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Abstract Let M be a given model, we call N<M relatively
saturated iff for every BCN of cardinality less than BNII every type
over B which is realized in M is realized in N. We discuss the
existence of such submodels.

The following are corollaries of the existence theorems.
(1) If M is of cardinality at least ta , and fails to have the a> order

property then there exists N<M which is relatively saturated in M of
cardinality ^ .

(2) Let T be a countable L^ ^ theory. If there exists an uncountable

cardinal X s u c h that I(X.T)<2* then every model MNT of cardinality
greater or

cardinality

greater or equal to ^ has a relatively saturated submodel of
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Here we continue the study of stabil i ty inside a model (as started

in [Sh2] and [Gr]) rather than of stabi l i ty inside an arbitrari ly large

saturated model C as in [Shi] . In general a union of a chain of

saturated models need not be saturated (see [AlGr]). However from

Theorem 111 3.1 1 of [Shi] it follows that when a f i rs t order theory T

is stable then a union of a chain of cofinality greater or equal than |T|+

of saturated models is saturated. Our goal here is to generalize this

result, this is done in Theorem 2(2). This seems to be of greater interest

than just a simple generalization of [Shi] to this context. We hope that

this may serve as a beginning of a classif ication theory for some non

elementary classes.

A word on notation: Since our work w i l l be carried out inside a

given model M, when ACM we use S(A) to denote the set of types with

parameters from A realized in M. We follow the notation of [Gr]. M has

the j i - order property i f f there exists a formula <p(x;y)€L(M) and a

subset of f inite sequences of M {a^ : cx<|i} satisfying:

for every <x,.3<ji

Definition 1 We call N<M _x relatively saturated i f f for every

BdN of cardinality less than x every type over B which is realized in

M is realized in N. We denote this by N<< XM. When N is INII-

relat ively saturated we say that N is a re la t ive ly saturated

substructure of M. When N is relatively x+ saturated we denote this

by N<XM.

Our aim here is to find conditions on M, INI, and x which w i l l imply

the existence of a relatively saturated submodel N of the structure M.

Main Theorem 2 Let M be a structure whose simi lar i ty type is of

cardinality x.
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(1) Suppose M does not have the oa order property.

(l.a) If X, and ji satisfy X^=X (and JJ>X) then M has a

submodel N of cardinality X which is p+ relatively saturated.
(I.b) If x<cfX, X=2 X: , and for every i<cfX

i<cfX '
XjX=Xj, then for every {M'j<r1 = i<cfX} increasing chain of relatively

saturated submodels such that IT I=X: the model M'-U IT: is
i ' i<cfX '

relatively saturated in M.

(2) Suppose M fail to have the a>- order property. Let X be a

cardinal such that XK=X. if {Mj<r1 = i<cx} is an increasing chain of X-

relatively saturated submodels, and cf<x>x then U fT is a X-
i<cx '

relatively saturated submodel of M.
(3) Let T="rn

0L) c&(^' a n d x=Xo. -Suppose there exists an

uncountable cardinal X such that I(X,T)<2* . If X satisfy X=X
then every model Nl=T of cardinality at least X has a relatively
saturated submodel of cardinality X.

It is not hard to derive the following corollary from parts
(I.a).(l.b) and (3) of Theorem 2-

Corollary 3 Suppose that M has a countable similarity type, and is of
cardinality at least ^ .

(1) If M does not have the G) order property then M always has a
relatively saturated substructure of cardinality ^ .

(2) If 3X>xo such that KXJh^ a)(M))<2^ then M always has a

relatively saturated substructure of cardinality 3 . o3
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Remarks (1) There is a natural example showing that ^ in

Corollary 3 can not be replaced by ^ , namely the assumption in the

Main Theorem that cfX>|L(M)| (=x) is essential. For this see Theorem 2
of [AlGr] when Th(M) is stable but not superstable.

(2) Corollary 3 can easily be generalized to uncountable
similarity types.

(3) Let yeL^ w have countable similarity type. If y has a model

of cardinality ^ + and there exists an uncountable X sucl~> that

l(X,Thn (M))<2^ then by Theorem 1.6(1) of [GrSh] there is no

<p(x;y)eL + which has the X order property for some 8<X+. This
X ,a>

can be used to repeat the relevant parts of [Gr] which are needed here,
and by proving a version of the main Theorem we can get submodels
which are stronglu - relatively saturated submodels I.e. the types can
include also formulas from some countable fragment of L +

(4) The last remark can be generalized to uncountable similarity

types. Suppose ^eL + when L is of cardinality <x. In this case in
X ,0)

order to apply Theorem 4.2 of [GrSh] we should start with a model of
cardinality ^ (for definition of S(X,x) see Definition 4.1(1) of

8(X,x)
[GrSh]), and the fragment of L + can be of cardinality x.

X ,a>

We wi l l make use of the following

Lemma 4 Suppose B is a set of cardinality x. Let N=?B satisfy
N<KM, and let CQi contain N. If p1,p2eS(C) both do not split over B, -

and Pi|N=p2|N then p1=p2.
Proof of 4 Follows easily from Exercise 1.2.3 of [Shi]. n
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Proof of the main Theorem (I.a) Since X^=X by Lemma 6(1) of [Gr]

M is stable in X. Define by induction on i<p+ Mj increasing and

continuous chain of submodels of M of cardinality X, such that r 1 j + ]

contains realizations to every type from S(Mj). Clearly (by regularity

of JJ+) N:=U +M- is as required.
i<K

(I.b) Let Xj , M'j , and M' be as in the assumption. We wi l l

prove that IT is a relatively saturated submodel of M. Let ACrr be a
given set such that |A|<IIM'B, and suppose peS(A) , we wi l l find below a

finite sequence (in IT) realizing this type (in fact X+ many elements).
i

Let aeM be an element such that p=tp(a,A). Define p':=tp(a,M'), since
cfX>x and IT is a union of relatively saturated models we have that
IT< M. By Lemma 7(1) of [Gr] there exists BGM' of cardinality at
most K such that p' does not split over B.

Since cfX>K there exists i<cfX such that BCfTj. Let X:=Xj,

N**:=M'j+j. Define {Nj<N* : i<X+} increasing and continuous, and

{aj€N j + | : i<X+} such that

(0 N0=>B,

(ii) INjl=X,

(i i i ) N j + 1 < X N^ ,

(iv) tp(ai,|Nj|)=tp(a.|Njp, and

(v) N ^ p N j U l a , } .

The construction, can be carried out since XK=X, the relative saturation
of N*. and Lemma 6(1) in [Gr] . Let N—U N; . (It is easy to check

i<X '
that I:={a: •• i<X+} is an indiscernible sequence over Nj . )
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Notation 5 Let CQM, and I<=M be a set of f in i te sequences (all of the

same length).

Av(I.C):= (<P(x;c) : ceC, there exists JCI of cardinality less than

the cardinality of I satisfying: jl there exists a sequence

ael-J such that r1l=<p[a;c] then for every ael-J =* Mt=<p[a;c]}.

Claim 6 For I as above, and every C of cardinality <X, Av(I,C) is a

complete type, realized by an element of I.

Proof Let ceC be given, consider q;=tp(c,N). By Lemma 7(1) of [Gr]

there exists B'QN of cardinality at most x, such that q does not split

over B'. There exists i<X+ such that B'QNj . Let Jc:=inNj , we wi l l

show that if there exists a sequence a £ I " J c such that Mt=<p[a;c] then

for every ae l -J => Mt=<p[a;c] for every <p . Let <P(x;c) be formula

over C. such that Mt=<p[a;c] for some a e I - J c . Let b e l - J c be an

arbitrary sequence. We have that

Mt=<pfb;c] <=><p(b;y)<Eq (1)

By the choice of I , and Lemma 4 we have

tp(a,N j)=tp(b,N j). (2)

However since q does not split over Nj certainly also tp(c.I) does not

split over Nj (remember IQN). This together with (2) implies

<P(b;y)eq<=><p(a;y)eq (3)

Now (1) and (3) together imply what we wanted , namely:

Mt=<p[b;c] «<p(b;y)eq <=><p(a;y)eqc*Mt=<p[a;c] (4)

Since |I|=X is a regular cardinal and greater than |C|, J:=U Jr is
C€C C

as required, and Av(I.C) is realized by any element of I -J .
D 6
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Apply Lemma 6 to O=A. Let 6<X+ be such that J from Lemma 6
is included in Ng. We may assume that Ng also contains B (the set

from the beginning of the proof). Apply Lemma 6 again to C:=AUNg.

Let £<X+ be such that the corresponding J is included in N*+1 and

Claim 7 Av(I,N^+ 1UA)=p'|(N^+

Proof By Lemma 6 q:=Av(I,N^+ j UA) is a complete consistent

(=realized in M) type over C:=N .̂+ 1UA. Since p'|C does not split over

B, and the choice of I (remember they all realize p'|N^+1), by Lemma

4 it is enough to show that q does not split over B.
Suppose c j j /=n£~a£ (4=1,2) are such that tp(c1,B)=tp(c2,B),

and <p(x;c1)A-<p(x;c2)eq; when n^eN^+ j , and a^ eA. By the x+-

relative saturation of N^+1 there are a '&e N£+i such that

t p(a ' ^ , B Un ! U n 2 ) = t p ( a ^ , BUn ! Un 2). Hence there are
c \ f l . : = n J l ~ a £ e N£+1 realizing the same type over B such that

<p(x;c'1)A-.<p(x;c'2)€q|N^+!, a contradiction to the fact that q|N .̂+ ]'

does not split over B. o^

This completes the proof of (l.b).
(2) Similar to (l.b).

(3) By [Sh3] (see also [GrSh]) If 3X>K» such that 1(X,T)<2*
then there exists a limit ordinal S<o)1 such that If M*=T then M fail
to have the ^ - order property. By our assumption on X we have that

X=X , we can now use Lemma 7(2) of [Gr] and repeat the

argument of (l.b). o 2
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