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Abstract

Database applications that use multi-terabyte datasets are becoming increasingly important for
scientific fields such as astronomy and biology. To improve query execution performance, modern
DBMS build indexes and materialized views on the wide tables that store experimental data. The rep-
lication of data in indexes and views, however, implies large amounts of additional storage space,
and incurs high update costs as new experiments add or change large volumes of data. In this paper
we explore automatic data partitioning as a tool to redesign the relational tables in a database for
faster sequential access before creating indexes and views. We present AutoPart, a vertical partition-
ing tool that uses the optimizer's hints to determine optimal partitions for a given workload. Accord-
ing to our experiments, the schemas recommended by AutoPart (a) improve query execution by
12%-44% when compared to the original schema without indexes, (b) execute queries up to 37%
faster and updates almost twice as fast compared to the original after indexing. Furthermore, they
require half the space for indexes. Finally, we show that a form of categorical partitioning can further
improve query performance up to 29%-62% without any indexes and up to 54% with indexes, while
update performance improves up to 60%. AutoPart can be used with any commercial database sys-
tem. Our experimental results are based on the Sloan Digital Sky Survey (SDSS) database, a real-
world astronomical database, running on Microsoft's SQL Server 2000.



 



1 Introduction

Scientific experiments in fields such as astronomy and biology typically require accumulating, storing, and processing
very large amounts of information [9]. The ongoing effort to support the Sloan Digital Sky Survey (SDSS) [8][17] pro-
vides a comprehensive example for both the terabyte-scale storage requirements and the complex workloads that will exe-
cute on future database systems. Similarly, the Large-aperture Synoptic Survey Telescope (LSST) [18] dataset is expected
to be in the scale of petabytes (the data accumulation rate is calculated at 8 terabytes per night). Typical processing
requirements on these datasets include decision-support queries, spatial or temporal joins, and versioning. The combina-
tion of massive datasets and demanding workloads stress every aspect of traditional query processing.

In environments of such scale, query execution performance heavily depends on the indexes and materialized views
used in the underlying physical design. The database community has recently focused on tools that utilize workload infor-
mation to automatically design indexes [1][12]. Currently, all major commercial systems ship with design tools that iden-
tify access patterns in the input workload and propose an efficient mix of indexes and materialized views to speed up
query execution. Typically, the tools tend to generate a set of "covering" indexes per query to enable index-only query
processing. In the case of large-scale applications like SDSS, performance depends upon a large set of covering indexes,
since accessing the large base tables (even through a non-clustered index) is prohibitively expensive.

Large numbers of covering indexes are expensive to store and maintain, as data columns from the base table are rep-
licated multiple times in the index set. Adding multiple indexes to multi-terabyte scientific databases typically increases
the database size by a factor of two or three, and incurs a significant storage management overhead. In addition, indexing
complicates insertions and updates, as all "replicated" new and updated data values must be sorted and written multiple
times for all the indexes. The cost of inserting and updating data increases as a function of the number of tuples that are
inserted or modified. The index tools currently available do not take into account insertion or update costs.

We propose to design a workload-aware schema before designing indexes, by decoupling data partitioning from
ordering. By first designing a partitioned schema and then building indexes on the new database, queries can scan the base
tables efficiently as well as a smaller set of indexes, thereby alleviating unnecessary storage and update statement over-
head. Because vertical partitioning increases spatial locality, it improves memory and disk system performance when the
most effective index set cannot be built because of storage or update constraints. If update or storage constraints do not
exist, then the workload can always be processed using a complete set of covering indexes. Such a scenario, however, is
unrealistic for large scale scientific databases, where both insertion and storage management costs are seriously consid-
ered.

This paper describes AutoPart, an automated tool that partitions the tables in the original database according to a rep-
resentative workload. The contributions of this paper are the following:
• We develop three vertical partitioning algorithms for schema design. We consider greedy and randomized enumera-

tion.

• We experimentally evaluate vertical partitioning on the SDSS database and workload. Our experiments (i) compare our
vertical partitioning algorithms (ii) evaluate the benefits of vertical partitioning in a complete design, including indexes
and an update workload (iii) evaluate a horizontal partitioning scheme called categorical partitioning, which is applied
on the SDSS data.

• We incorporate our vertical partitioning approach in AutoPart, an automated schema design tool, that can interface to
database systems supporting JDBC.

Experiments show that, when using only vertical partitioning, the new schema (a) speeds up query execution by 12%-
44% when compared to the original (unindexed) schema, (b) executes updates almost twice as fast compared to an unpar-
titioned but heavily indexed schema. Furthermore, indexing the new schema requires half the space and improves query
performance by up to 34%. Finally, categorical partitioning improves query performance up to 29%-62% without any
indexes and up to 54% with indexes. In the latter case, the update performance speedup reaches 60%.

This paper is structured as follows: Section 2 summarizes related work. Section 3 discusses the vertical partitioning
problem in greater detail, while in Section 4 we present the algorithms used in this study. Sections 5 and 6 discuss the
AutoPart architecture and our experimental setup. Section 7 shows the results of our experiments with partitioning and
Section 8 concludes our study.

2 Related work

Vertical partitioning is known to optimize I/O performance since the early days of relational databases. The Decomposi-
tion Storage Model (DSM) [5] first replaced the original relations by single-attribute fragments, and constructed an index
on each fragment independently from the workload. DSM penalizes queries that use a large fraction of the relation's



attributes with extra joins. Fractured mirrors [15] remedy DSM performance by (a) using thick tuples to reduce the cost of
DSM joins and (b) storing both the partitioned and the non-partitioned versions of the database and combining them dur-
ing query optimization and execution. Our work aims at performing workload-conscious vertical partitioning on the initial
database while keeping one copy of the database around, and can be combined with mirroring for even better perfor-
mance.

To reduce the number of joins DSM imposes on multi-attribute queries, several studies [11][13][14] exploit affinity
within a set of attributes (a measure of how often queries use attributes together in a representative workload). Combined
with a clustering algorithm, affinity determines a reasonable assignment of attributes to vertical fragments. Attribute affin-
ity identifies clusters by collecting statistics about the attribute usage by queries, and can therefore scale to large work-
loads. Its disadvantage is that it is decoupled from the system's optimizer and the query execution engine, and thus human
intervention is eventually required to validate the quality of the recommended partitioned designs.

An extension to the previous approaches incorporates query processing using cost estimates given a table configura-
tion [6]. The paper defines a set of analytical formulae that model vertical partitioning as an integer programming optimi-
zation problem. Modern practice, however, suggests that explicit analytical functions are of limited value, since they are
rarely in accordance to the real cost models in modern query optimizers and cannot be easily applied on complex queries
or on complex execution engines.

Similarly to today's tools for automatically evaluating database indexes, a software cost estimation module examines
candidate configurations and computes their expected cost [10]. Candidate configurations are determined through a heu-
ristic that iteratively combines attributes, minimizing the total workload cost at each step. Although the proposed scheme
is simple and reduces total workload cost at each iteration, it does not incorporate workload-specific information such as
the sets of attributes referenced by each query.

The method of choice for modern, state-of-the-art automatic design tools is the combination of heuristic search meth-
ods with the system's own query optimizer. Index selection tools for relational databases [1][2][12] and the automatic
declustering techniques for parallel DBMS [16] are based on the optimizer's cost estimates. The index selection problem
is closely related to vertical partitioning: since the base table structure is perceived as a static property of the database, a
viable alternative for reducing the I/O requirements of a query workload is the use of covering, multi-attribute indices to
facilitate index-only data access. Such indexes essentially are ordered vertical partitions. The only difference is that
indexes are redundant structures, therefore a popular column is replicated multiple times in the final design. Given that the
original relations are not necessarily optimized for a particular workload, these tools often face a difficult problem, since
the use of every additional index increases update overhead and data redundancy.

3 Query-Based Vertical Partitioning

Vertical partitioning stores a relation as multiple fragments, each containing a subset of the initial relation's attributes. A
well-designed partitioned schema improves performance, because queries access smaller tuples that contain a higher per-
centage of interesting data. Our approach relies on intelligently partitioning the database schema using workload informa-
tion, to take advantage of the potential performance improvement. As a second step, we use existing tools to select
appropriate indexes on the partitioned schema. The partitioned design requires less indexing overhead, resulting in higher
update performance and less storage for indexes.

To achieve lossless decomposition, a unique identifier column is replicated in all the vertical fragments of a relation.
The original relation can now be removed and replaced by its fragments. Whenever information needs to be reconstructed
from multiple fragments, however, query plans must include additional joins. In order to avoid reconstruction costs, it is
necessary to partition relations in a workload-conscious fashion.

The rest of this section discusses the issues involved in designing an automated partitioning tool, and explains the
basic aspects of our approach. The issues are:
• Why not rely on simple partitioned designs that use the Decomposition Storage Model (DSM)?
• Which enumeration algorithms are needed to evaluate the large numbers of alternative partitioned designs?
• Which tables should we partition?
• How does vertical partitioning affect the creation of indexes, and how can we efficiently combine the two?

3.1 Using single-attribute relations
The Decomposition Storage Model (DSM) [5][15] creates single-attribute relations, so that a query can access only the
attributes that it needs and no unnecessary attributes need ever be retrieved. In addition, it requires no prior analysis of the
workload. It assumes that the system's query optimizer and query execution engine will cooperate to efficiently join mul-



tiple columns from the same original relation, if this is required by a query. Warehousing products such as SybaselQ [21]
successfully use DSM-style partitioning and further optimize data access using variant indexes [22]. DSM, however, is
not always the best option in the context of standard relational systems.

In DSM, queries accessing large numbers of attributes suffer from extensive reconstruction costs. The problem per-
sists even with more efficient storage/processing schemes [15] (assuming no replication). Therefore, it is difficult to exe-
cute queries that reference large numbers of attributes.

Our approach suggests a departure from this extreme design point by examining workload-aware partitioning algo-
rithms that can manage sets of attributes, while being able to resort to single-attribute relations if appropriate.

3.2 Enumerating alternative designs

Enumerating all the alternative partitioned designs for a given schema is impractical. Even when partitioning a single
table, the number of possible partitions is higher than exponential on the number of attributes in the table. In addition,
optimizing even for a single query that accesses multiple tables might require an exhaustive search of all possible combi-
nations. Assuming that the query plan sequentially scans tables Tl and T2, partitioning changes the relative costs of
accessing the tables and may affect the entire execution plan. An optimization algorithm cannot rely on decomposing the
design problem into sub-problems, for example partitioning first Tl and then T2, since deciding on a partitioning config-
uration for Tl restricts the set of possible plans when evaluating T2.

Reaching an optimal solution becomes even more difficult when considering multiple queries, where assigning an
additional attribute to fragment Tj of table T to optimize one query means removing it from another fragment Tj, poten-
tially affecting the performance of another query. The results can be more dramatic if Tj is broken into two fragments, in
which case the plan is fundamentally restructured. Similar complexity appears for index selection: researchers suggest
that one cannot optimally select indexes using a restricted local search (even for a single query), since the effectiveness of
each new index depends on the set of the indexes that have already been chosen [1][2][7][12]. Furthermore, any local
decision has an impact on global parameters, such as the overall storage and the performance of update statements. A pro-
posed solution [1][2] is to exhaustively search all combinations for a very small number of indexes and then using a sub-
optimal, greedy selection strategy for the rest.

In order to deal with the above complexities, we also generate a restricted search space of alternative configurations
and explore it in a greedy fashion, picking the lowest cost solution discovered so far. The enumeration algorithm proceeds
from state to state by applying moves (such as splitting a table into two fragments) and evaluating the workload cost at
each step. To more effectively explore the search space and evaluate the greedy approach, we also examine randomized
search algorithms.

3.3 Selection of tables to partition

When designing a vertical partitioning algorithm, we need to decide which tables to partition. The obvious solution is to
consider all the tables in the database. Tables that are not expensive to access, however, but are heavily referenced by the
workload can generate large numbers of candidate designs without a significant performance improvement. Therefore,
there is a trade-off between performance improvement and search algorithm complexity.

One way of identifying the tables to partition is to evaluate the workload cost (with the optimizer) once on the origi-
nal schema to measure the contribution of accessing each table. This method has the disadvantage that the table access
costs are computed based on the assumption that no indexes exist. The presence of an index might reduce the impact of
accessing a table and change the relative rankings. A different solution is to design a partitioning algorithm that considers
candidate partitions for all possible tables, only in its initial steps. Cost analysis during the algorithm's operation will
reveal the candidates that have negligible contribution to the workload cost and prune them.

Our algorithms are designed to receive as input the tables that need to be partitioned. To make a selection, we ana-
lyzed the total cost of accessing each table, for our experimental workload and database. We found that our workload is
dominated by the cost of accessing the two largest tables in the database. The access costs for the two largest tables are
47% and 7% of the overall workload cost, while the rest of the tables account for less than 1%.

3.4 Integration with indexes

As index selection is an important aspect of physical design, we must determine whether partitioning can reduce the need
for indexing, thereby alleviating the index maintenance or storage overhead. For this purpose, the search algorithm should
also evaluate configurations consisting of alternatives for both tables and indexes. A combined search space is useful, for
example, because partitioning might disable an actually useful index. In addition, including an index at some state of a
partitioning algorithm might change the relative costs for the workload queries and lead to a new set of candidate config-
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FIGURE 1: Overlapping QAS (left) and attribute assign-
ment (right).

urations. A similar argument is made in [1], about the need for the joint enumeration of candidate indexes and material-
ized views. The prohibitive factor in this case is the immense search space, since designing the indexes is already a
complex problem.

In this paper we consider vertical partitioning and indexing as two different steps in a design sequence. In the first
step we perform vertical partitioning assuming no indexes exist and in the second step we perform index selection, using
existing automated tools. Our experimental results suggest that the partitioned schema can still support those indexes that
are essential for performance (for example those used to speed up expensive joins). In addition, for the lower cost queries
in the workload, many of the 'covering' indexes can be removed because of the performance benefits of partitioning.

4 Vertical partitioning algorithms

In this section we present the vertical partitioning approach used in this paper. Our algorithms are based on identifying a
query's Query Access Set (QAS) which is the set of attributes of a relation that a query accesses. The basic assumption is
that the cost of a query is minimized when there exists a fragment of the original relation that contains exactly the
attributes in its QAS.

Specifically, given a database schema W, a table ReW and a set QR of queries that involve attributes in R9 we define
the Query Access Set of query q with respect to R (QAS(q,R)) as the subset of R's attributes accessed by query q. Every
QAS in the workload can be viewed as a distinct access pattern. We call the generation of a fragment Rt that contains
exactly the attributes in QAS(q,R) a materialization of QAS(q,R).

Ideally, for every two queries qt and qj in QR, QAS(q;,R)nQAS(qj,R)=0; therefore we can partition R into fragments
Rj, /=l,...,lj2/?'+l such that (a) the union of all Rt equals R, (b) no two fragments have attributes in common, and (c) V/,
q^e QR=>Ri=QAS(q^R), i.e., each fragment is a materialization of a QAS (the last fragment contains R's attributes not
used in QR). Such a partitioning has the attractive properties that (a) no query will ever need to join two fragments to
reconstruct its QAS, and (b) each query will use all data in pages of the fragment that contains its QAS.

Realistically, however, queries access overlapping attribute sets. In this case there are queries that will have to per-
form additional joins or access extraneous attributes. What is required is an algorithm that will balance the I/O and record
reconstruction costs for the workload. Consider for example the situation with the overlapping QAS of three queries,
shown in the left side of Figure 1. An exhaustive algorithm would evaluate all the ways of combining the QAS fragments
shown. We design our search space based on the observation that performance benefits can be obtained by allowing a sub-
set of the queries to access their entire QAS, materialized in a single fragment. The remaining attributes can be distributed
among the other queries so that the sequential scan or joining costs are balanced.

Our algorithm works in principle by selecting a winner query at each step. The winner is allowed to materialize its
QAS in a separate new fragment. The new fragment will contain all the attributes in the query's QAS except for those
belonging to the QAS of queries that were winners in previous steps. A possible solution to the example three query prob-
lem, including the additional joins, is shown in the right side of Figure 1.

Section 4.1 describes the specifics of the search space we consider for the vertical partitioning problem. Section 4.2
describes our primary algorithm, PRIOQ-MERGE, which traverses the search space in a greedy fashion. Section 4.3
describes adaptations of randomized algorithms to traverse the search space.

4.1 Search space design
We consider a state in the physical design algorithm to be a partially partitioned schema. The initial state corresponds to
the original schema, where no queries have been considered for optimization yet, e.g. no QAS have been materialized. In
an intermediate state, some QAS have already been selected and materialized, resulting in a set P of fragments. The
attributes that do not belong to a materialized QAS remain merged in a large table T. Thus a state for each partitioned table
consists of the following:
• a set P of already selected fragments.



• the table T containing the remaining attributes.

• the QAS already materialized.

• the QAS that are yet to be selected.
In the final state of the algorithm all the fragments have been computed, all the QAS have been considered and T is

empty, unless there are attributes not used by any query in the workload.

4.2 Enumeration: PRIOQ-MERGE
We define one basic move to transition from one state to the next. SPLIT is a transformation that generates a new frag-
ment containing the attributes referenced by a QAS that is not yet resolved. The new fragment contains the attributes that
do not yet exist in any of the fragments generated in a previous move (do not exist in P). The attributes are removed from
T. Intuitively, SPLIT 'chunks' a set of attributes from the original relation and stores them in a separate fragment.

The enumeration algorithm tries all possible SPLIT moves accessible from a given state and it evaluates the workload
performance for each of them. The winner state is the one that has the lowest overall workload cost. The new fragment is
added to P. Note that the winner QAS might benefit multiple queries in the workload. In this case, the QAS 'covered' by
the winner QAS (those that no longer reference any attributes in T) no longer need to be considered. Selecting a winner at
each step greedily enforces a P/?/0ritization among the Queries, since those that are selected first benefit most.

The problem with the basic SPLIT mechanism is that it will potentially consider fragments that contain a very small
number of attributes. Thin' fragments can be 'attached' to existing fragments in P, reducing the number of joins without
significantly increasing the I/O cost of accessing the merged fragment. Thus, we extend our enumeration algorithm so that
it considers MERG'mg the new fragment with one of the existing fragments.

Greedy (workload W, relations R)
Determine distinct QAS in workload W
SO := initial state //original tables
S :=S0
while (cost cannot be further improved and

exist QAS that are not considered)
Neighbors := 0
For each QAS not yet considered

Neighbors := Neighbors u SPLIT (S,QAS,R)
For each fragment F in state S

Neighbors: = Neighbors u MERGE(S,QAS,R,F)
Choose min cost state Smin in Neighbors

S := Smin //Materialize QAS selected for this state
Return overall minimum cost S

FIGURE 2: The PRIOQ-MERGE (Greedy) Algorithm.
The PRIOQ-MERGE algorithm is shown in Figure 2. The Neighbors list is a list of states derived from a state S. It is

populated by applying the SPLIT and MERGE procedures. The SPLIT procedure takes as input the starting state and a
candidate QAS from relation R. It generates a new state, where a new fragment has been created. The MERGE procedure
generates a new state where a new fragment is merged with one of the existing fragments in P. Once all the "neighboring"
states have been generated, the algorithm selects the once that has the lowest cost.

4.3 Enumeration: Randomized Algorithms

The purpose of employing randomized algorithms is to explore the search space described in Section 4.1 without neces-
sarily choosing the lowest cost solution at each step. The basic idea behind randomized enumeration is to allow more
states to be evaluated, even those that do not necessarily belong to a lowest cost path, because they could also lead to low
cost solutions.

Randomized algorithms have been used in the database literature [19] to address complex optimization problems,
especially those involving query optimization for large numbers of joins. In this case a randomized search is necessary to
deal with the large space of possible join orders.

In this study we consider two randomized search algorithms, Iterative Improvement and Simulated Annealing. Itera-
tive Improvement selects the next state at random, provided that it provides a lower cost solution (not necessarily the low-
est). The innermost loop stops when a local optimum has been reached and the quality of the solution cannot be further
improved. The random traversal can be repeated multiple times and the algorithm maintains a list of the lowest-cost solu-



Iterative Improvement (workload W, relations R)
Determine distinct QAS in workload W
SO := initial state
while (time limit has not been reached)

S:=S0
while (cost cannot be further improved and exist

QAS that are not considered)
generate Neighbors list using SPLIT, MERGE
Sl:= random state e Neighbors
If (cost(Sl) < cost (S))

S:= SI
Save minimum cost seen so far

Return overall minimum cost

Simulated Annealing (workload W, relations R)
Determine distinct QAS in workload W
SO := initial state
Temperature T := TO
While (T above threshold) / / system not 'frozen'

S:=S0
While (cost cannot be further improved AND

exist QAS that are not considered)
generate Neighbors list using SPLIT, MERGE
Sl:= random state e Neighbors

If (cost(Sl) < cost (S))
S:=S1

Else //Accept up-hill moves with a probability
S:= SI with probability inversely proportional to T

Save minimum cost seen so far
Reduce temperature T / / reduce system temperature

Return overall minimum cost

FIGURE 3: The Iterative Improvement Algorithm FIGURE 4: The Simulated Annealing Algorithm

tions obtained so far. The outermost loop stops whenever a time limit has been reached at which point the best solution
found so far is returned to the user. The pseudocode for our Iterative Improvement algorithm is shown in Figure 3.

Simulated Annealing works in a similar way, only that it initially allows moves that actually increase the overall cost.
The motivation for this is that a state that might appear to have higher cost, might eventually lead to lower cost solutions.
This property is useful, in cases where the search space has many local minima that must be avoided, in order for the glo-
bal minimum to be reached. The algorithm is designed so that more up-hill moves are allowed at the initial steps. As the
algorithm progresses, it tends to select only down-hill solutions. The algorithm decides whether to accept a random up-hill
move based on a probability.

This probability is determined by a value called the 'temperature'. As the algorithm progresses, the temperature is
reduced, so that it is harder for up-hill solutions to be selected. The 'temperature' analogy is borrows from natural pro-
cesses involved in crystal formation, where the temperature of those systems is reduced, until they reach equilibrium.

Our adaptation of simulated annealing for the vertical partitioning problem is shown in Figure 4.

5 System architecture

This section describes the functional blocks of the automated schema partitioning tool, which is depicted in Figure . The
system implementation was done using Java (JDK 1.4) and JDBC and the DBMS is SQL Server 2000.
QUERY PARSER. This module receives as input the original queries ( 0 and the tables to partition ({/?}). Its output is
the queries in a parsed representation (QP)
TABLE DESIGNER.Tht Table Designer module is the heart of the schema design tool. It receives as input the set of
parsed queries (QP) and the original schema definition (WORIG), and applies the vertical partitioning algorithms of Section
4. Its output is a set of candidate partitioned schemas ({WPARTJ ) to be evaluated by the query optimizer.
QUERY REWRITER. The rewriter uses each partitioned schema definition (WPART) and the set of parsed queries (QP)
to produce a set of equivalent rewritten queries (QR) that can access the fragments in WPART.
DBMS INTERFACE. This is a JDBC interface to the database currently hosted by the SQL Server. The interface exe-
cutes table and statistics creation statements according to WPART. To accurately estimate query costs, our tool provides the
query optimizer with the correct table sizes and statistics for the partitioned schema. Since it is impractical to populate the
tables for each candidate schema, we estimate table sizes and copy the estimates to the appropriate system catalog tables,
for the optimizer to access. In addition, we compute statistics for each column in the original, unpartitioned tables and
reuse that information for the evaluated partitions. To test our virtual table generation method, we actually implement the
partitions recommended by our tool and find that the cost estimates obtained by it match those obtained from the real data-
base.
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We found that in order for the virtual and real cost estimates to agree, the statistics must be generated using full data
scans and not by random sampling.
SYSTEM CATALOG The DBMS system catalog stores nformation like table sizes, row sizes and statistics. To facili-
tate query cost estimation, we update the system catalog tables with information reflecting the new schemas.
OPTIMIZER INTERFACE. This JDBC interface receives as input the rewritten queries (QR) and uses the query opti-
mizer to obtain query plan information and cost estimates.

We deployed our partitioning tool as a web application that runs independently of the database server component. We
provide the input (query workload and tables to be partitioned) through a simple web interface. Our tool can (through
standard JDBC) access remote databases to obtain the original schemas, modify their structure and obtain cost estimates
for alternative solutions.

6 Experimental setup

Our experiments use the Sloan Digital Sky Survey (SDSS) dataset [8][17]. The SDSS database consists of 39 tables. The
database is structured around a central "catalog" table, PHOTOOBJ (22GB), which describes each astronomical object
using 369 mostly numerical attributes. The second largest table is NEIGHBORS (5GB), which is used to store spatial rela-
tionships between neighboring objects. It essentially contains pairs of references to neighboring PHOTOOBJ objects and
additional attributes, such as distance. Both tables are clustered on their primary key, which consists of application-spe-
cific object identifiers.

The SDSS workload consists of 35 SQL queries. Most of them are sequential scans that process PHOTOOBJ and
apply predicates to identify collections of astronomical objects of interest. 6 queries (the most expensive ones) have a spa-
tial flavor, joining PHOTOOBJ with NEIGHBORS. Only 68 of the 369 attributes in the PHOTOOBJ table and 5 out of
the 8 attributes in NEIGHBORS are actually referenced in the workload.

Using the SDSS database, we perform the following experiments. First, we compare the performance of the 3 vertical
partitioning algorithms introduced in section 4. Second, we compare the performance of an indexed design to that of a
vertically partitioned and indexed design. We use the Microsoft's SQL Server 2000 Index Tuning Wizard (ITW) to derive
the index configurations for the two schemas. We append a maintenance workload to the standard 35 SDSS queries and
use the resulting mixed workload as input to the ITW. The purpose of using updates is to show the benefits of vertical par-
titioning when indexes become expensive. We compare the performance of both the standard and the update queries, and
the storage consumed by indexes in each case.

Third, we show that additional performance benefits can be achieved by partitioning the PHOTOOBJ table into three
disjoint segments using categorical attributes. The use of categorical partitioning is justified by the fact that most of the
SDSS queries restrict the astronomical objects of interest to distinct classes, like galaxies or stars and do not need to
access the entire PHOTOOBJ table. We demonstrate that categorical partitioning further improves the performance of the
partitioned schema.

The following sections describe our experimental setup in more detail. Section 6.1 describes the update workload
used to compare between the conventional and the partitioned designs. Section 6.2 describes categorical partitioning.



6.1 The update workload

The SDSS query workload includes only selection statements. However, to realistically evaluate competing designs in the
presence of indexes, one needs to include a set of maintenance statements (insertions, updates) in the workload, to make
the use of indexes more expensive.

The update workload (SDSSJJ) used in our experiments consists of two insertion statements (SQL INSERT) and 10
update (SQL UPDATE) statements. The insertion statements simply append 800,000 and 5,000,000 tuples in the PHOTO-
OB J and NEIGHBORS tables.

The update statements process tuples exclusively on the PHOTOOBJ table. To obtain them we modified existing
SDSS queries, keeping their WHERE clause and modifying the SELECT clause, so that all the referenced attributes
receive a zero value. The unique object identifier attribute for PHOTOOBJ is never modified, because modifications
would require unnecessary (and costly) maintenance to the table's clustered index.

We used our rewriting tools to modify the update workload for use in the partitioned schema. Each insertion state-
ment was replaced by a set of statements, each inserting new data to a fragment of the original table. In the partitioned
case, the cost of inserting new data to a relation is equal to the sum of the insertion costs for each of its fragments. The
update statements were similarly rewritten, replicating each initial statement when necessary to update tuples from multi-
ple fragments.

6.2 Categorical partitioning

Categorical partitioning decomposes tables into horizontal fragments, containing disjoint sets of tuples. The partitioning
is based on the value of one or more categorical attributes (i.e., attributes with limited value domains). The idea is to
improve performance for queries that select tuples based on categorical attribute values. SDSS queries use two categorical
attributes (type and status) to classify PHOTOOBJ tuples into Galaxies, Stars and Others. Most of the SDSS queries select
either Galaxies or Stars, while a few access the entire table. Objects belonging to a particular class can be easily retrieved
using indexes. However, making them explicit through categorical partitioning produces a schema with reduced access
costs that potentially requires less indexing. Also, there is no overhead in recombining data from multiple partitions, since
a union operation is required instead of a join.

We used categorical partitioning to improve the performance of the vertically partitioned schema. Each fragment of
the PHOTOOBJ table is partitioned into Galaxies, Stars and Others. The queries (and the update statements) are then
rewritten using union statements to combine the horizontal segments when necessary.

7 Experimental results

In this section we present experimental results on (a) the performance of three vertical partitioning algorithms, (b) the ben-
efits of partitioning in the presence of indexes and maintenance workloads, and (c) the improvements obtained by the
application of categorical partitioning..

7.1 Evaluation of Vertical Partitioning

This section aims at demonstrating how much vertical partitioning alone can improve workload performance (with no
indexes or categorical partitioning), when compared to the original schema. In addition, we compare the traditional
"greedy search" approach to the performance obtained when using randomized search algorithms. All the reported execu-
tion times are normalized cost estimates provided by the optimizer. The workload speedups shown are relative to a trivi-
ally partitioned initial SDSS database (ORIG), in which the tables only include the attributes actually used by queries.

Vertical partitioning improves the performance of queries that spend a significant fraction of their execution time
scanning large tables. Depending on the dominant operator in their execution plan, SDSS queries are categorized into two
groups. The first group, SDSS_J, consists of four queries, whose execution is bounded by expensive joins among several
instances of PHOTOOBJ and NEIGHBORS. These queries account for 47% of the total workload cost. Table scans
account for 13%-52% of the queries in the SDSS_J group. The second group, SDSS_S, includes 31 SDSS queries, prima-
rily dominated by table scans. We expect vertical partitioning to significantly improve the performance of queries in the
SDSS_S group

Although each algorithm enforces a different partitioned design, the greedy and randomized search algorithms per-
form similarly for SDSS queries. Table 1 shows average SDSS workload speedups when using the vertical partitioning
algorithms described in Section 4. PHOTOOBJ was partitioned in 5, 4, and 8 fragments for the PQM_n, PQM_SA and
PQM_Greedy algorithms respectively, whereas NEIGHBORS was not partitioned. Despite the differences, attribute
groups that appear together in most of the queries are never separated in any of the partitioned schemas, but may be com-
bined with other attributes to form fragments. Minor differences in the attribute placement amongst various designs lead
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FIGURE 6: Estimated query execution times when using the original and three vertically partitioned schemas.

to differences in individual query costs, yet the overall performance is the same. Queries in the SDSS_J group are
improved by 12%-14%, while queries in the SDSS_S class are improved by 37%-44% on the average. The overall work-
load speedups are 21%-25%.

Figure 6 shows normalized execution times for queries in the SDSS_J (left) and in the SDSS_S (right) groups. When
compared to ORIG, query performance in the SDSS_J group, improves by a factor of 5% (Q18, PQM_SA) to 38% (Q17,
PQM_Greedy). Execution performance for queries in the SDSS_S group, however, range from 11% to 83% (Q4,
PQMJI). Note that the performance of individual queries varies depending on the partitioning each algorithm enforces.
PQMJI, for instance, runs QSX15 47% faster than PQM_Greedy, because the latter happens to join 3 fragments, whereas
the former accesses only a single fragment. Similarly, PQMJI runs Q13 51% faster than PQM_SA.

When designing a vertically partitioned schema to accommodate the needs of a large group of queries, the algorithms
resolve trade-offs and recommend partitioning schemes that improve the workload performance as much as possible,
occasionally incurring a low performance hit for low-cost queries. PQMJI does not incur a slowdown in any query,
PQM_Greedy and PQM_SA only slow down QSX2 (that references 20 attributes) by a factor of 10% and 26% respec-
tively.

Table l:\Vorkload speedups for the SDSS_S and SDSSJf queries when using three vertical partitioning algorithms

VP algorithm

PQMJI

PQM_SA

PQM_Greedy

SDSS_J

14%

12%

13%

SDSS_S

44%

37%

43%

Overall

25%

21%

24%

7.2 Indexing a Vertically Partitioned Schema

This section evaluates the performance improvement when creating indexes on the original, non-partitioned schema
(ORIG), and on the vertically-partitioned schema created using PQM_Greedy (VP). The indexed schemas are denoted as
I_ORIG and I_VP, respectively. We designed indexes using the ITW with a 200GB storage constraint (10 times the size of
the dataset) so index storage was practically unlimited. In addition to the 35 read-only SDSS queries, the workload
includes 12 insert/update queries that represent database maintenance operations (SDSS J J ) . The objective is to evaluate
the vertically partitioned schema and the indexes on it when the workload includes update statements.

Figure 7 (next page) shows the total workload cost when using the I_ORIG and I_VP schemas, for all the statement
groups (SDSSJ, SDSS_S, and SDSSJJ). When using the I_VP schema read-only statements run 17.2% faster, whereas
updates run almost twice as fast. Overall, I_VP improves the workload execution time by a factor of 30%.
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Figure 8 shows execution time estimates for representative queries in the SDSS workload. The leftmost graph shows
the four queries in the SDSS_J group. When compared to I_ORIQ I_VP runs queries Q17 and Q20 2% and 20% faster
respectively, while it slows down Q14 and Q18 by 2% and 7% respectively. Q14 has a higher cost in the partitioned
schema, because it references two fragments that need to be joined. This can be solved with a materialized view (i.e.,
more redundancy). Although the I_ORIG and I_VP query plans have identical structure, the optimizer proposes a differ-
ent index on NEIGHBORS when using I_VP. This forces an additional hash-aggregate operator to implement distinct in
the query's select clause, hence the additional 7%.

The rightmost graph in Figure 8 shows execution times for five (out of 31) queries in the SDSS_S group. The largest
speedup is 83% for query Q4, whereas queries QSX3 and QSX13 run 79% and 75% faster. The reason is that, in order to
reduce update costs, the I_ORIG schema does not include the necessary indexes for these queries to run faster. Q12 and
Q13 are the only queries I_VP slows down when compared to I_ORIG Those queries can be executed efficiently using
indexes in I_ORIG, while they must join multiple fragments in I_VP paying a high overhead. Again, a materialized view
would trade off the slowdown with an update overhead. Despite the join overhead in the last two cases, the I_VP schema
exhibits an average speedup of 37% for the SDSS_S query group.

Figure 9 (next page) shows the detailed costs for the update statements in the workload. The insertion into NEIGH-
BORS (NI) is three times more expensive in I_ORIG, because it updates two indexes on Neighbors, compared to one
index for I_VP. The insertion into PHOTOOBJ (POI) is slightly more expensive in the I_VP schema because although the
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ndexes are the same, tuples are inserted in 8 different fragments. Query QSX12U is again three times more expensive in
I_ORIG, for two reasons: First, its retrieval component (identifies the tuples to be updated) is about 4 times more expen-
sive in I_ORIG, since the entire un-partitioned PHOTOOBJ table has to be scanned, while in I_VP only a fragment is
scanned. Second, I_ORIG updates two indexes (as opposed to only one in I_VP), thereby slowing down the update pro-
cess by a factor of three. The same holds for statements QSX1U to QSX4U which run from 30% to 80% faster in I_VP.
On average, the SDSS_U queries run twice as fast using I_VP than when using I_ORIG.

Figure 10 compares the storage requirements for the two designs. The normalized values for the index storage are
broken down into the components required to index the PHOTOOBJ and NEIGHBORS tables. The I_ORIG design
requires almost twice the storage size for the indexes on NEIGHBORS, since the ITW recommends two indexes instead of
one for the I_VP design. Overall, the I_VP schema requires 44% less storage space for indexes.

7.3 Evaluation of Categorical Partitioning

This section evaluates workload performance when using categorical partitioning on the already vertically partitioned
schema. We decomposed every fragment of the PHOTOOBJ relation into three categorical segments: Galaxies, Stars and
Others. Categorical partitioning reduces the cost of queries that access only a single type of PHOTOOBJ tuples. We used
our automated tools to rewrite the queries and the update statements to match the new schema, as described in Section 6.2.
The fully partitioned schema was indexed using the ITW. We expect the fully partitioned schema to perform better also
after indexing, and to incur lower indexing storage costs.

Figure 11 (left) shows the estimated query execution times for five queries in the SDSS_S group when using the orig-
inal (ORIG), vertically partitioned (VP) and the fully partitioned (VCP) schemas, without indexes. Q7 has the largest per-
formance benefit from VCP, as its performance increases by 75% compared to VP and 91% compared to the original
design. This happens because it only accesses a single segment in VCP. Queries QSX6 and QSX15 show how categorical
partitioning can improve queries that do not benefit much from vertical partitioning. They exhibit 72% and 70% speedups
compared to VP and 72% and 73% compared to ORIG. VCP has no effect on QSX3 and slows down Q15b by 8%,
because these queries access all segments and Q15b joins multiple vertical fragments. Nevertheless, the average speedup
of VCP is 36% for SDSS_S and 18% for SDSS_J (not in the graph) when compared to VP, and 62% and 29% when com-
pared to ORIG. On average, categorical partitioning speeds up ORIG by 45% and VP by an additional 25%.

Figure 11 (right) shows the estimated query execution times for five queries in the SDSS_S group when using the
indexed original (I_ORIG), vertically partitioned (I_VP) and fully partitioned (I_VCP) schemas. The largest speedup
observed compared to I_VP is 79% for query QSX6, which has 84% better performance compared to I_ORIG. Queries
QSX7, QSX8 exhibit similar behavior, being 66% and 68% faster compared to I_VP and 52% and 77% faster compared
to I_ORIG. Most of the queries in the SDSS__S class exhibit similar behavior, because they access only one of the three
categorical segments. Queries Q16 and QSX1 are exceptions, being 40% and 1.6 times slower in the I_VCP schema com-
pared to I_VR The behavior of Q16 is due to the index configuration in the two designs: Q16 does not utilize any indexes
in I_VCP, while it efficiently uses an index in the I_VP design. QSX1 has lower performance because of the overhead
involved in joining three horizontal and three vertical segments. Despite the exceptions, the overall speedup for the
SDSS_S query group is 34% compared to I_VP and 54% compared to I_ORIG. For the four queries in the SDSS_J group,



the average speedup is 4% compared to I_VP (most of their cost is join overhead, and partitioning does not help). Overall,
categorical partitioning provides a 28% improvement compared to I_ORIG and a 13% compared to I_VR
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FIGURE 11: Estimated execution times for queries in the SDSS_S class without indexes (left)
and SDSS_S class after indexing (right) when using the original, vertically partitioned and fully partitioned schemas.

Figure 12 shows execution times for the statements in the SDSS_U group when using the I_VCP schema. The highest
improvement is observed for the PHOTOOBJ insertion statement (POI). In the I_VP design, 2 wide indexes on the most
frequently accessed fragment have to be updated, while in the I_VCP case the insertion affects 5 thin indexes, built on
multple horizontal parts. The resulting speedup is 25%. The I_VCP schema incurs a 3%-70% speedup to the rest of the
queries, compared to I_VP and a 25% to 85% compared to I_ORIG, which is due to both more efficient update operations
on the indexes and to more efficient searches for the updated tuples. The overall update workload speedup is 13% com-
pared to I_VP and 60% compared to I_VCR

8 Conclusions

This paper introduces AutoPart, a new tool for automated physical design that modifies the original database schema into
a partitioned one according to a set of representative queries. AutoPart implements three vertical partitioning algorithms
that use greedy and randomized enumeration of alternative schemas, as well as a categorical partitioning algorithm. Auto-
Part interfaces to a query optimizer to obtain cost estimates and evaluate alternative schemas. Our experiments with verti-

SDSS U Work load Costs

4500 n

o 4000
E 3500 -
~ 3000 -
o 2500
S 2000 •
a 1500-
2 1000-

t 5V

• I_ORIG
• I_VP
m I_VCP

Insert/Update Statement

FIGURE 12: Execution time estimates for insertions and
updates using a vertically vs. a fully partitioned schema.



cal partitioning on SDSS, a scientific astronomical database application, show that full (vertical and categorical) data
partitioning improves query performance by up to 45% average (29% and 62% for the two query classes) no indexes. For
indexed schemas, the respective query and update speedups are 28% and 60%. In conclusion, AutoPart is a versatile
schema design tool that significantly improves workload performance and can be used with any commercial database sys-
tem.
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