onwards, S is periodic, with period
dividing jf. •

Thus, if we have a set for which gs(n) is not bounded then we know that this set cannot be periodic.
As a simple, but useful, extension of this theorem, we have

Theorem 4.2 //, for sufficiently large n, <js(n) < log2 f gM where p is the length of a period in the input

string 0"1(S), then S is periodic.

(Here "sufficiently large" means
(i) n > 2s where s is the smallest element of S (to ensure that gs(n) > 0) and
(ii) n is large enough that we are in the periodic part of the string 0~1(S).)

Proof. Observe that since there are at most 2kp choices for the pair (Tn,in) we will be able to find
n,n + j such that n > no, n + j < 2kp
Thus, as in the proof of Theorem 4.1 we see that

S fl {1,2,.. . ,} = TU Sx U S2 U 5 3

where 52 = S\ +.; = {s -h j\s G Si}, and S3 = Si + 2j. and where the least element of Si is at most n/3.
Then this is sufficient to ensure that 5 is ultimately periodic; indeed, it is enough to ensure that S is periodic
from Si onwards. •

Computing the values of gs(n) for the set 0(01001), for all n < 200000, we find that g appears to be
very far from bounded: in fact it seems to increase in a roughly linear fashion; the following are the values
of gs(n) f°r which gs(n) > gs(n — 1) (since the function is weakly increasing, these values determine the
function).

n
4
12
18
33
52
72
94
133
182
192
227
242
274
322
348
362
637
647
690

9s (n)
2
6
9
14
26
36
47
54
91
96
106
121
137
161
174
181
237
247
345

n
885
1288
1457
1820
1850
2028
2058
2103
2356
2371
2401
2446
3650
4394
4632
4945
5128
6053

9s{n)
430
445
577
597
627
805
835
880
1133
1148
1178
1223
1522
1795
2068
2381
2564
2676

n
6411
6674
6709
6754
10360
11144
12692
14779
16129
19678
22914
24624
27324
30140
40677
43908
43948
46355

9s(n)
3034
3297
3332
3377
4014
4798
6346
7104
7675
9839
11457
12312
13394
14127
15179
16281
21974
22222

n
47437
49313
50678
50996
65250
68410
75499
82800
88756
111332
112419
121318
126698
137806
142928
171101
188656
199466

gs(n)
23304
24133
25180
25498
28709
30974
37613
38422
44378
54455
55542
57969
63349
65796
71464
81091
82178
99733

Observe that for the following values of n, gs(n) = j , i. e. gs(n) is as large as is possible: n =12, 18, 52,
72, 94, 182, 192, 242, 274, 322, 348, 362, 690, 2446, 5128, 6754, 12692, 19678, 22914, 24624, 43948, 50996,



88756, 126698, 142928, 199466; we have no evidence that this behaviour must continue, but on the other
hand, it is striking that it has continued this far!

Computing the functions gs(n), gs(n) for the sets 0(01010), 0(iOOl6), 0(6lOOOi), 0(6llOOi), we find
similar behaviour, as may be seen in [1].

If it could be shown for such a set 5 that such behaviour continues, that is that there exist an infinite
number of n such that gs(n) = n/2 then it would follow immediately from Theorem 4.1 that 5 is aperiodic;
it does not, however, appear that it is a simple matter to prove this.
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