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ABSTRACT

We define a diamonded odd cycle to be an odd cycle C with exactly two chords and either

a) C has length five and the two chords are non-crossing; or

b) C has length greater than five and has chords (x,y) and (x,z) with (y,z) an

edge of C and there exists a node w not on C adjacent to y and C, but not x.

In this paper, we show that given a diamonded odd cycle-free graph G, G is perfect if and only

if G does not have an induced subgraph isomorphic to an odd hole with size greater than three.
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§ 1 INTRODUCTION

A zero-one matrix A is perfect if {x£ Rn | Ax < 1, x > 0} has all integer extreme points. Matrix

A is balanced if all its submatrices are perfect A graph G is perfect if its clique-node inci-

dence matrix is perfect. In 1961, Claude Berge conjectured that a graph G is perfect if and only

if G has no node induced subgraph that is an odd hole of size greater than or equal to five or

the complement of an odd hole of size greater than or equal to five. This conjecture, known as

the Strong Perfect Graph Conjecture, remains open today. However the conjecture has been

proved for several classes of graphs including triangulated graphs [1], comparability graphs [1],

circular arc graphs [11], planar graphs [10], torodial graphs [7], Kj g-free graphs [8], and

K^\e-free graphs [9], [12]. In this paper we show that the conjecture holds for graphs with no

induced diamonded odd cycle. This generalizes the results of Parthasarathy and Ravindra [9]

and Tucker [12] on K4\e-free graphs.

Definition 1: Let C be an odd cycle. C is a diamonded odd cycle if C has exactly two

chords and either
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a) C has length 5 and the two chords are non-crossing; or

b) C has length greater than 5 and has chords (x,y) and (x,z) with (y,z) an edge of C

and there exists a node w not on C adjacent to y and z but not x (see Figure 1).

We will denote a length 5 diamonded odd cycle by G^.

Let A be a zero-one matrix. In addition to viewing A as the clique-node incidence matrix of a

graph G, we can view A as the node-node incidence matrix of a bipartite graph H. H has a

node for each row and each column of A with an edge from node i, representing row i, to node

j , representing column j , if and only if a-: = 1. We will let S be the set of nodes representing

the rows of A and T the set of nodes representing the columns of A. Since the rows of A

represent cliques in the graph, G, with clique-node incidence matrix A, we will sometimes refer

to the nodes in S as clique nodes. We will say the bipartite graph H is perfect (balanced) if A

is perfect (balanced). Throughout the paper, G will denote a graph with no diamonded odd

cycle and A will be G's clique-node incidence matrix. A will have a row for each maximal

clique of G only. H will denote a bipartite graph whose node-node incidence matrix is A. We

will say H is the bipartite graph representation of G.

Since H is bipartite, all cycles of H are even cycles. We will say a cycle C with length 2k is

bi-even if k is even and bi-odd if k is odd. H is balanced if and only if H has no bi-odd

holes (Berge [2]). A bi-odd cycle has length congruent to 2 mod 4. In the interest of brevity,

the words congruent to will be left out in the future.

For a node u in G, we will let N(u) be u together with the set of nodes adjacent to u. In H,

for a node u e T, we will let N (u) be the set of nodes at distance less than or equal to two from



u. Note that since u corresponds to a column of A, there will be a node of G, say u', corre-

sponding to u in H and N^(u) in H corresponds to N(u') in G. Throughout this paper we

will say G contains a graph G' when we mean G' is a node induced subgraph of G. V(G')

will denote the nodes of G'. The complement of a hole (in G) is called an antihole.

§2 THE MAIN RESULTS

Lemma 1: G contains no odd antihole of cardinality n with n > 7.

Proof:

Let G' be an odd antihole of size n, n > 7. Label the nodes of G' such that in the complement

(l,2,3,...,n) forms a cycle. The set S = {l,3,5,n,2} induces

The bipartite graph representation of G^ is given in Figure 2 where the nodes labeled by letters

are clique nodes and the nodes labeled by numbers are nodes of T.
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If G has no G5 then the bipartite graph representation of G has no cycles of length 6 with a

unique chord. We denote such cycles as Bg (see Figure 3).

B B
It is clear that if H has no Bg, then H has no G5 . It is also true that if H has no G5 , then H

has no Bg. This holds because if clique node a is not adjacent to a node of T which is not a

neighbor of c, then a does not represent a maximal clique of G. The same is true for b. If a

and b have a common neighbor, labeled say 6, which is not a neighbor of c, then the bipartite

graph induced by {2,3,4,6,a,b,c} corresponds to a K4 (see Figure 4) and would be represented

by a single clique node and four nodes of T. So a and b must each have a neighbor which is

not adjacent to any other node of Bg.

a b
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The bipartite graph representation of a diamonded odd cycle of length greater than five is given

in Figure 5a. We will denote the graph given in Figure 5b as C3. If we want to assume G has

no diamonded odd cycle of length greater than five then it is sufficient to assume H has no Co

since if b does not have a neighbor different from y and z, then b does not represent a maxi-

mal clique.

Definition 2: A bi-odd hole C is minimal if no subset of its nodes, together with at most three

nodes not in C induces a smaller bi-odd hole.

Definition 3: A node not belonging to a hole C but having at least two neighbors in C is

strongly adjacent to C. A node that is strongly adjacent to C and has an odd (even) number of

neighbors in C is odd-strongly (even-strongly) adjacent to C.

Definition 4: A bi-odd hole C with length greater than or equal to 10 is an imperfect bi-odd

hole if there is no clique node strongly adjacent to C with three or more neighbors on C. An

imperfect bi-odd hole in H corresponds to an odd hole in G with length at least five.

Definition 5: A hole C together with a node v not on C but having at least three neighbors

on C form a wheel (C,v) with center v. The edges from v to C are the rays of the wheel

and a subpath from the endnode of one ray of the wheel to the endnode of another ray of the

wheel not containing any other neighbor of v is a sector of the wheel. The interior nodes of a

sector S are the nodes of S not adjacent to v (see Figure 6).



In the remainder, we assume that G is a minimally imperfect graph containing no diamonded

odd cycles. By Lemma 1, it will suffice to show that G is an odd hole. The technique we will

use is to show that if G contains no odd holes, then G has a star cutset. We will then apply

Chv£taTs result which says no minimal imperfect subgraph has a star cutset to achieve the

desired contradiction. Recall that G is a minimal imperfect graph if G is not perfect, but all

its induced subgraphs are perfect.

To show that G has a star cutset, we will show that every bipartite graph H containing no B^,

no Co, and no imperfect bi-odd holes has a node u e T such that N (u) contains a cutset of

H. To do this, we will use some results of Conforti and Rao to show that there is a node u* € T

such that N (u*) contains all nodes odd-strongly adjacent to a minimal bi-odd hole C. We will

then show that N (u*) contains a cutset, K, which disconnects C. To show K disconnects C,

we choose two connected components of C\K and show that if there were a path P connecting
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them, then the subgraph induced by V(C) u V(P) u & would contain an imperfect bi-odd hole,

where & = {s e S : s is odd-strongly adjacent to C}.

Before proving the main results, we will need a few preliminary results.

Theorem 1 [4]: No minimal imperfect graph has a star cutset.

Lemma 2 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a

minimal bi-odd hole in H. All clique nodes odd-strongly adjacent to C have a common neigh-

bor in C.

Lemma 3 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a

minimal bi-odd hole in H. If u is even-strongly adjacent to C, then u has exactly two neigh-

bors in C, say Uj and U2 , and furthermore there exists a node of C adjacent to both Uj and

Throughout the remainder of the paper, unless otherwise stated, we will assume H contains no

B^, no Cy and no imperfect bi-odd holes. If H has no bi-odd holes, then H is balanced and

therefore perfect. We will assume H is not balanced. Let C be a minimal bi-odd hole of H.

Lemma 4: C has length greater than or equal to 10.



Proof:

If C has length 6, label the nodes of C clockwise around C a,l,b,2,c,3 where the nodes

labeled with letters are clique nodes and the nodes labeled with numbers are nodes of T. Then

nodes 1,2,3 form a triangle in G (see Figure 7) and would all be adjacent to a clique node. So

there is a clique node odd-strongly adjacent to C and H contains a B^ (see Figure 8).

Therefore C has length greater than or equal to 10. _

Lemma 5: There exists a node z e T n C such that N (z) contains all nodes odd-strongly ad-

jacent to C.

Proof: Postponed to section 3.

Figure 7 Figure 8



Let Z be the set of nodes in T n C such that, for z e Z, N (z) contains all nodes odd-strongly

adjacent to C Let & = {s e S : s is odd-strongly adjacent to C}.

Fix z e Z. C is not imperfect, so there is a clique node odd-strongly adjacent to C Let v be a

clique node odd-strongly adjacent to C with the property that when traversing C counterclock-

wise from z a node adjacent to v is encountered before a node adjacent to any other clique

node odd-strongly adjacent to C Let a and b be the neighbors of z on C and let c (d) be

the neighbor of a (b) on C different from z. Let Sj and S2 be the sectors of (C,v)

containing z (see Figure 9). Since H does not contain a Bg, at least one of Sj or S2 has

length greater than two. If both S j and S2 have length greater than two, let K = N (z)\{c,d}.

If one of Sj or S2 has length two, assume without loss of generality that the sector containing

a has length two and let K = N2(z)\{d}.

Lemma 6: Either, (i) For some z e Z, K is a cutset of H with the property that at
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least two connected components of H\K contain a node of T; or

(ii) There exists z e Z and two connected components of C\K such that if P is a

shortest path in H\K connecting these two components, the subgraph of H induced

by V(P) u V(C) u /8 contains a minimal bi-odd hole C with the property that no

s G /8 is odd-strongly adjacent to C.

Proof: Postponed to section 4.2.

Lemma 6 says that if K is not a cutset of H, then H contains a bi-odd hole. However, the fact

that H contains a bi-odd hole does not contradict perfection; we need an imperfect bi-odd hole.

The following theorem shows that if K is not a cutset of H, then H contains an imperfect bi-

odd hole. But H does not contain an imperfect bi-odd hole, so K is a cutset of H.

Theorem 2: There exists z e Z such that N (z) contains a cutset, K, of H with the property

that at least two of the connected components of H\K contain a node of T.

Proof:

Suppose the theorem is not true. By Lemma 6, H contains a minimal bi-odd hole C with the

property that no s e 2> is odd-strongly adjacent to C . Since H has no imperfect bi-odd holes,

there is a clique node x in H which is odd-strongly adjacent to C. x is adjacent to three or
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more nodes of T n C All nodes of T on C are either on P or C n C. So for any clique

node odd-strongly adjacent to C either N(x) n C'C P or N(x) n C ' n C ^ 0 . Let pj and

p2 be the nodes of P n C and let ĉ  be the component of C containing p^, i = 1,2. Figures

lOa-lOd illustrate the possible configurations for x. Note that x has at most two neighbors on

C since x is not in /8 and so is not odd-strongly adjacent to C and if x is even-strongly adja-

cent to C, x has two neighbors on C by Lemma 3. Also, x is not adjacent to z since x has a

neighbor on P.

In figures 10a and 10b, there is a (cj ,C2)-path containing x that is shorter than P; contradicting

the choice of P. In figure 10c, (C',x) is a Cy In figure lOd, the (x<j,pj)-subpath of P must

have length less than or equal to two, since otherwise there would be a shorter (c j than

P. If the (x^pp-subpathof P has length two, replace the path ( x j j ^ ) on C with the path

shortening P. If the (x^pp-subpath of P has length one, again replace the path

Figure 10a Figure 10b Figure 10c
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o n c with the path (xl5x,x2) forming C* (see figure lOe). x 3 is even-strongly

adjacent to C* so by Lemma 3, pj is adjacent to Xj and { x ^ y ^ x ^ p j } induces a

Theorem 3: The strong perfect graph conjecture holds for the class of graphs not containing a

diamonded odd cycle.

Proof:

Let G be a minimal imperfect graph not containing a diamonded odd cycle. By Lemma 1, it

suffices to show G is an odd hole of size greater than or equal to 5. Assume not. Let H be the

bipartite graph representation of G. H is not balanced, so H has a bi-odd hole. G has no dia-

monded odd cycle and no odd hole of size greater than or equal to 5, so H has no Bzr, no

and no imperfect bi-odd hole. By Theorem 2 H has a node u e T such that N2(u) contains a

Figure lOd Figure lOe
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cutset K. Also, there exist nodes tj and t2 in T with tj in one component of H\K and t^

in another. Then the node u' of G corresponding to u is such that N(u') contains a star cutset

of G. By Theorem 1 this contradicts the choice of G. —

§ 3 THE PROOFS OF LEMMAS 5 AND 6

Before proving Lemma 5 we will state some results of Conforti and Rao that we will need in the

proof.

Let K be a bipartite graph containing no imperfect bi-odd holes, let C be a minimal bi-odd

hole and let w be a clique node odd-strongly adjacent to C Conforti and Rao have shown the

following:

Lemma 7 [6]: If u is a clique node odd-strongly adjacent to C with a neighbor in the interior

of a sector of (C,w), then u has at least one other neighbor in the same sector.

Lemma 8 [6]: All nodes in T odd-strongly adjacent to C have a common neighbor in C.

Lemma 9 [6]: If |C| > 10 then for every node u e T odd-strongly adjacent to C but not adja-

cent to w, u has exactly one neighbor u* in some sector Sj of C and an even number of
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neighbors in an adjacent sector S i + 1 . Moreover, u* is adjacent to the common node in the two

sectors.

Lemma 10 [6]: If | C| > 10 then for every node u e T odd-strongly adjacent to C but not adja-

cent to w, the nodes of N(u) D C are contained in the same two sectors, say S^j and S^ of

the wheel (C,w).

Lemma 11 [6]: If u e T is odd-strongly adjacent to C, then one of the following holds:

(i) u is adjacent to all clique nodes odd-strongly adjacent to C;or

(ii) u has a neighbor, say u*, in C such that all clique nodes odd-strongly adjacent to

C are adjacent to one of the two neighbors of u* in C.

Now, the proof of Lemma 5. Recall:

Lemma 5: There exists a node z e T such that Nz(z) contains all nodes odd-strongly adjacent

to C.

Proof:

We will consider two cases:

i) There is no node of T odd-strongly adjacent to C satisfying (ii) of Lemma 11;

14



ii) There is a node of T odd-strongly adjacent to C satisfying (ii) of Lemma 11.

Case (i): Let z be the node of C adjacent to all clique nodes odd-strongly adjacent to C. Every

node, x e T , odd-strongly adjacent to C is adjacent to v. z is adjacent to v, so x e N (z).

Case (ii): Let z be the neighbor of u* described in Lemma 11 (ii). z is adjacent to all clique

nodes odd-strongly adjacent to C. In particular v e N(z). Let S^, S ^ j be the sectors of (C,v)

containing z. By Lemma 10, if x € T is odd-strongly adjacent to C, then either x is adjacent

to v o r N ( x ) n C is contained in S ^ u S ^ j , so by Lemma 9 a neighbor of x is adjacent to z

and x e N2(z)..

Definition 6: Let r and s be clique nodes odd-strongly adjacent to C. Let p (q) be a neigh-

bor of r (s) on C We will say p is next to q if there exists a (p,q)-path on C containing no

neighbors of any clique node odd-strongly adjacent to C

Definition 7: A cycle C is starred if its set of chords satisfies the following properties:

(a) there exist two nodes x and y in C, called the stars of C, such that every

chord of C has either node x or node y but not both as its endpoint;

(b) no other node of C is the endpoint of two distinct chords;
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(c) no two endpoints of chords are adjacent

Theorem 4 [5]: Let C be a starred cycle. If the graph induced by the nodes of C has no bi-

odd holes, then C has length 2 mod 4 if and only if C has an odd number of chords.

On to Lemma 6. Recall:

Lemma 6: Either, (i) For some Z G Z , K (as defined on page 9) is a cutset of H with the

property that at least two connected components of H\K contain a node of T; or

(ii) There exists Z G Z and two connected components of C\K such that if P is a

shortest path in H\K connecting these two components, the subgraph of H induced

by V(P) u V(C) u & contains a minimal bi-odd hole C with the property that no

s e & is odd-strongly adjacent to C .

The proof of Lemma 6 involves several cases, but the basic argument is the same in each case.

We will present one case in detail here and sketch the rest. Complete details can be found in [3].

The main ideas of the proof are as follows. Assume K is not a cutset of H. First, we will care-

fully choose the two components of C\K that P will connect We will choose two connected

components so each component will be a path, say Pj and P2 , containing no neighbors of clique
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nodes odd-strongly adjacent to C. We will chose a shortest path P from Pj to P2 in H\K. P

may contain nodes of C\(Pj u P2). We will then show that P does not contain any nodes

strongly adjacent to Pj u P2 . In particular, the endpoints of P, sj and t j , are not strongly ad-

jacent to P j U P 2 . We will let s (t) be the node of Pj (P2) adjacent to Sj (tj). We will then

consider four (s,t)-paths in the graph induced by V(Pj) u V(P2) u /8 and the cycles closed by

these (s,t)-paths with P. All four cycles are starred cycles, so Theorem 4 applies. Three of the

four cycles will have the same length mod 4 and the fourth will have a different length mod 4.

By Theorem 4 the three cycles with the same length mod 4 must have the same number of chords

mod 2 and the fourth must have a different number of chords mod 2. Which three cycles have

the same length mod 4 varies depending on which sides of the bipartition s and t are on, but in

every case, the number of chords must satisfy an equation which is impossible to satisfy. So by

Theorem 4 one of the cycles must contain a bi-odd hole. This bi-odd hole has the property that

no s e /8 is odd-strongly adjacent to it.

Proof of Lemma 6:

Assume without loss of generality that Sj contains no neighbors of clique nodes odd-strongly

adjacent to C. Let Zj (z2) be the endpoint of Sj (S2) different from z. For the purposes of the

argument, two clique nodes u and w with N(u) n V(C) = N(w) n V(C) are redundant, so we

17



will assume that N(u) n V(C) * N(w) n V(C) for all clique nodes u and w odd-strongly adja-

cent to C.

Case I): Sj and S 2 both have length greater than two and no clique node odd-strongly adjacent

to C has four or more neighbors in S2.

Let P be the collection of chordless paths from Sj to S 2 inH\K. If P = 0 , then K is a cut-

set of H disconnecting Sj from S2. Sj and Sj> both have length greater than two so the

components of H\K containing Sj and S 2 each contain a node of T. If P * 0 let P be the

shortest (Sj,S2)-path in P . LetSj (tj) be the endpoint of P adjacent to Sj (S2). If Sj is even

strongly adjacent to C with both nodes of N(sj) D C in S j , replace Sj so that Sj is in Sj

and shorten P. If s j is even-strongly adjacent to C with one neighbor in S j and the other

neighbor in an adjacent sector, then if s j is not adjacent to v there is a smaller bi-odd hole in-

cluding Sj contradicting the minimality of C and if Sj is adjacent to v, Sj e N^(z). A simi-

lar argument holds for t j , so we can assume without loss of generality that s j and tj are not

strongly adjacent to C. Let s (t) be the node of Sj (S2) adjacent to Sj (tj) (see Figure 11).

18



Consider the (s,t)-paths in C: P a b = (s,...,a,z,b,...,t), P ^ = (s,...,a,z,v,z2,...,t),

»-»t), PzlZ2 = (s,...,z1,v,z2,-..,t). Let C a b , C ^ , CZib, CZlZ2 be the cycles

closed by P with P a b , P^ , , Pz b, Pz - , respectively. Note that no s e % is odd-strongly adja-

cent to Cy, i e {a,Zj},je { b ^ } . There may be chords from P to { z j , ^ } . Since H does not

contain a C^, both (z^^Hpaths on C have length greater than 2. No node y of P is adja-

cent to both Zj and z2 since y cannot be even-strongly adjacent to C by Lemma 3 and if y

were odd-strongly adjacent to C, y £ H\K. Let T ^ T ^ be the set of edges having one

endpointin P and the other endpoint as z^, z^ respectively. The cycles C-, i e {a,Zj},

j € {b,Z2}, are starred cycles with the subscripts indicating the star nodes. The set of chords in

Figure 11
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C- is given by Tj u Tj where Ta and Tb are defined to be empty.

If s and t are on the same side of the bipartition, then either the lengths of C ^ , CZib,

are the same mod 4, say p mod 4, and the length of C^ is (p + 2) mod 4 (s and t in S) or the

lengths of C a b , C ^ , CZ]b are the same mod 4, say p mod 4, and the length of CZjZ2 is

(p + 2) mod 4. By Theorem 4, one of the following relations holds or else there is a bi-odd hole.

(mod2) or

Neither relation holds, so the graph induced by V(C) u V(P) u /8 contains a bi-odd hole C

with no clique node odd-strongly adjacent to C also odd-strongly adjacent to C.

If s and t are on opposite sides of the bipartition, either the lengths of CLu, Cz b, Cz ^ are the

same mod 4, say p mod 4, and the length of C^ is (p+2) mod 4 (s e T and t e S) or the

lengths of C a b , C ^ , CZjZ2 are the same mod 4, say p mod 4, and the length of Cz b is

(p + 2) mod 4. By Theorem 4 one of the following relations holds or there is a bi-odd hole.

(mod2) or

( m o d 2 )

Neither relation can hold, so the graph induced by V(C) u V(P) u /8 contains a bi-odd hole C

20



with no clique nodes odd-strongly adjacent to C also odd-strongly adjacent to C .

Case II): Both Sj and S2 have length greater than two and there is a clique node odd-strongly

adjacent to C with four or more neighbors in S^

Let x be such a clique node with the property that when traversing C counterclockwise from

Z2 a neighbor of x, say x j , is encountered before a neighbor of any other clique node odd-

strongly adjacent to C. Let x* be the neighbor of x on S2 closest to z. If x is adjacent to

z j , the length of the (z,x*)-path in S9 must be greater than two since if y is the common

neighbor of z and x* on C, the set {x,x*,y,z,v,Zj} induces a Bg (see Figure 12). So if x is

adjacent to z j , let x be the center of the wheel and the new wheel is either in Case I or Case n.

No node will appear as the center of the wheel twice, so the procedure will terminate. Let V be

Figure 12 Figure 13
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the collection of chordless paths from Sj to the (x1,z2)-subpath of S 2 in H\K. If P = 0 , K is

a cutset of H disconnecting Sj from the (xj,z2)-subpathof S2. The component of H\K con-

taining Sj and the component of H\K containing the (xj,z2)-subpathof S 2 each contain a

node of T. If P * 0 , let P be the shortest path in P . Let Sj (tj) be the endpoint of P adja-

cent to Sj (S2). As in Case I, we can assume without loss of generality that Sj and tj are not

strongly adjacent to C. Let s (t) be the node of Sj (S2) adjacent to Sj (tj) (see Figure 13).

Apply the argument from Case I to the paths P a x = (s,...,a,z,x,Xj,...,t),Pa, = (s,...,a,z,v,z2,...,t),

pz lX l = (s,...,Zi,vAx,x1,...,t), PZjZ2 = fa...,zvvjL2,...9t) and the cycles C a X l , CaZ2, CZlXl, CZlZ2

formed by P withPaXi , P a 2 2 , P2 lXl ,PZl2f respectively.

Caselll) Sj has length two and there exists a node w e T odd-strongly adjacent to C, not

adjacent to v*

Let the length two sector of C be (z,y,Zj). By Lemmas 9 and 11 w is adjacent to y and has

an even number of neighbors in S2. Let Wj be the neighbor of w closest to z2. There is no

clique node u odd-strongly adjacent to C with a neighbor of u on the (b,Wj) path of C

since taking u as the center of the wheel would violate Lemma 9. w is not adjacent to b since
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if it were the set {z,b,w,y,Zj,v} would induce a Bg. Let u be the clique node odd-strongly

adjacent to C with the property that a neighbor of u (different from Zj) is closer to Zj than

any neighbor of any other clique node odd-strongly adjacent to C (u maybe v). Let Ujbethe

neighbor of u closest to Zj. If there is a clique node x odd-strongly adjacent to C with neigh-

bors of x on the interior of the (w^z^-path of C, take x to be the center of the wheel, x is

adjacent to Zj since otherwise both sectors of (C,x) containing z would have length greater

than 2 and the sector containing Wj would have no neighbors of a clique node odd-strongly

adjacent to C. So we can assume without loss of generality that the (w j,z2)-subpath of C con-

tains no neighbors of clique nodes odd-strongly adjacent to C. Let P be the collection of

chordless paths from S 2 to the (zpU^-path of C\K inH\K. If P = 0 , K is a cutset of H

disconnecting S 2 from the (zpUj)-pathof C\K. The component of H\K containing S 2 and

the component of H\K containing the (z j,u j)-path of C\K each contain a node of T. If

V * 0 , let P be the shortest path in V. Let Sj (tp be the endpoint of P adjacent to S2 (the

(zj,Uj)-path of C\K). As in Case I, we can assume without loss of generality that s j and tj are

not strongly adjacent to C. Let s (t) be the node of S 2 (the (zj,Uj)-pathof OK) adjacent to
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We will consider two subcases.

IHa) s is on the (z,w^)-subpath of

nib) s is on the (wpZ9)subpath of

Casellla): s is on the (z,wp-subpath of S2 (see Figure 14a).

Let wk be the first neighbor of w encountered when traversing C from s toward

Apply the argument from Case I to the paths PbZl = (s^ .b^v^, . . .^ ) , PbUl = (s,...b,z,u,Uj,...,t),

pwZl = (s,...,wk,w,y,zj,...,t), PWUl = (s,..., wk,w,y,z,u,ulv..,t) and the cycles

^ formed by P with PbZl>
pbu1?

 PwZl ^
Pwu^ respectively.

Fieure 14a
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Case nib): s is on the (wj^Hubpathof

Case Dlbi): u ^ v (see Figure 14b).

Apply the argument from Case I to the paths Pb Z j = (s,...b,z,y,Zp...,t), Pb U i = (s,...b,z,u,Uj,...,t),

= (s,..-,Z2,v^lf...,t), P22Ui =(s,...,z2,v,z,u,ulv..,t) and the cycles CbZl ,CbUl ,CZ2Zl ,CZ2Ul

formed by respectively.

Case nibii): u = v (see Figure 14c).

Apply the argument from Case I to the paths P w z = (s,...Wj,w,y,Zj,...,t),

(s,...,w1,w,y,z,u,u1,...,t), PZ2Zl = (s,...,z2,v,z1>...,t), P ^ ^ = (s,..., Z2,v,ulv,.,t) and the

U

Figure 14b Figure 14c
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cycles CWZl,CWUl,CZ2Zl,CZ2Ul closed by Pwith P w ^ P w u ^ z ^ P z ^ respectively.

Case IV: Sj has length two and every node in T odd-strongly adjacent to C is adjacent to v.

There must be a clique node w odd-strongly adjacent to C with N(v) n C (Z N(w) n C since

if all clique nodes were adjacent to all neighbors of v and every node of T odd-strongly adja-

cent to C is adjacent to v, then any neighbor of v could be chosen as z. In particular, since H

does not contain a Bg, z could be chosen so that S j and S2 both have length greater than 2.

Let w be a clique node odd-strongly adjacent to C with N(v) nC<Z N(w) n C Let x be a

clique node odd-strongly adjacent to C with neighbors in S2 such that x has a neighbor Xj

in S2 next to z (x may be v).

Claim: There is a node, v^, on C different from z adjacent to both v and x.

Proof:

Trivial if x = v. Suppose x & v. x has an even number of neighbors in S9 and no neighbors in

the interior of Sj so x either has a unique neighbor x' in some sector with x' adjacent to v

(by Lemma 7) or x has an even number of neighbors in two adjacent sectors and one of x's

neighbors is the common endpoint of the sector.
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The length of the (z,x j)-path on C cannot be two since if it were and x * v, the set

pb} would induce a B^ and if x = v, then the (z,Xj)-path on C would be S2

which has length greater than two.

Case IVa: x = w.

Clearly, some neighbor of w, w^, not in S2 is next to some neighbor Uj of a clique node u

odd-strongly adjacent to C with u* not adjacent to w. (u maybe v.)

Let P be the collection of chordless paths in H\K from the (z,Xj)-subpath of S2 to the

in C\K. If P = 0, then K is a cutset of H disconnecting the (zpXj)-subpath of

W =

Figure 15
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S9 from the (uj,Wj_)-pathin CYK. The components of H\K containing the (zj,Xj)-subpath of

S2 and the component of H\K containing the (u^w^-path in C\K contain a node of T. If

P * 0 , let P be the shortest path in P . Let Sj (tj) be the endpoint of P adjacent to the (z,Xj)-

path ((upWj^-patlOin C. As in Case I, we can assume without loss of generality that Sj and tj

are not strongly adjacent to C. Let s (t) be the node of the (z,x j)-subpath ((u pWj^-subpath)

adjacent to Sj (tj) (see Figure 15).

Apply the argument from Case I to the paths Pbu = (s,...,b,z,u,Uj,...,t),

Pbwk = (s,.-.,b,z,w,wk,...,t), PXiUl = (s,...,xvx,zyu,\iv...,t), PXlWfc =(s,..,xj,w,wk,..,t) and the

cycles Cb U l , CbWfc, CXjUl, CXjWk formed by P with Pb U j , PbWfc, PX ] U i , PXjWk, respectively.

CaselVb: x = v.

N(w) n C <£ N(v) n C by choice of v, so w has neighbors in the interior of some sector S- of

C. Let Zj and z- j be the endpoints of Sj. Since H contains no C3 one of z-,

z- j * Z p z2.Assume without loss of generality that z -^Zj , 2^. If possible, choose z- so that

Z2 and Zj are not endpoints of the same sector. Choose w so some neighbor w^ of w is as

close to Zj as possible. If there exists a clique node q odd-strongly adjacent to C with a
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neighbor of q between z- and w^, either N(v) n C <Z N(q) n C in which case replace w

with q; or N(v) n C c N(q) n C in which case, let q be the center of the wheel, and x = q. If

q becomes the center of the wheel, q is not adjacent to w^ since if q is adjacent to w^, the

set {z,w,Wk,v,q,v*} induces a Bg where v* is a neighbor of v on C not adjacent to w.

Assume without loss of generality there are no clique nodes odd-strongly adjacent to C with

neighbors on the (z^w^-subpath of C. Let P be the collection of chordless paths in H\K

from S2 to the (z^w^-path of C\K. If P = 0 , K is a cutset of H disconnecting S2 from the

in C\K. The component of H\K containing S2 and the component of H\K con-

taining the (z-jWjJ-path in C\K each contain a node of T. If P * 0 let P be the shortest path

in P . Let s^ (tj) be the end-node of P adjacent to S2 (the (z-jW^-path of C). As in Case I,

we can assume without loss of generality that s j and tj are not strongly adjacent to C. Let s (t)

be the node of S 2 (the (z-,wk)-subpath of C) adjacent to Sj (tj) (see Figure 16).

Apply the argument form Case I to the paths Pbz. = (s,...,b,z,v,z-,...,t), Pb w = (s,...,b,z,w,Wjc,...,t),

px^j = (s,...,XpV,Zj,...,t), PXlWk = (s,..., xvv9z,vr,vtk,...9t) and the cycles Chz., CbWk, CXlI., CXjWk

closed by P with ¥hz., PbWfc, PXlZj\ PXlWk, respectively.
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CaselVc):

Claim: N(w) nN(x) nC^N(v) n C .

Let wk € (N(w) n N(x) n C)\(N(v) n C). Since x * v,w, N(v) n C c N(x) n C. Then the set

{w,w^,x,z,v,v*} induces a Bg where v* is a neighbor of v on C not adjacent to w.

Let x be the center of the wheel. N(w) nCct N(x) n C , so w has neighbors in the interior of

some sector of (C,x). Now we are in case IVb where x is the center of the wheel. —

Figure 16
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