NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

THE STRONG PERFECT GRAPH CONJECTURE HOLDS FOR DIAMONDED ODD CYCLE-FREE GRAPHS

by

Olivia M. Carducci
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 89-50 2

THE STRONG PERFECT GRAPH CONJECTURE HOLDS FOR DIAMONDED ODD CYCLE-FREE GRAPHS

June, 1989

Olivia M. Carducci
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15206

Abstract

We define a diamonded odd cycle to be an odd cycle C with exactly two chords and either a) C has length five and the two chords are non-crossing; or b) C has length greater than five and has chords (x, y) and (x, z) with (y, z) an edge of C and there exists a node w not on C adjacent to y and C, but not x. In this paper, we show that given a diamonded odd cycle-free graph G, G is perfect if and only if G does not have an induced subgraph isomorphic to an odd hole with size greater than three.

§ 1 INTRODUCTION

A zero-one matrix A is perfect if $\left\{x \in \mathbb{R}^{n} \mid A x \leq 1, x \geq 0\right\}$ has all integer extreme points. Matrix A is balanced if all its submatrices are perfect. A graph G is perfect if its clique-node incidence matrix is perfect. In 1961, Claude Berge conjectured that a graph G is perfect if and only if G has no node induced subgraph that is an odd hole of size greater than or equal to five or the complement of an odd hole of size greater than or equal to five. This conjecture, known as the Strong Perfect Graph Conjecture, remains open today. However the conjecture has been proved for several classes of graphs including triangulated graphs [1], comparability graphs [1], circular arc graphs [11], planar graphs [10], torodial graphs [7], $\mathrm{K}_{1,3}$-free graphs [8], and K_{4} le-free graphs [9], [12]. In this paper we show that the conjecture holds for graphs with no induced diamonded odd cycle. This generalizes the results of Parthasarathy and Ravindra [9] and Tucker [12] on K_{4} le-free graphs.

Definition 1: Let C be an odd cycle. C is a diamonded odd cycle if C has exactly two chords and either

Figure 1
a) C has length 5 and the two chords are non-crossing; or
b) C has length greater than 5 and has chords (x, y) and (x, z) with (y, z) an edge of C and there exists a node w not on C adjacent to y and z but not x (see Figure 1).

We will denote a length 5 diamonded odd cycle by G_{5}.

Let A be a zero-one matrix. In addition to viewing A as the clique-node incidence matrix of a graph G, we can view A as the node-node incidence matrix of a bipartite graph H. H has a node for each row and each column of A with an edge from node i, representing row i, to node j, representing column j, if and only if $a_{i j}=1$. We will let S be the set of nodes representing the rows of A and T the set of nodes representing the columns of A. Since the rows of A represent cliques in the graph, G, with clique-node incidence matrix A, we will sometimes refer to the nodes in S as clique nodes. We will say the bipartite graph H is perfect (balanced) if A is perfect (balanced). Throughout the paper, G will denote a graph with no diamonded odd cycle and A will be G's clique-node incidence matrix. A will have a row for each maximal clique of G only. H will denote a bipartite graph whose node-node incidence matrix is A . We will say H is the bipartite graph representation of G.

Since H is bipartite, all cycles of H are even cycles. We will say a cycle C with length $2 k$ is bi-even if k is even and bi-odd if k is odd. H is balanced if and only if H has no bi-odd holes (Berge [2]). A bi-odd cycle has length congruent to $2 \bmod 4$. In the interest of brevity, the words congruent to will be left out in the future.

For a node u in G, we will let $N(u)$ be u together with the set of nodes adjacent to u. In H, for a node $u \in T$, we will let $N^{2}(u)$ be the set of nodes at distance less than or equal to two from
u. Note that since u corresponds to a column of A, there will be a node of G, say u^{\prime}, corresponding to u in H and $N^{2}(u)$ in H corresponds to $N\left(u^{\prime}\right)$ in G. Throughout this paper we will say G contains a graph G^{\prime} when we mean G^{\prime} is a node induced subgraph of $G . V\left(G^{\prime}\right)$ will denote the nodes of G^{\prime}. The complement of a hole (in G) is called an antihole.

§ 2 THE MAIN RESULTS

Lemma 1: G contains no odd antihole of cardinality n with $\mathrm{n} \geq 7$.

Proof:

Let G^{\prime} be an odd antihole of size $n, n \geq 7$. Label the nodes of G^{\prime} such that in the complement $(1,2,3, \ldots, n)$ forms a cycle. The set $S=\{1,3,5, n, 2\}$ induces a G_{5}.

The bipartite graph representation of G_{5} is given in Figure 2 where the nodes labeled by letters are clique nodes and the nodes labeled by numbers are nodes of T .

Figure 2

Figure 3

If G has no G_{5} then the bipartite graph representation of G has no cycles of length 6 with a unique chord. We denote such cycles as B_{6} (see Figure 3).

It is clear that if H has no B_{6}, then H has no G_{5}^{B}. It is also true that if H has no G_{5}^{B}, then H has no B_{6}. This holds because if clique node a is not adjacent to a node of T which is not a neighbor of c, then a does not represent a maximal clique of G. The same is true for b. If a and b have a common neighbor, labeled say 6 , which is not a neighbor of c, then the bipartite graph induced by $\{2,3,4,6, a, b, c\}$ corresponds to a K_{4} (see Figure 4) and would be represented by a single clique node and four nodes of T . So a and b must each have a neighbor which is not adjacent to any other node of B_{6}.

Figure 4

Figure 5a

Figure 5b

The bipartite graph representation of a diamonded odd cycle of length greater than five is given in Figure 5a. We will denote the graph given in Figure 5 b as C_{3}. If we want to assume G has no diamonded odd cycle of length greater than five then it is sufficient to assume H has no C_{3} since if b does not have a neighbor different from y and z, then b does not represent a maximal clique.

Definition 2: A bi-odd hole C is minimal if no subset of its nodes, together with at most three nodes not in C induces a smaller bi-odd hole.

Definition 3: A node not belonging to a hole C but having at least two neighbors in \mathbf{C} is strongly adjacent to C. A node that is strongly adjacent to C and has an odd (even) number of neighbors in \mathbf{C} is odd-strongly (even-strongly) adjacent to C .

Definition 4: A bi-odd hole C with length greater than or equal to 10 is an imperfect bi-odd hole if there is no clique node strongly adjacent to \mathbf{C} with three or more neighbors on \mathbf{C}. An imperfect bi-odd hole in H corresponds to an odd hole in G with length at least five.

Definition 5: A hole C together with a node v not on C but having at least three neighbors on C form a wheel (C, v) with center v . The edges from v to C are the rays of the wheel and a subpath from the endnode of one ray of the wheel to the endnode of another ray of the wheel not containing any other neighbor of v is a sector of the wheel. The interior nodes of a sector S are the nodes of S not adjacent to v (see Figure 6).

In the remainder, we assume that G is a minimally imperfect graph containing no diamonded odd cycles. By Lemma 1, it will suffice to show that G is an odd hole. The technique we will use is to show that if G contains no odd holes, then G has a star cutset. We will then apply ChvftaTs result which says no minimal imperfect subgraph has a star cutset to achieve the desired contradiction. Recall that G is a minimal imperfect graph if G is not perfect, but all its induced subgraphs are perfect.

To show that G has a star cutset, we will show that every bipartite graph H containing no B^{\wedge},
no Cg, and no imperfect bi-odd holes has a node ue T such that $N \sim(u)$ contains a cutset of H. To do this, we will use some results of Conforti and Rao to show that there is a node $u^{*} € T$ such that $\mathrm{N}^{-}\left(\mathrm{u}^{*}\right)$ contains all nodes odd-strongly adjacent to a minimal bi-odd hole C. We will then show that $\mathrm{N}^{\sim}\left(\mathrm{u}^{*}\right)$ contains a cutset, K , which disconnects C . To show K disconnects C , we choose two connected components of CK and show that if there were a path P connecting

Figure 6
them, then the subgraph induced by $\mathrm{V}(\mathrm{C}) \cup \mathrm{V}(\mathrm{P}) \cup \&$ would contain an imperfect bi-odd hole, where $\delta=\{s \in S: s$ is odd-strongly adjacent to $C\}$.

Before proving the main results, we will need a few preliminary results.

Theorem 1 [4]: No minimal imperfect graph has a star cutset.

Lemma 2 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a minimal bi-odd hole in H . All clique nodes odd-strongly adjacent to C have a common neighbor in C.

Lemma 3 [6]: Let H be a bipartite graph containing no imperfect bi-odd holes. Let C be a minimal bi-odd hole in H. If u is even-strongly adjacent to C, then u has exactly two neighbors in C, say u_{1} and u_{2}, and furthermore there exists a node of C adjacent to both u_{1} and u_{2}.

Throughout the remainder of the paper, unless otherwise stated, we will assume \mathbf{H} contains no B_{6}, no C_{3}, and no imperfect bi-odd holes. If H has no bi-odd holes, then H is balanced and therefore perfect. We will assume H is not balanced. Let C be a minimal bi-odd hole of H .

Lemma 4: C has length greater than or equal to 10.

Proof:
If C has length 6 , label the nodes of C clockwise around $C a, 1, b, 2, c, 3$ where the nodes labeled with letters are clique nodes and the nodes labeled with numbers are nodes of T . Then nodes $1,2,3$ form a triangle in G (see Figure 7) and would all be adjacent to a clique node. So there is a clique node odd-strongly adjacent to C and H contains a B_{6} (see Figure 8).

Therefore \mathbf{C} has length greater than or equal to 10 .

Lemma 5: There exists a node $z \in T \cap C$ such that $N^{2}(z)$ contains all nodes odd-strongly adjacent to C.

Proof: Postponed to section 3.

Figure 7

Figure 8

Let Z be the set of nodes in $T \cap C$ such that, for $z \in Z, N^{2}(z)$ contains all nodes odd-strongly adjacent to C. Let $\delta=\{s \in S: s$ is odd-strongly adjacent to $C\}$.

Fix $\mathrm{z} \in \mathrm{Z}$. C is not imperfect, so there is a clique node odd-strongly adjacent to C . Let v be a clique node odd-strongly adjacent to C with the property that when traversing C counterclockwise from z a node adjacent to v is encountered before a node adjacent to any other clique node odd-strongly adjacent to C. Let a and b be the neighbors of z on C and let c (d) be the neighbor of a (b) on C different from z. Let S_{1} and S_{2} be the sectors of (C,v) containing z (see Figure 9). Since H does not contain a B_{6}, at least one of S_{1} or S_{2} has length greater than two. If both S_{1} and S_{2} have length greater than two, let $K=N^{2}(z) \backslash\{c, d\}$. If one of S_{1} or S_{2} has length two, assume without loss of generality that the sector containing a has length two and let $\mathrm{K}=\mathrm{N}^{2}(\mathrm{z}) \backslash\{\mathrm{d}\}$.

Lemma 6: Either, (i) For some $z \in Z, K$ is a cutset of H with the property that at

Figure 9
least two connected components of $\mathrm{H} \backslash \mathrm{K}$ contain a node of T ; or
(ii) There exists $z \in Z$ and two connected components of $C \backslash K$ such that if P is a shortest path in $\mathrm{H} \backslash \mathrm{K}$ connecting these two components, the subgraph of H induced by $\mathrm{V}(\mathrm{P}) \cup \mathrm{V}(\mathrm{C}) \cup S$ contains a minimal bi-odd hole C^{\prime} with the property that no $s \in \delta$ is odd-strongly adjacent to C^{\prime}.

Proof: Postponed to section 4.2.

Lemma 6 says that if K is not a cutset of H , then H contains a bi-odd hole. However, the fact that H contains a bi-odd hole does not contradict perfection; we need an imperfect bi-odd hole. The following theorem shows that if K is not a cutset of H , then H contains an imperfect biodd hole. But H does not contain an imperfect bi-odd hole, so K is a cutset of H .

Theorem 2: There exists $z \in Z$ such that $N^{2}(z)$ contains a cutset, K, of H with the property that at least two of the connected components of HMK contain a node of T.

Proof:

Suppose the theorem is not true. By Lemma 6, H contains a minimal bi-odd hole C^{\prime} with the property that no $s \in \delta$ is odd-strongly adjacent to C^{\prime}. Since H has no imperfect bi-odd holes, there is a clique node x in H which is odd-strongly adjacent to $\mathrm{C}^{\prime} . \mathrm{x}$ is adjacent to three or
more nodes of $\mathrm{T} \cap \mathrm{C}^{\prime}$. All nodes of T on C^{\prime} are either on P or $\mathrm{C} \cap \mathrm{C}^{\prime}$. So for any clique node odd-strongly adjacent to C^{\prime} either $N(x) \cap C^{\prime} \subset P$ or $N(x) \cap C^{\prime} \cap C \neq \varnothing$. Let p_{1} and p_{2} be the nodes of $P \cap C$ and let c_{i} be the component of C containing $p_{i}, i=1,2$. Figures 10a-10d illustrate the possible configurations for x . Note that x has at most two neighbors on C since \mathbf{x} is not in 8 and so is not odd-strongly adjacent to \mathbf{C} and if \mathbf{x} is even-strongly adjacent to C, x has two neighbors on C by Lemma 3. Also, x is not adjacent to z since x has a neighbor on P.

In figures 10 a and 10 b , there is a $\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$-path containing x that is shorter than P ; contradicting
the choice of P. In figure $10 \mathrm{c},\left(\mathrm{C}^{\prime}, \mathrm{x}\right)$ is a C_{3}. In figure 10 d , the $\left(\mathrm{x}_{3}, \mathrm{p}_{1}\right)$-subpath of P must have length less than or equal to two, since otherwise there would be a shorter $\left(c_{1}, c_{2}\right)$-path than P. If the (x_{3}, p_{1})-subpath of P has length two, replace the path (x_{1}, y, x_{2}) on C with the path $\left(x_{1}, x, x_{2}\right)$, shortening P. If the $\left(x_{3}, p_{1}\right)$-subpath of P has length one, again replace the path

Figure 10a

Figure 10b

Figure 10c
($\mathrm{x}_{1}, \mathrm{y}, \mathrm{x}_{2}$) on C with the path ($\mathrm{x}_{1}, \mathrm{x}, \mathrm{x}_{2}$) forming C^{*} (see figure 10 e). x_{3} is even-strongly adjacent to C^{*} so by Lemma 3, p_{1} is adjacent to x_{1} and $\left\{\mathrm{x}_{1}, \mathrm{y}, \mathrm{x}_{2}, \mathrm{x}, \mathrm{x}_{3}, \mathrm{p}_{1}\right\}$ induces a B_{6}.

Theorem 3: The strong perfect graph conjecture holds for the class of graphs not containing a diamonded odd cycle.

Proof:
Let G be a minimal imperfect graph not containing a diamonded odd cycle. By Lemma 1, it suffices to show G is an odd hole of size greater than or equal to 5 . Assume not. Let H be the bipartite graph representation of G. H is not balanced, so H has a bi-odd hole. G has no diamonded odd cycle and no odd hole of size greater than or equal to 5 , so H has no B_{6}, no C_{3}, and no imperfect bi-odd hole. By Theorem 2 H has a node $\mathrm{u} \in \mathrm{T}$ such that $\mathrm{N}^{2}(\mathrm{u})$ contains a

Figure 10d

Figure 10e
cutset K. Also, there exist nodes tj and t 2 in T with tj in one component of $\mathrm{H} \backslash \mathrm{K}$ and $\mathrm{t} \wedge$
in another. Then the node u^{\prime} of G corresponding to u is such that $N\left(u^{\prime}\right)$ contains a star cutset
of G. By Theorem 1 this contradicts the choice of G. \qquad

§ 3 THE PROOFS OF LEMMAS 5 AND 6

Before proving Lemma 5 we will state some results of Conforti and Rao that we will need in the proof.

Let K be a bipartite graph containing no imperfect bi-odd holes, let C be a minimal bi-odd hole and let w be a clique node odd-strongly adjacent to C Conforti and Rao have shown the following:

Lemma 7 [6]: If u is a clique node odd-strongly adjacent to C with a neighbor in the interior of a sector of (C, w), then u has at least one other neighbor in the same sector.

Lemma 8 [6]: All nodes in T odd-strongly adjacent to C have a common neighbor in C.

Lemma 9 [6]: If $|\mathrm{C}| \geq 10$ then for every node $\mathrm{u} e \mathrm{~T}$ odd-strongly adjacent to C but not adjacent to w , u has exactly one neighbor u^{*} in some sector Sj of C and an even number of
neighbors in an adjacent sector $\mathrm{S}_{\mathrm{i}+1}$. Moreover, u^{*} is adjacent to the common node in the two sectors.

Lemma 10 [6]: If $|C| \geq 10$ then for every node $u \in T$ odd-strongly adjacent to C but not adjacent to w, the nodes of $N(u) \cap C$ are contained in the same two sectors, say S_{i-1} and S_{i}, of the wheel (C, w).

Lemma 11 [6]: If $u \in T$ is odd-strongly adjacent to C, then one of the following holds:
(i) u is adjacent to all clique nodes odd-strongly adjacent to C; or
(ii) u has a neighbor, say u^{*}, in C such that all clique nodes odd-strongly adjacent to \sum are adjacent to one of the two neighbors of u^{*} in e.

Now, the proof of Lemma 5. Recall:

Lemma 5: There exists a node $z \in T$ such that $N^{2}(z)$ contains all nodes odd-strongly adjacent to C .

Proof:
We will consider two cases:
i) There is no node of T odd-strongly adjacent to C satisfying (ii) of Lemma 11;
ii) There is a node of T odd-strongly adjacent to C satisfying (ii) of Lemma 11.

Case (i): Let z be the node of C adjacent to all clique nodes odd-strongly adjacent to C. Every node, $x \in T$, odd-strongly adjacent to C is adjacent to $v . z$ is adjacent to v, so $x \in N^{2}(z)$.

Case (ii): Let z be the neighbor of u^{*} described in Lemma 11 (ii). z is adjacent to all clique nodes odd-strongly adjacent to C. In particular $v \in N(z)$. Let S_{k}, S_{k+1} be the sectors of (C,v) containing z. By Lemma 10 , if $\mathrm{x} \in \mathrm{T}$ is odd-strongly adjacent to C , then either x is adjacent to v or $N(x) \cap C$ is contained in $S_{k} \cup S_{k+1}$, so by Lemma 9 a neighbor of x is adjacent to z and $x \in N^{2}(z)$.

Definition 6: Let r and s be clique nodes odd-strongly adjacent to C. Let $p(q)$ be a neighbor of $r(s)$ on C. We will say p is next to q if there exists a (p, q)-path on C containing no neighbors of any clique node odd-strongly adjacent to \mathbf{C}.

Definition 7: A cycle C is starred if its set of chords satisfies the following properties:
(a) there exist two nodes x and y in C, called the stars of C, such that every chord of C has either node x or node y but not both as its endpoint;
(b) no other node of E is the endpoint of two distinct chords;
(c) no two endpoints of chords are adjacent.

Theorem 4 [5]: Let C be a starred cycle. If the graph induced by the nodes of C has no biodd holes, then C has length $2 \bmod 4$ if and only if C has an odd number of chords.

On to Lemma 6. Recall:

Lemma 6: Either, (i) For some $z \in Z, K$ (as defined on page 9) is a cutset of H with the property that at least two connected components of HVK contain a node of T; or
(ii) There exists $\mathrm{z} \in \mathrm{Z}$ and two connected components of ClK such that if P is a shortest path in $\mathrm{H} \backslash \mathrm{K}$ connecting these two components, the subgraph of H induced by $\mathrm{V}(\mathrm{P}) \cup \mathrm{V}(\mathrm{C}) \cup \&$ contains a minimal bi-odd hole C^{\prime} with the property that no $s \in 8$ is odd-strongly adjacent to C^{\prime}.

The proof of Lemma 6 involves several cases, but the basic argument is the same in each case. We will present one case in detail here and sketch the rest. Complete details can be found in [3].

The main ideas of the proof are as follows. Assume K is not a cutset of H . First, we will carefully choose the two components of $\mathrm{C} \mid \mathrm{K}$ that P will connect. We will choose two connected components so each component will be a path, say P_{1} and P_{2}, containing no neighbors of clique
nodes odd-strongly adjacent to C. We will chose a shortest path P from P_{1} to P_{2} in HK. P may contain nodes of $C\left(P_{1} \cup P_{2}\right)$. We will then show that P does not contain any nodes strongly adjacent to $P_{1} \cup P_{2}$. In particular, the endpoints of P, s_{1} and t_{1}, are not strongly adjacent to $P_{1} \cup P_{2}$. We will let $s(t)$ be the node of $P_{1}\left(P_{2}\right)$ adjacent to $s_{1}\left(t_{1}\right)$. We will then consider four (s, t)-paths in the graph induced by $\mathrm{V}\left(\mathrm{P}_{1}\right) \cup \mathrm{V}\left(\mathrm{P}_{2}\right) \cup 8$ and the cycles closed by these (s, t)-paths with P. All four cycles are starred cycles, so Theorem 4 applies. Three of the four cycles will have the same length $\bmod 4$ and the fourth will have a different length mod 4. By Theorem 4 the three cycles with the same length mod 4 must have the same number of chords $\bmod 2$ and the fourth must have a different number of chords mod 2 . Which three cycles have the same length mod 4 varies depending on which sides of the bipartition s and t are on, but in every case, the number of chords must satisfy an equation which is impossible to satisfy. So by Theorem 4 one of the cycles must contain a bi-odd hole. This bi-odd hole has the property that no $s \in S$ is odd-strongly adjacent to it.

Proof of Lemma 6:

Assume without loss of generality that S_{1} contains no neighbors of clique nodes odd-strongly adjacent to C. Let $z_{1}\left(z_{2}\right)$ be the endpoint of $S_{1}\left(S_{2}\right)$ different from z. For the purposes of the argument, two clique nodes u and w with $N(u) \cap V(C)=N(w) \cap V(C)$ are redundant, so we
will assume that $N(u) \cap V(C) \neq N(w) \cap V(C)$ for all clique nodes u and w odd-strongly adjacent to C .

Case I): S_{1} and S_{2} both have length greater than two and no clique node odd-strongly adjacent to C has four or more neighbors in S_{2}.

Let P be the collection of chordless paths from S_{1} to S_{2} in $H K$. If $P=\varnothing$, then K is a cutset of H disconnecting S_{1} from $S_{2} . S_{1}$ and S_{2} both have length greater than two so the components of $H \mathrm{HK}$ containing S_{1} and S_{2} each contain a node of T . If $\varnothing \neq \varnothing$ let P be the shortest $\left(S_{1}, S_{2}\right)$-path in P. Let $s_{1}\left(t_{1}\right)$ be the endpoint of P adjacent to $S_{1}\left(S_{2}\right)$. If s_{1} is even strongly adjacent to C with both nodes of $N\left(s_{1}\right) \cap C$ in S_{1}, replace S_{1} so that s_{1} is in S_{1} and shorten P. If s_{1} is even-strongly adjacent to C with one neighbor in S_{1} and the other neighbor in an adjacent sector, then if s_{1} is not adjacent to v there is a smaller bi-odd hole including s_{1} contradicting the minimality of C and if s_{1} is adjacent to $v, s_{1} \in N^{2}(z)$. A similar argument holds for t_{1}, so we can assume without loss of generality that s_{1} and t_{1} are not strongly adjacent to C. Let $s(t)$ be the node of $S_{1}\left(S_{2}\right)$ adjacent to $s_{1}\left(t_{1}\right)$ (see Figure 11).

Consider the (s,t)-paths in $C: P_{a b}=(s, \ldots, a, z, b, \ldots, t), P_{a z_{2}}=\left(s, \ldots, a, z, v, z_{2}, \ldots, t\right)$,
$P_{z_{1} b}=\left(s, \ldots, z_{1}, v, z, b, \ldots, t\right), P_{z_{1} z_{2}}=\left(s, \ldots, z_{1}, v, z_{2}, \ldots, t\right)$. Let $C_{a b}, C_{a z_{2}}, C_{z_{1} b}, C_{z_{1} z_{2}}$ be the cycles
closed by P with $P_{a b}, P_{a z_{2}}, P_{z_{1} b}, P_{z_{1} z_{2}}$, respectively. Note that no $s \in S$ is odd-strongly adja-
cent to $C_{i j}, i \in\left\{a, z_{1}\right\}, j \in\left\{b, z_{2}\right\}$. There may be chords from P to $\left\{z_{1}, z_{2}\right\}$. Since H does not contain a C_{3}, both $\left(z_{1}, z_{2}\right)$-paths on C have length greater than 2 . No node y of P is adjacent to both z_{1} and z_{2} since y cannot be even-strongly adjacent to C by Lemma 3 and if y
were odd-strongly adjacent to $C, y \notin H \backslash K$. Let $T_{z_{1}}, T_{z_{2}}$ be the set of edges having one
endpoint in P and the other endpoint as z_{1}, z_{2}, respectively. The cycles $C_{i j}, i \in\left\{a, z_{1}\right\}$,
$j \in\left\{b, z_{2}\right\}$, are starred cycles with the subscripts indicating the star nodes. The set of chords in

Figure 11
$\mathrm{C}_{\overline{\mathbf{1}}}$ is given by Tj u Tj where T_{a} and T_{b} are defined to be empty.

If s and t are on the same side of the bipartition, then either the lengths of $\mathrm{C}^{\wedge}, \mathrm{C}_{\mathrm{Zib}^{\prime}}, \mathbf{C}_{\mathbf{z}_{1} \mathbf{Z}_{2}}$ are the same $\bmod 4$, say $p \bmod 4$, and the length of C^{\wedge} is $(p+2) \bmod 4(s$ and t in $S)$ or the lengths of $\mathrm{C}_{\mathrm{ab}}, \mathrm{C}^{\wedge}, C_{Z j b}$ are the same $\bmod 4$, say $\mathrm{p} \bmod 4$, and the length of $\mathrm{C}_{\mathrm{ZjZ2}}$ is $(p+2) \bmod 4$. By Theorem 4, one of the following relations holds or else there is a bi-odd hole.

$$
\begin{aligned}
& \left|\mathrm{T}_{\mathrm{z}_{1}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right|=\left|\mathrm{T}_{\mathrm{z}_{1}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|=\left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right| \neq\left|\mathrm{T}_{\mathrm{d}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|(\bmod 2) \text { or } \\
& \left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|=\left|\mathrm{T}_{\mathrm{z}_{1}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|=\left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right| \neq\left|\mathrm{T}_{\mathrm{z}_{1}}\right|+\left|\mathrm{T}_{\mathrm{z}_{1}}\right|(\bmod 2)
\end{aligned}
$$

Neither relation holds, so the graph induced by $\mathrm{V}(\mathrm{C})$ u $\mathrm{V}(\mathrm{P})$ u /8 contains a bi-odd hole C with no clique node odd-strongly adjacent to C also odd-strongly adjacent to C .

If s and t are on opposite sides of the bipartition, either the lengths of $C L u, C_{\mathbf{b}_{\mathbf{b}}}$ b $\mathrm{C}_{\mathrm{z}_{\mathbf{1}}}{ }^{\wedge}$ are the
same $\bmod 4$, say $p \bmod 4$, and the length of C^{\wedge} is $(\mathrm{p}+2) \bmod 4(\mathrm{se} \mathrm{T}$ and $\mathrm{te} S)$ or the lengths of $C_{a b}, C^{\wedge}, C_{Z_{j Z 2}}$ are the same $\bmod 4$, say $p \bmod 4$, and the length of $C_{z_{1} b}$ is $(p+2) \bmod 4$. By Theorem 4 one of the following relations holds or there is a bi-odd hole.

$$
\begin{aligned}
& \left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|=\left|\mathrm{T}_{\mathrm{z}_{l}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right|=\left|\mathrm{T}_{\mathrm{z}_{l}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right| \neq\left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{z}_{4}}\right|(\bmod 2) \text { or } \\
& \left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|=\left|\mathrm{T}_{\mathrm{z}_{4}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right|=\left|\mathrm{T}_{\mathrm{a}}\right|+\left|\mathrm{T}_{\mathrm{z}_{2}}\right| \neq\left|\mathrm{T}_{\mathrm{z}_{1}}\right|+\left|\mathrm{T}_{\mathrm{b}}\right|(\bmod 2)
\end{aligned}
$$

Neither relation can hold, so the graph induced by $\mathrm{V}(\mathrm{C}) \mathrm{u} \mathrm{V}(\mathrm{P})$ u /8 contains a bi-odd hole C
with no clique nodes odd-strongly adjacent to C also odd-strongly adjacent to C^{\prime}.

Case II): Both S_{1} and S_{2} have length greater than two and there is a clique node odd-strongly adjacent to C with four or more neighbors in S_{2}.

Let \mathbf{x} be such a clique node with the property that when traversing C counterclockwise from z_{2} a neighbor of x, say x_{1}, is encountered before a neighbor of any other clique node oddstrongly adjacent to C. Let x^{*} be the neighbor of x on S_{2} closest to z. If x is adjacent to z_{1}, the length of the $\left(z, x^{*}\right)$-path in S_{2} must be greater than two since if y is the common neighbor of z and x^{*} on C, the set $\left\{x, x^{*}, y, z, v, z_{1}\right\}$ induces a B_{6} (see Figure 12). So if x is adjacent to z_{1}, let x be the center of the wheel and the new wheel is either in Case I or Case II.

No node will appear as the center of the wheel twice, so the procedure will terminate. Let P be

Figure 12

Figure 13
the collection of chordless paths from S_{1} to the $\left(x_{1}, z_{2}\right)$-subpath of S_{2} in $H \backslash K$. If $\varnothing=\varnothing, K$ is a cutset of H disconnecting S_{1} from the $\left(\mathrm{x}_{1}, \mathrm{z}_{2}\right)$-subpath of S_{2}. The component of HNK containing S_{1} and the component of $H \backslash K$ containing the (x_{1}, z_{2})-subpath of S_{2} each contain a node of T. If $P \neq \varnothing$, let P be the shortest path in P. Let $s_{1}\left(t_{1}\right)$ be the endpoint of P adjacent to $S_{1}\left(S_{2}\right)$. As in Case I, we can assume without loss of generality that s_{1} and t_{1} are not strongly adjacent to C. Let $s(t)$ be the node of $S_{1}\left(S_{2}\right)$ adjacent to $s_{1}\left(t_{1}\right)$ (see Figure 13).

Apply the argument from Case I to the paths $P_{a_{1}}=\left(s, \ldots, a, z, x, x_{1}, \ldots, t\right), P_{a_{2}}=\left(s, \ldots, a, z, v, z_{2}, \ldots, t\right)$, $P_{z_{1} x_{1}}=\left(s, \ldots, z_{1}, v, z, x, x_{1}, \ldots, t\right), P_{z_{1} z_{2}}=\left(s, \ldots, z_{1}, v, z_{2}, \ldots, t\right)$ and the cycles $C_{a x_{1}}, C_{a z_{2}}, C_{z_{1} x_{1}}, C_{z_{1} z_{2}}$ formed by P with $\mathrm{P}_{\mathrm{ax}_{1}}, \mathrm{P}_{\mathrm{az}_{2}}, \mathrm{P}_{\mathrm{z}_{1} \mathrm{x}_{1}}, \mathrm{P}_{\mathrm{z}_{1} z_{2}}$ respectively.

Case III) S_{1} has length two and there exists a node $w \in T$ odd-strongly adjacent to C, not adjacent to v.

Let the length two sector of C be $\left(z, y, z_{1}\right)$. By Lemmas 9 and 11 w is adjacent to y and has an even number of neighbors in S_{2}. Let w_{1} be the neighbor of w closest to z_{2}. There is no clique node u odd-strongly adjacent to C with a neighbor of u on the (b, w_{1}) path of C since taking u as the center of the wheel would violate Lemma 9 . w is not adjacent to b since
if it were the set $\left\{\mathrm{z}, \mathrm{b}, \mathrm{w}, \mathrm{y}, \mathrm{z}_{1}, \mathrm{v}\right\}$ would induce $\mathrm{a} \mathrm{B}_{6}$. Let u be the clique node odd-strongly adjacent to C with the property that a neighbor of u (different from z_{1}) is closer to z_{1} than any neighbor of any other clique node odd-strongly adjacent to C (u may be v). Let u_{1} be the neighbor of u closest to z_{1}. If there is a clique node x odd-strongly adjacent to C with neighbors of x on the interior of the $\left(w_{1}, z_{2}\right)$-path of C, take x to be the center of the wheel. x is adjacent to z_{1} since otherwise both sectors of (C, x) containing z would have length greater than 2 and the sector containing w_{1} would have no neighbors of a clique node odd-strongly adjacent to C. So we can assume without loss of generality that the $\left(w_{1}, z_{2}\right)$-subpath of C contains no neighbors of clique nodes odd-strongly adjacent to C. Let P be the collection of chordless paths from S_{2} to the $\left(z_{1}, u_{1}\right)$-path of $C \backslash K$ in $H M$. If $P=\varnothing, K$ is a cutset of H disconnecting S_{2} from the $\left(z_{1}, u_{1}\right)$-path of $C \backslash K$. The component of $H \backslash K$ containing S_{2} and the component of $\mathrm{H} \backslash \mathrm{K}$ containing the $\left(\mathrm{z}_{1}, \mathrm{u}_{1}\right)$-path of CK each contain a node of T . If $P \neq \varnothing$, let P be the shortest path in P. Let $s_{1}\left(t_{1}\right)$ be the endpoint of P adjacent to S_{2} (the $\left(\mathrm{z}_{1}, \mathrm{u}_{1}\right)$-path of $\left.\mathrm{C} \backslash K\right)$. As in Case I, we can assume without loss of generality that s_{1} and t_{1} are not strongly adjacent to C. Let $s(t)$ be the node of S_{2} (the $\left(z_{1}, u_{1}\right)$-path of $C \backslash K$) adjacent to $s_{1}\left(t_{1}\right)$.

We will consider two subcases.
IIIa) s is on the $\left(z, w_{1}\right)$-subpath of S_{2};

IIIb) s is on the $\left(w_{1}, z_{2}\right)$ subpath of S_{2}.

Case IIIa): s is on the $\left(z, w_{1}\right)$-subpath of S_{2} (see Figure 14a).

Let w_{k} be the first neighbor of w encountered when traversing C from s toward z_{2}.

Apply the argument from Case I to the paths $P_{\mathrm{bz}_{1}}=\left(\mathrm{s}, \ldots \mathrm{b}, \mathrm{z}, \mathrm{v}, \mathrm{z}_{1}, \ldots, \mathrm{t}\right), \mathrm{P}_{\mathrm{bu}_{1}}=\left(\mathrm{s}, \ldots \mathrm{b}, \mathrm{z}, \mathrm{u}, \mathrm{u}_{1}, \ldots, \mathrm{t}\right)$, $P_{w z_{1}}=\left(s, \ldots, w_{k}, w, y, z_{1}, \ldots, t\right), P_{w u_{1}}=\left(s, \ldots, w_{k}, w, y, z, u, u_{1}, \ldots, t\right)$ and the cycles

Figure 14a

Case IIIb): s is on the $\left(w_{1}, z_{2}\right)$-subpath of S_{2}.

Case IIIbi): $u \neq v$ (see Figure 14b).

Apply the argument from Case I to the paths $P_{b z_{1}}=\left(s, \ldots b, z, y, z_{1}, \ldots, t\right), P_{b u_{1}}=\left(s, \ldots b, z, u, u_{1}, \ldots, t\right)$, $P_{z_{2} z_{1}}=\left(s, \ldots, z_{2}, v, z_{1}, \ldots, t\right), P_{z_{2} u_{1}}=\left(s, \ldots, z_{2}, v, z, u, u_{1}, \ldots, t\right)$ and the cycles $C_{b z_{1}}, C_{b u_{1}}, C_{z_{2} z_{1}}, C_{z_{2} u_{1}}$ formed by P with $\mathrm{P}_{\mathrm{b}_{1}}, \mathrm{P}_{\mathrm{b} u_{1}}, \mathrm{P}_{\mathrm{z}_{2} \mathrm{z}_{1}}, \mathrm{P}_{\mathrm{z}_{2} \mathrm{u}_{1}}$ respectively.

Case IIIbii): $u=v$ (see Figure 14c).

Apply the argument from Case I to the paths $P_{w_{z_{1}}}=\left(s, \ldots w_{1}, w, y, z_{1}, \ldots, t\right)$,
$P_{w u_{1}}=\left(s, \ldots, w_{1}, w, y, z, u, u_{1}, \ldots, t\right), P_{z_{2} z_{1}}=\left(s, \ldots, z_{2}, v, z_{1}, \ldots, t\right), P_{z_{2} u_{1}}=\left(s, \ldots, z_{2}, v, u_{1}, \ldots, t\right)$ and the

Figure 14b

Figure 14c
cycles $\mathrm{C}_{\mathrm{wz}_{1}}, \mathrm{C}_{\mathrm{wu}_{1}}, \mathrm{C}_{\mathrm{z}_{2} \mathrm{Z}_{1}}, \mathrm{C}_{\mathrm{z}_{2} \mathrm{u}_{1}}$ closed by P with $\mathrm{P}_{\mathrm{wz}_{1}}, \mathrm{P}_{\mathrm{wu}_{1}}, \mathrm{P}_{\mathrm{z}_{2} \mathrm{z}_{1}}, \mathrm{P}_{\mathrm{z}_{2} u_{1}}$ respectively.

Case IV: S_{1} has length two and every node in T odd-strongly adjacent to C is adjacent to v .

There must be a clique node w odd-strongly adjacent to C with $N(v) \cap C \not \subset N(w) \cap C$ since if all clique nodes were adjacent to all neighbors of v and every node of T odd-strongly adjacent to C is adjacent to v, then any neighbor of v could be chosen as z. In particular, since H does not contain a B_{6}, z could be chosen so that S_{1} and S_{2} both have length greater than 2 .

Let w be a clique node odd-strongly adjacent to C with $N(v) \cap C \not \subset N(w) \cap C$. Let x be a clique node odd-strongly adjacent to C with neighbors in S_{2} such that \mathbf{x} has a neighbor \mathbf{x}_{1} in S_{2} next to z (x may be v).

Claim: There is a node, v_{k}, on C different from z adjacent to both \mathbf{v} and \mathbf{x}. Proof:

Trivial if $x=v$. Suppose $x \neq v$. x has an even number of neighbors in S_{2} and no neighbors in the interior of S_{1} so x either has a unique neighbor x^{\prime} in some sector with x^{\prime} adjacent to v (by Lemma 7) or \mathbf{x} has an even number of neighbors in two adjacent sectors and one of x 's neighbors is the common endpoint of the sector.

The length of the (z, xj) -path on C cannot be two since if it were and $\mathrm{x} * \mathrm{v}$, the set $\left\{\mathbf{z}, \mathbf{v}, \mathbf{v}_{\mathbf{k}}, \mathbf{x}, \mathbf{x}_{\mathrm{pb}}\right\}$ would induce a B^{\wedge} and if $\mathrm{x}=\mathrm{v}$, then the $(\mathrm{z}, \mathrm{Xj})$-path on C would be S 2 which has length greater than two.

Case IVa: $\mathrm{x}=\mathrm{w}$.

Clearly, some neighbor of w, w^{\wedge}, not in $S 2$ is next to some neighbor $U j$ of a clique node u odd-strongly adjacent to C with u_{1}^{*} not adjacent to w . (u maybe v.)

Let P be the collection of chordless paths in $\mathrm{H} \backslash \mathrm{K}$ from the $(\mathrm{z}, \mathrm{Xj})$-subpath of S 2 to the
$\left(\mathbf{u}_{1}, w_{k}\right)$-path in $\mathrm{C} \backslash K$. If $\mathrm{P}=0$, then K is a cutset of H disconnecting the (zpXj)-subpath of

Figure 15
S_{2} from the $\left(\mathrm{u}_{1}, \mathrm{w}_{\mathrm{k}}\right)$-path in C K . The components of $\mathrm{H} \backslash \mathrm{K}$ containing the $\left(\mathrm{z}_{1}, \mathrm{x}_{1}\right)$-subpath of S_{2} and the component of $\mathrm{H} \backslash \mathrm{K}$ containing the $\left(\mathrm{u}_{1}, \mathrm{w}_{\mathrm{k}}\right)$-path in ClK contain a node of T . If $P \neq \varnothing$, let P be the shortest path in \varnothing. Let $s_{1}\left(t_{1}\right)$ be the endpoint of P adjacent to the $\left(z, x_{1}\right)-$ path $\left(\left(u_{1}, w_{k}\right)\right.$-path $)$ in C. As in Case I, we can assume without loss of generality that s_{1} and t_{1} are not strongly adjacent to C. Let $s(t)$ be the node of the $\left(z, x_{1}\right)$-subpath $\left(\left(u_{1}, w_{k}\right)\right.$-subpath $)$ adjacent to $\mathrm{s}_{1}\left(\mathrm{t}_{1}\right)$ (see Figure 15).

Apply the argument from Case I to the paths $P_{b u_{1}}=\left(s, \ldots, b, z, u, u_{1}, \ldots, t\right)$, $P_{b_{k}}=\left(s, \ldots, b, z, w, w_{k}, \ldots, t\right), P_{x_{1} u_{1}}=\left(s, \ldots, x_{1}, x, z, u, u_{1}, \ldots, t\right), P_{x_{1} w_{k}}=\left(s, \ldots, x_{1}, w, w_{k}, \ldots, t\right)$ and the cycles $C_{b u_{1}}, C_{b w_{k}}, C_{x_{1} u_{1}}, C_{x_{1} w_{k}}$ formed by P with $P_{b u_{1}}, P_{b w_{k}}, P_{x_{1} u_{1}}, P_{x_{1} w_{k}}$, respectively.

Case IVb: $\mathrm{x}=\mathrm{v}$.
$N(w) \cap C \not \subset N(v) \cap C$ by choice of v, so w has neighbors in the interior of some sector S_{j} of
C. Let z_{j} and z_{j-1} be the endpoints of S_{j}. Since H contains no C_{3} one of z_{j},
$z_{j-1} \neq z_{1}, z_{2}$. Assume without loss of generality that $z_{j} \neq z_{1}, z_{2}$. If possible, choose z_{j} so that z_{2} and z_{j} are not endpoints of the same sector. Choose w so some neighbor w_{k} of w is as close to z_{j} as possible. If there exists a clique node q odd-strongly adjacent to C with a
neighbor of q between z_{j} and w_{k}, either $N(v) \cap C \not \subset N(q) \cap C$ in which case replace w with q; or $N(v) \cap C \subset N(q) \cap C$ in which case, let q be the center of the wheel, and $x=q$. If q becomes the center of the wheel, q is not adjacent to w_{k} since if q is adjacent to w_{k}, the set $\left\{\mathrm{z}, \mathrm{w}, \mathrm{w}_{\mathrm{k}}, \mathrm{v}, \mathrm{q}, \mathrm{v}^{*}\right\}$ induces a B_{6} where v^{*} is a neighbor of v on C not adjacent to w .

Assume without loss of generality there are no clique nodes odd-strongly adjacent to \mathbf{C} with neighbors on the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-subpath of C . Let P be the collection of chordless paths in $\mathrm{H} \backslash \mathrm{K}$ from S_{2} to the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-path of $\mathrm{C} \backslash \mathrm{K}$. If $P=\varnothing, \mathrm{K}$ is a cutset of H disconnecting S_{2} from the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-path in $\mathrm{C} \backslash \mathrm{K}$. The component of $\mathrm{H} \backslash \mathrm{K}$ containing S_{2} and the component of $\mathrm{H} \backslash \mathrm{K}$ containing the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-path in $C \mathrm{~K}$ each contain a node of T. If $P \neq \varnothing$ let P be the shortest path in P. Let $s_{1}\left(t_{1}\right)$ be the end-node of P adjacent to S_{2} (the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-path of C). As in Case I , we can assume without loss of generality that s_{1} and t_{1} are not strongly adjacent to C. Let $\mathrm{s}(\mathrm{t})$ be the node of S_{2} (the $\left(\mathrm{z}_{\mathrm{j}}, \mathrm{w}_{\mathrm{k}}\right)$-subpath of C) adjacent to $\mathrm{s}_{1}\left(\mathrm{t}_{1}\right)$ (see Figure 16).

Apply the argument form Case I to the paths $P_{b z_{j}}=\left(s, \ldots, b, z, v, z_{j}, \ldots, t\right), P_{b w_{k}}=\left(s, \ldots, b, z, w, w_{k}, \ldots, t\right)$, $P_{x_{i} z_{j}}=\left(s, \ldots, x_{1}, v, z_{j}, \ldots, t\right), P_{x_{1} w_{k}}=\left(s, \ldots, x_{1}, v, z, w, w_{k}, \ldots, t\right)$ and the cycles $C_{b z_{j}}, C_{b w_{k}}, C_{x_{1} z_{j}}, C_{x_{1} w_{k}}$ closed by P with $P_{b z_{j}}, P_{b w_{k}}, P_{x_{1} j_{j}} ; P_{x_{1} w_{k}}$, respectively.

Case IVc): $\mathrm{x} \neq \mathrm{v}, \mathrm{w}$.

Claim: $N(w) \cap N(x) \cap C \subseteq N(v) \cap C$.

Let $w_{k} \in(N(w) \cap N(x) \cap C) \backslash(N(v) \cap C)$. Since $x \neq v, w, N(v) \cap C \subset N(x) \cap C$. Then the set $\left\{w, w_{k}, \mathbf{x}, \mathbf{z}, \mathbf{v}, \mathbf{v}^{*}\right\}$ induces a B_{6} where v^{*} is a neighbor of v on C not adjacent to w.

Let x be the center of the wheel. $N(w) \cap C \not \subset N(x) \cap C$, so w has neighbors in the interior of some sector of (C,x). Now we are in case IVb where x is the center of the wheel.

Figure 16

Acknowledgement

I would like to thank Gérard Cornuéjols for many very helpful conversations regarding these results and also for all his suggestions for improving the presentation of this work. His input has greatly improved this paper.

References

1. C. Berge, Some Classes of Perfect Graphs, in F. Harary, ed, Graph Theory and Theoretical Physics (Academic Press, New York, 1967) 155-165.
2. C. Berge, Balanced Matrices, Mathematical Programming 2 (1972) 19-31.
3. O. M. Carducci, On Balanced and Perfect Matrices, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (1989).
4. V. Chvátal, Star Cutsets and Perfect Graphs, Journal of Combinatorial Theory (B) 39 (1985) 189-199.
5. M. Conforti and M. R. Rao, Structural Properties and Decomposition of Linear Balanced Matrices (1988) to appear in Mathematical Programming A.
6. M. Conforti and M. R. Rao, Properties of Balanced and Perfect Matrices (1988).
7. C. Grinstead, The Perfect Graph Conjecture for Torodial Graphs, Annals of Discrete Mathematics 21 (1984) 97-101.
8. K. R. Parthasarathy and G. Ravindra, The Strong Perfect Graph Conjecture is True for K_{13}-Free Graphs, Journal of Combinatorial Theory (B) 21 (1976) 212-223.

9. K. R. Parthasarathy and G. Ravindra, The Validity of the Strong Perfect Graph Conjecture for ($K_{4} \backslash e$)-Free Graphs, Journal of Combinatorial Theory (B) 26 (1979) 98-100.

10. A. C. Tucker, The Strong Perfect Graph Conjecture for Planar Graphs, Canadian Journal of Mathematics 25 (1973) 103-114.

11. A. C. Tucker, Structure Theorems for Some Circular-arc Graphs, Discrete Mathematics 7 (1974) 167-195.
12. A. C. Tucker, Coloring Perfect (K_{4} e)-Free Graphs, Journal of Combinatorial Theory (B) 42 (1987) 313-318.

NOV 132003

