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ABSTRACT

We define a diamonded odd cycle to be an odd cycle C with exactly two chords and either
a) C has length five and the two chords are non-crossing; or
b) C has length greater than five and has chords (x,y) and (x,z) with (y,z) an
edge of C and there exists anode w noton C adjacentto y and C, but not x.
In this paper, we show that given a diamonded odd cycle-free graph G, G is perfect if and only

if G does not have an induced subgraph isomorphic to an odd hole with size greater than three.
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§ 1 INTRODUCTION

A zero-one matrix A is perfect if {x€ R™ | Ax < 1, x > 0} has all integer extreme points. Matrix
A is balanced if all its submatrices are perfect. A graph G is perfect if its clique-node inci-
dence matrix is perfect. In 1961, Claude Berge conjectured that a graph G is perfect if and only
if G has no node induced subgraph that is an odd hole of size greater than or equal to five or
the complement of an odd hole of size greater than or equal to five. This conjecture, known as
the Strong Perfect Graph Conjecture, remains open today. However the conjecture has been

proved for several classes of graphs including triangulated graphs [1], comparability graphs [1],

circular arc graphs [11], planar graphs [10], torodial graphs [7], Kl 3—free graphs [8], and

K4\e—free graphs [9], [12]. In this paper we show that the conjecture holds for graphs with no
induced diamonded odd cycle. This generalizes the results of Parthasarathy and Ravindra [9]

and Tucker [12] on Kj\e—free graphs.

Definition 1: Let C be an odd cycle. C is a diamonded odd cycle if C has exactly two

chords and either

Figure 1



a) C haslength 5 and the two chords are non-crossing; or
b) C has length greater than 5 and has chords (x,y) and (x,z) with (y,z) an edge of C

and there exists anode w noton C adjacentto y and z butnot x (see Figure 1).

We will denote a length 5 diamonded odd cycle by Gs.

Let A be a zero-one matrix. In addition to viewing A as the clique-node incidence matrix of a
graph G, we can view A as the node-node incidence matrix of a bipartite graph H. H has a

node for each row and each column of A with an edge from node i, representing row i, to node
J, representing column j, if and only if ay; = 1. We will let S be the set of nodes representing

the rows of A and T the set of nodes representing the columns of A. Since the rows of A
represent cliques in the graph, G, with clique-node incidence matrix A, we will sometimes refer
to the nodes in S as clique nodes. We will say the bipartite graph H is perfect (balanced) if A
is perfect (balanced). Throughout the paper, G will denote a graph with no diamonded odd
cycle and A will be G’s clique-node incidence matrix. A will have a row for each maximal
clique of G only. H will denote a bipartite graph whose node-node incidence matrix is A. We

will say H is the bipartite graph representation of G.

Since H is bipartite, all cycles of H are even cycles. We will say a cycle C with length 2k is
bi-even if k is even and bi-odd if k is odd. H is balanced if and only if H has no bi-odd
holes (Berge [2]). A bi-odd cycle has length congruent to 2 mod 4. In the interest of brevity,

the words congruent to will be left out in the future.

Foranode u in G, we will let N(u) be u together with the set of nodes adjacent to u. In H,

for anode u € T, we will let N2(u) be the set of nodes at distance less than or equal to two from



u. Note that since u corresponds to a column of A, there will be a node of G, say u’, corre-
sponding to u in H and N2(u) in H corresponds to N(u") in G. Throughout this paper we
will say G contains a graph G” when we mean G’ is a node induced subgraph of G. V(G')

will denote the nodes of G’. The complement of a hole (in G) is called an antihole.

§ 2 THE MAIN RESULTS
Lemma 1: G contains no odd antihole of cardinality n withn > 7.

Proof:

Let G” be an odd antihole of size n, n =2 7. Label the nodes of G” such that in the complement

(1,2,3,...,n) forms a cycle. The set S = {1,3,5,n,2} induces a GS' -

The bipartite graph representation of Gg is given in Figure 2 where the nodes labeled by letters

are clique nodes and the nodes labeled by numbers are nodes of T.
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If G hasno Gg then the bipartite graph representation of G has no cycles of length 6 with a

unique chord. We denote such cycles as B¢ (see Figure 3).

It is clear that if H has no B6’ then H has no G? . It is also true that if H has no G? ,then H

has no Bg. This holds because if clique node a is not adjacent to a node of T which is not a

neighbor of c, then a does not represent a maximal clique of G. The same is true for b. If a

and b have a common neighbor, labeled say 6, which is not a neighbor of c, then the bipartite
graph induced by {2,3,4,6,a,b,c} corresponds to a K, (see Figure 4) and would be represented
by a single clique node and four nodes of T. So a and b must each have a neighbor which is

not adjacent to any other node of B 6

6
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The bipartite graph representation of a diamonded odd cycle of length greater than five is given

in Figure 5a. We will denote the graph given in Figure 5b as C3. If we want to assume G has

no diamonded odd cycle of length greater than five then it is sufficient to assume H has no Cs

since if b does not have a neighbor different from y and z, then b does not represent a maxi-

mal clique.

Definition 2: A bi-odd hole C is minimal if no subset of its nodes, together with at most three

nodes notin C induces a smaller bi-odd hole.

Definition 3: A node not belonging to a hole C but having at least two neighbors in C is
strongly adjacent to C. A node that is strongly adjacentto C and has an odd (even) number of

neighbors in C is odd-strongly (even-strongly) adjacent to C.

Definition 4: A bi-odd hole C with length greater than or equal to 10 is an imperfect bi-odd
hole if there is no clique node strongly adjacentto C with three or more neighbors on C. An

imperfect bi-odd hole in H corresponds to an odd hole in G with length at least five.

Definition S: A hole C together with a node v noton C but having at least three neighbors
on C form a wheel (C,v) with center v. The edges from v to C are the rays of the wheel
and a subpath from the endnode of one ray of the wheel to the endnode of another ray of the
wheel not containing any other neighbor of v is a sector of the wheel. The interior nodes of a

sector S are the nodes of S not adjacent to v (see Figure 6).



In the remainder, we assume that G is aminimally imperfect graph containing no diamonded
odd cycl es By Lemma 1, it will suffice to show that G is an odd hole. The technique we will
useisto show that if G contains no odd holes, then G has a star cutset. We will then apply
Chv£taTs result which says no minimal imperfect subgraph has a star cutset to achieve the
desired contradiction. Recall that G isaminimal imperfect graph if G isnot perfect, but all
its induced subgraphs are perfect.

To show that G has a star cutset, we will show that every bipartite graph H containing no B#,

no Cq, and no imperfect bi-odd holes has anode ueT such that N=(u) contains a cutset of

H. Todo this, we will use some results of Conforti and Rao to show that thereisanodeu* € T
such that N-(u*) contains al nodes odd-strongly adjacent to a minimal bi-odd hole C. We will
then show that N~ (u*) contains a cutset, K, which disconnects C. To show K disconnects C,

we choose two connected components of C\K and show that if there were apath P connecting
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them, then the subgraph induced by V(C) U V(P) U 3 would contain an imperfect bi-odd hole,

where B = {s e S:sis odd-strongly adjacentto C}.

Before proving the main results, we will need a few preliminary results.

Theorem 1 [4]: No minimal imperfect graph has a star cutset.

Lemma 2 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a
minimal bi-odd hole in H. All clique nodes odd-strongly adjacent to C have a common neigh-
bor in C.

Lemma 3 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a

minimal bi-odd hole in H. If u is even-strongly adjacent to C, then u has exactly two neigh-

bors in C, say ug and uy, and furthermore there exists a node of C adjacent to both uy and

\12.

Throughout the remainder of the paper, unless otherwise stated, we will assume H contains no
B6’ no C3, and no imperfect bi—odd holes. If H has no bi-odd holes, then H is balanced and

therefore perfect. We will assume H is not balanced. Let C be a minimal bi-odd hole of H.

Lemma 4: C has length greater than or equal to 10.



Proof:
If C has length 6, label the nodes of C clockwise around C a,1,b,2,c,3 where the nodes
labeled with letters are clique nodes and the nodes labeled with numbers are nodes of T. Then

nodes 1,2,3 form a triangle in G (see Figure 7) and would all be adjacent to a clique node. So

there is a clique node odd-strongly adjacentto C and H contains a B¢ (see Figure 8).

Therefore C has length greater than or equal to 10. -

Lemma S: There exists anode ze T N C such that N2(z) contains all nodes odd-strongly ad-

jacentto C.

Proof: Postponed to section 3.
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Let Z be the set of nodesin T N C such that, for ze Z, N2(z) contains all nodes odd-strongly

adjacentto C. Let .3 = {s e S:s is odd-strongly adjacentto C}.

Fix ze Z. C is not imperfect, so there is a clique node odd-strongly adjacentto C. Let v be a
clique node odd-strongly adjacent to C with the property that when traversing C counterclock-
wise from z anode adjacentto v is encountered before a node adjacent to any other clique

node odd-strongly adjacentto C. Let a and b be the neighbors of z on C and let ¢ (d) be

the neighbor of a (b) on. C different from z. Let S; and S, be the sectors of (C,v)
containing z (see Figure 9). Since H does not contain a Bg at leastone of S; or S, has
length greater than two. If both S1 and 82 have length greater than two, let K = Nz(z)\{c,d}.

If one of S; or S, has length two, assume without loss of generality that the sector containing

a has length two and let K = N2(2)\{d}.

Lemma 6: Either, (i) For some z € Z,K is a cutset of H with the property that at
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least two connected components of H\K contain a node of T; or

(ii) There exists z€ Z and two connected components of C\K such thatif P isa

shortest path in H\K connecting these two components, the subgraph of H induced

by V(P) u V(C) U B contains a minimal bi—odd hole C” with the property that no

se€ & isodd-strongly adjacentto C’.
Proof: Postponed to section 4.2.

Lemma 6 says that if K is not a cutset of H, then H contains a bi-odd hole. However, the fact
that H contains a bi-odd hole does not contradict perfection; we need an imperfect bi-odd hole.
The following theorem shows that if K is not a cutset of H, then H contains an imperfect bi-

odd hole. But H does not contain an imperfect bi-odd hole, so K is a cutset of H.

Theorem 2: There exists z € Z such that Nz(z) contains a cutset, K, of H with the property

that at least two of the connected components of H\K contain a node of T.

Proof:
Suppose the theorem is not true. By Lemma 6, H contains a minimal bi-odd hole C’ with the

property thatnos € 3 is odd-strongly adjacentto C’. Since H has no imperfect bi—odd holes,

there is a clique node x in H which is odd-strongly adjacent to C’. x is adjacent to three or
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more nodes of TN C”. Allnodes of T on C’ are eitheron P or CC’. So for any clique

node odd-strongly adjacent to C” either Nx)"C'C P or NX)N"NC'nC=# . Let p; and

p; be the nodes of P C and let c; be the component of C containing p;, i =1,2. Figures

10a-10d illustrate the possible configurations for x. Note that x has at most two neighbors on

C since x isnotin .8 and so is not odd-strongly adjacent to C and if x is even-strongly adja-
centto C, x has two neighbors on C by Lemma 3. Also, x is not adjacentto z since x hasa

neighbor on P.

In figures 10a and 10b, there is a (cy,c5)-path containing x that is shorter than P; contradicting

the choice of P. In figure 10c, (C’,x)is a C3. In figure 10d, the (x3,p1)-subpath of P must
have length less than or equal to two, since otherwise there would be a shorter (c{,c5)-path than
P. If the (x3,py)-subpath of P has length two, replace the path (x1,y,X,) on C with the path

(x1,X,X5), shortening P. If the (x3,p;)-subpath of P has length one, again replace the path

Figure 10a Figure 10b Figure 10c

11



(x1,¥:X5) on C with the path (x1:X,Xp) forming C* (see figure 10e). x3 is even-strongly

adjacent to C* so by Lemma 3, p; is adjacentto x; and {xl,y,xz,x,x3,p1} induces a Bg. -

Theorem 3: The strong perfect graph conjecture holds for the class of graphs not containing a
diamonded odd cycle.

Proof:
Let G be a minimal imperfect graph not containing a diamonded odd cycle. By Lemma 1, it
suffices to show G is an odd hole of size greater than or equal to 5. Assume not. Let H be the

bipartite graph representation of G. H is not balanced, so H has a bi-odd hole. G has no dia-

monded odd cycle and no odd hole of size greater than or equal to 5, so H has no B6, no C3,

and no imperfect bi-odd hole. By Theorem 2 H has anode ue T such that Nz(u), contains a

Figure 10e
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cutset K. Also, there existnodes tj and t2 in T with tj in one component of H\K and t"

in another. Then thenode u' of G corresponding to u is such that N(u') contains a star cutset

of G. By Theorem 1 this contradicts the choice of G._

§ 3 THE PROOFS OF LEMMAS 5 AND 6

Before proving Lemma5 we will state some results of Conforti and Rao that we will need in the

proof.
Let K be abipartite graph containing no imperfect bi-odd holes, let C be aminimal bi-odd
hole and let w be a clique node odd-strongly adjacentto C Conforti and Rao have shown the

following:

Lemma 7 [6]: If u isaclique node odd-strongly adjacentto C with aneighbor in the interior

of asector of (C,w), then u has at |east one other neighbor in the same sector.

Lemma 8 [6]: All nodesin T odd-strongly adjacent to C have acommon neighbor in C.

Lemma9[6]: If |C|=> 10 then for every node ue T odd-strongly adjacentto C but not adja

centto w, u has exactly one neighbor u* in some sector § of C and an even number of
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neighbors in an adjacent sector S;, ;. Moreover, u* is adjacent to the common node in the two

sectors.

Lemma 10 [6]: If |C| = 10 then for every node ue T odd-strongly adjacentto C but not adja-

centto w, the nodes of N(u) N C are contained in the same two sectors, say Si-l and Si’ of

the wheel (C,w).

Lemma 11 [6]: If ue T is odd-strongly adjacentto C, then one of the following holds:
(i) u is adjacent to all clique nodes odd-strongly adjacent to C; or
(ii) u has a neighbor, say u*,in C such that all clique nodes odd-strongly adjacent to

C are adjacent to one of the two neighbors of u* in C.

Now, the proof of Lemma 5. Recall:

Lemma §: There exists anode z e T such thatN 2(z) contains all nodes odd-strongly adjacent

to C.

Proof:
We will consider two cases:

i) There is no node of T odd-strongly adjacent to C satisfying (ii) of Lemma 11;

14



ii) Thereis anodeof T odd-étrongly adjacent to C satisfying (ii) of Lemma 11.

Case (i): Let z be the node of C adjacent to all clique nodes odd-strongly adjacent to C. Every

node, x € T, odd-strongly adjacent to C is adjacentto v. z is adjacentto v,soX € N2(z).

Case (ii): Let z be the neighbor of u* described in Lemma 11 (ii). z is adjacent to all clique
nodes odd-strongly adjacent to C. In particular v e N(z). Let Si» Sy, 1 be the sectors of (C,v)
containing z. By Lemma 10, if x € T is odd-strongly adjacentto C, then either x is adjacent

to v or N(x) N C iscontainedin S; U S, 4, so by Lemma 9 a neighbor of x is adjacent to z

andx € N2(z). -

Definition 6: Let r and s be clique nodes odd-strongly adjacentto C. Let p (q) be a neigh-
bor of r(s)on C. We will say p is next to q if there exists a (p,q)—path on C containing no

neighbors of any clique node odd-strongly adjacent to C.

Definition 7: A cycle C is starred if its set of chords satisfies the following properties:
(a) there existtwonodes x and y in C, called the stars of C, such that every
chord of C has either node x ornode y but not both as its endpoint;

(b) no other node of T is the endpoint of two distinct chords;
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(c) no two endpoints of chords are adjacent.

Theorem 4 [5]: Let C be a starred cycle. If the graph induced by the nodes of C has no bi-

odd holes, then C has length 2 mod 4 if and only if C has an odd number of chords.

On to Lemma 6. Recall:

Lemma 6: Either, (i) For some z e Z, K (as defined on page 9) is a cutset of H with the

property that at least two connected components of H\K contain a node of T; or

(ii) There exists z€ Z and two connected components of C\K such thatif P isa

shortest path in H\K connecting these two components, the subgraph of H induced

by V(P) U V(C) U 3 contains a minimal bi—odd hole C’ with the property that no

se€ A& isodd-strongly adjacentto C’.

The proof of Lemma 6 involves several cases, but the basic argument is the same in each case.

We will present one case in detail here and sketch the rest. Complete details can be found in [3].

The main ideas of the proof are as follows. Assume K is not a cutset of H. First, we will care-

fully choose the two components of C\K that P will connect. We will choose two connected

components so each component will be a path, say P; and P,, containing no neighbors of clique
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nodes odd-strongly adjacentto C. We will chose a shortest path P from P; to P, in H\K. P
may contain nodes of C\(P; U P,). We will then show that P does not contain any nodes
strongly adjacent to P; U P,. In particular, the endpoints of P,s; and t;, are not strongly ad-
jacentto P, UP,. We will let s (t) be the node of Py Py adjacent to s (ty). We will then

consider four (s,t)-paths in the graph induced by V(Pl) U V(Pz) U & and the cycles closed by

these (s,t)-paths with P.  All four cycles are starred cycles, so Theorem 4 applies. Three of the
four cycles will have the same length mod 4 and the fourth will have a different length mod 4.
By Theorem 4 the three cycles with the same length mod 4 must have the same number of chords
mod 2 and the fourth must have a different number of chords mod 2. Which three cycles have
the same length mod 4 varies depending on which sides of the bipartition s and t are on, but in
every case, the number of chords must satisfy an equation which is impossible to satisfy. So by

Theorem 4 one of the cycles must contain a bi—odd hole. This bi—odd hole has the property that

no se€ & is odd-strongly adjacent to it.

Proof of Lemma 6:

Assume without loss of generality that S; contains no neighbors of clique nodes odd-strongly

adjacent to C. Let z; (z,) be the endpoint of S; (S,) different from z. For the purposes of the

argument, two clique nodes u and w with N(u) N V(C) = N(w) N V(C) are redundant, so we

17



will assume that N(u) N V(C) # N(w) N V(C) for all clique nodes u and w odd-strongly adja-

centto C.

CaseI): S; and S, both have length greater than two and no clique node odd-strongly adjacent

to C has four or more neighbors in S,.

Let T be the collection of chordless paths from S; to S, inH\K. If P =, then K is acut-

set of H disconnecting S; from S,. S; and S, both have length greater than two so the

components of H\K containing S; and S, each contain anode of T. If P 2O let Pbethe
shortest (Sl,Sz)-path in . Let 51 (tl) be the endpoint of P adjacent to Sl (SZ)‘ vasl is even

strongly adjacent to C with both nodes of N(s;) N C in S;,replace S; sothat s; isin Sy
and shorten P. If s, is even-strongly adjacent to C with one neighbor in S; and the other

neighbor in an adjacent sector, then if s, is not adjacent to v there is a smaller bi-odd hole in-

cluding s; contradicting the minimality of C and if s1 is adjacentto v, s; € N2(z). A simi-
lar argument holds for t;, so we can assume without loss of generality that s and t; arenot

strongly adjacent to C. Let s (t) be the node of S, (S,) adjacentto s1 (ty) (see Figure 11).
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Consider the (s,t)-paths in C: Pab = (§,...,a,Z,b,...,t), Pa7,2 = (s,...,a,z,v,zz,...,t),

leb= (s,...,zl,v,z,b,...,t), lezz = (s,...,zl,v,zz,...,t). Let Cab’ Ca,lz, Cz,b: Czl,q be the cycles

closed by Pwith P, Pazz’ leb, P respectively. Note thatno s € & is odd-strongly adja-

21°

cent to Cij’ ie {a,z;},j € {b,z,}. There may be chords from P to {zl,zz}. Since H does not
containa Cs3, both (z;,z5)-paths on C have length greater than 2. Nonode y of P is adja-

cent to both z; and z, since y cannot be even-strongly adjacent to C by Lemma 3 and if y
were odd-strongly adjacentto C, y ¢ H\K. Let T, T,, be the set of edges having one
endpointin P and the other endpoint as z;, z,, respectively. The cycles Cij’ ie {az},

j € {b,z,}, are starred cycles with the subscripts indicating the star nodes. The set of chords in

Figure 11
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Ci; isgiven by TjuTj whereT,and T, are defined to be empty.

If s and t are on the same side of the bipartition, then either the lengths of C*, Czy, C2122

are the same mod 4, say p mod 4, and the length of C*is(p+ 2) mod4 (sandtin S) or the

lengths of C,,, C*, Czp,are the same mod 4, say p mod 4, and the length of Czjz, is

(p + 2) mod 4. By Theorem 4, one of the following relations holds or else there is abi-odd hole.
| Tay| +| oy = [Ty +{Te|=[Td+ | Ty #[Td+|Te| (modi2) or

|Ta|+|Tb|=szl|+|Tb|=|T4+ITz2|¢|TzJ+|T4 (mod 2)
Neither relation holds, so the graph induced by V(C) uV(P) u /8 contains abi-odd hole C

with no clique node odd-strongly adjacent to C also odd-strongly adjacent to C.

If s and t are on opposite sides of the bipartition, either the lengths of CLu, Cﬁ b G, arethe

same mod 4, say p mod 4, and the length of C* is (p+2) mod4 (se T and te S) or the

lengths of C,,, C*, Czz2 arethe same mod 4, say p mod 4, and the length of Cz1b is

(p + 2) mod 4. By Theorem 4 one of the following relations holds or there is a bi-odd hole.
|T4+|Tb|=|T21|+|T7fJ=|T21I+1Tb|¢|Tﬂ|+|Tz!| (mod2) or
|Ta|+|Tb|=[Tz,| +|TZEI=|T4+|T4 ¢|T,_l| + Ty (mod2)

Neither relation can hold, so the graph induced by V(C) uV(P) u /8 contains abi-odd hole C
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with no clique nodes odd-strongly adjacent to C also odd-strongly adjacent to C’.

Case II): Both S; and S, have length greater than two and there is a clique node odd-strongly

adjacent to C with four or more neighbors in S,.

Let x be such a clique node with the property that when traversing C counterclockwise from

z, aneighbor of x, say x, is encountered before a neighbor of any other clique node odd-
strongly adjacentto C. Let x* be the neighbor of x on S, closestto z. If x is adjacent to
z{, the length of the (zx*)-pathin S, must be greater than two since if y is the common
neighbor of z and x* on C, the set {x,x*,y,z,v,zl} induces a B6 (see Figure 12). Soif x is

adjacent to z{, let x be the center of the wheel and the new wheel is either in Case I or Case II.

No node will appear as the center of the wheel twice, so the procedure will terminate. Let T be

X

Figure 12 Figure 13
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the collection of chordless paths from S to the (x 1,22)—subpath of 82 inHK. If P=0,K is
acutset of H disconnecting S; from the (x{,z)-subpath of S,. The component of H\K con-

taining S; and the component of H\K containing the (x;,z,)-subpath of S, each containa

node of T. If T =, let P be the shortest path in T. Let s (t) be the endpoint of P adja-
centto S 1 (Sz). As in Case I, we can assume without loss of generality that $1 and t; are not

strongly adjacentto C. Let s (t) be the node of Sl (Sz) adjacent to 51 (tl) (see Figure 13).

Apply the argument from Case I to the paths Paxl = (s,...,a,z,x,xl,...,t), PMQ = (s,...,a,z,v,zz,...,t),

sz = (s,...,zl,v,z,x,xl,...,t), le,,Z = (8y0,21,V5Zg50051) and the cycles Ca,‘1 R Ca,,z, Czlxl’ Czl7/)

formed by P with P, , Paz,» Pyyxp» P2y Tespectively.

Case IIl) S; has length two and there exists anode w e T odd-strongly adjacent to C, not

adjacent to v.

Let the length two sector of C be (z,y,z1). By Lemmas 9 and 11 w is adjacent to y and has
an even number of neighbors in 'Sz. Let wy be the neighbor of w closest to z,. There is no

clique node u odd-strongly adjacentto C with a neighbor of u on the (b,wy) pathof C

since taking u as the center of the wheel would violate Lemma 9. w is not adjacent to b since
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if it were the set {z,b,w,y,z;,v} would induce a Bg. Let u be the clique node odd-strongly
adjacent to C with the property that a neighbor of u (different from zy)iscloserto z; than
any neighbor of any other clique node odd-strongly adjacentto C (u may be v). Let u; be the
neighbor of u closest to z;. If there is a clique node x odd-strongly adjacent to C with neigh-
bors of x on the interior of the (wl,zz)-path of C,take x to be the center of the wheel. x is
adjacent to z; since otherwise both sectors of (C,x) containing z would have length greater
than 2 and the sector containing w; would have no neighbors of a clique node odd-strongly

adjacent to C. So we can assume without loss of generality that the (w,z,)-subpath of C con-

tains no neighbors of clique nodes odd-strongly adjacent to C. Let T be the collection of

chordless paths from S, tothe (z;,u;)-path of COK in H\K. If P =&, K isacutsetof H
disconnecting S, from the (z{,u;)-path of C\K. The component of H\K containing S, and

the component of H\K containing the (z{,u;)-path of C\K each contain a node of T. If

T # J, let P be the shortest path in P. Let s 1@ be the endpoint of P adjacent to 82 (the
(z1,uq)-path of C\K). As in Case I, we can assume without loss of generality that s; and t; are

not strongly adjacent to C. Let s (t) be the node of 82 (the (z l,ul)-path of C\K) adjacent to

Sl (tl).
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We will consider two subcases.

IIIa) s is on the (z,wl)-subpath of Sy;

IIIb) s is on the (wl,zz)subpath of SZ'

Case IIa): s is on the (z,wl)—subpath of 82 (see Figure 14a).

Let wy be the first neighbor of w encountered when traversing C from s toward z,.

Apply the argument from Case I to the paths Pblx = (s,...b,z,v,zl,...,t), Pbul = (s,...b,z,u,ul,...,t),
sz1 = (S50 s W W,Y5Z150001), PWul = (8,0, W, W,y,Z,0,u1,...,) and the cycles

Cyaz» Cbul, Cwz, > Cwup formed by P with Py, Pb“l’ Pwz, s Pwu, respectively.

Fieure 14a
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Case IIIb): s is on the (wl,zz)—subpath of SZ'

Case IIIbi): u#v (see Figure 14b).

Apply the argument from Case I to the paths P, 2 = (s,...b,z,y,zl,...,t), Pbu, = (s,‘..b,z,u,ul,...,t),

P,Qzl = (85000929, V5Z o0 t), Py, = (85005 22V, Z, WU 5e0s) and the cycles Cbzl, Cbu,, C,QZI, sz

formed by P with Py, , Py, P, 5, Py, Tespectively.

iy

Case IIIbii): u=v (see Figure 14c¢).

Apply the argument from Case I to the paths P, 2 = (8, W1, W,Y,Z5e001)s

Py, = (S5ees W WY, ZUU ), I’Zzz1 = (85+9Z93VsZ 15 est)s Py, = (8,e-05 Z9,V5U1,.0t) and the

Figure 14b Figure 14c
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cycles Cyz, Cwuys Copzpr Copuy closed by Pwith Py, ,Pyy , Py, Py, respectively.

Case IV: S; has length two and every node in T odd-strongly adjacent to C is adjacentto v.

There must be a clique node w odd-strongly adjacent to C with N(v) " C & N(w) N C since
if all clique nodes were adjacent to all neighbors of v and every node of T odd-strongly adja-

centto C is adjacent to v, then any neighbor of v could be chosen as z. In particular, since H

does not contain a B, z could be chosen so that S; and S, both have length greater than 2.

Let w be a clique node odd-strongly adjacentto C with N(v) "C &z N(w)NC. Let x bea

clique node odd-strongly adjacent to C with neighbors in S, such that x has a neighbor x;

in 82 nextto z (x may be v).

Claim: There is a node, Vi On C different from z adjacent to both v and x.

Proof:

Trivial if x =v. Suppose x#v. x has an even number of neighbors in S, and no neighbors in

the interior of S; so x either has a unique neighbor x” in some sector with x” adjacentto v

(by Lemma 7) or x has an even number of neighbors in two adjacent sectors and one of x’s

neighbors is the common endpoint of the sector.
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The length of the (z,xj)-path on C cannot betwo since if it wereand x * v, the set

{z.,v,vxx,xpb} would induceaB” andif x = v, then the (zXj)-pathon C would be S2

which has length greater than two.

CaselVa x=w.

Clearly, some neighbor of w, w”, notin S2 isnext to some neighbor Uj of acliquenode u

odd-strongly adjacentto C with u* not adjacentto w. (u maybe v.)

Let P be the collection of chordless paths in H\K from the (z,Xj)-subpath of S2 to the

(uy,w)-pathin C\K. If P =0, then K isacutset of H disconnecting the (zpXj)-subpath of

Figure 15
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S, from the (ul,wk)-path in C\K. The components of H\K containing the (zl,xl)-subpath of -

82 and the component of H\K containing the (ul,wk)-path in C\K contain anode of T. If

T # 3, let P be the shortest path in T. Let 51 (t;) be the endpoint of P adjacent to the (z,x)-
path ((uy,w)-path) in C. Asin Case I, we can assume without loss of generality that s; and t;
are not strongly adjacent to C. Let s (t) be the node of the (z,xl)-subpath ((ul,wk)-subpath)

adjacent to 81 (tl) (see Figure 15).

Apply the argument from Case I to the paths Pbul = (s,...,b,z,u,ul,...,t),
wak = (s,...,b,z,w,wk,...,t), Px1u1 = (s,...,xl,x,z,u,ul,...,t), lewk = (S,..., xl,w,wk,...,t) and the

cycles Cpy;s Cowy» CxpuppCxyw, formed by P with Py , Pyy, , Py, » Py w, » Tespectively.

Case IVb: x =v.

N(w) " C & N(v) n C by choice of v,so w has neighbors in the interior of some sector Sj of
C. Let Z and Z_4 be the endpoints of Sj. Since H contains no C3 one of Zp

Z_1 # 21, Zy.Assume without loss of generality that Z #21, z). If possible, choose Z; s0 that

zy and z; are not endpoints of the same sector. Choose w so some neighbor wy of w is as

close to z; as possible. If there exists a clique node q odd-strongly adjacent to C with a

28



neighbor of q between Z; and wy, either N(v) nC &N(q) N C in which case replace w

with g; or N(v) " C cN(q) n C in which case, let q be the center of the wheel, and x=q. If '

q becomes the center of the wheel, q is not adjacentto wj since if q is adjacent to wy, the

set {z,w,wk,v,q,v*} induces a B6 where v* is a neighbor of v on C not adjacentto w.

Assume without loss of generality there are no clique nodes odd-strongly adjacentto C with

neighbors on the (zj,wk)fsubpath of C. Let T be the collection of chordless paths in H\K

from S, to the (zj,wk)-path of C\K. If P =@, K is acutset of H disconnecting S, from the

(zj,wk)-path in C\K. The component of H\K containing S, and the component of H\K con-

taining the (zj,wk)-path in C\K each contain anodeof T. If T =& let P be the shortest path

in . Let s (t1) be the end-node of P adjacentto S, (the (zj,wk)-path of C). AsinCasel,
we can assume without loss of generality that s; and t; are not strongly adjacent to C. Let s (t) -

be the node of 82 (the (zj,wk)-subpath of C) adjacentto sy (t;) (see Figure 16).

Apply the argument form Case I to the paths szj = (s,...,b,z,v,zj,...,t), wak = (s,...,b,z,w,wk,...,t),

| &= (s,...,x l,v,zj,...,t), lewk = (S,..., xl,v,z,w,wk,...,t) and the cycles Cbﬁ. R wak , Cxl7j ,C

X]Wk

closed by P with Pb,j. , wak , PXij'z P, W respectively.
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Case IVc): x#v,w.

Claim: N(w) "Nx)NCcNwv)nC.

Let wy € N(w) " N®Ex) N O\N(v) N C). Since x #v,w, N(v) " C cN(x) " C. Then the set

{w,wy,X,z,v,v*} induces a B where v* is a neighbor of v on C not adjacent to w.
Kk 6 g J

Let x be the center of the wheel. N(w) "nC @ N(x) " C, so w has neighbors in the interior of

some sector of (C,x). Now we are in case IVb where x is the center of the wheel. -

Figure 16
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