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Complete Isothermal Riemannian Metrics on R2 having
Compactly Supported Gaussian Curvature

Abstract: We consider a smooth Riemannian metric G on R2 which is assumed
to be complete and has compactly supported Gaussian curvature. Using the
uniformization theorem one can produce an isometry from (RZ.G) onto (%U.g)
where % is either the open unit ball of R2 or Rz itself and g is an
isothermal Riemannian metric, i.e., g = )\—2(dx2 + dy2) where A 1is a positive
real valued smooth function. We will prove that A is necessarily equal to
Rz and the behavior of A at infinity is determined by the integral of the

. 2 . . s s .
Gaussian curvature of G on R~. In particular if this integral is zero then

A 1is continuous at infinity and bounded away from zero.



1. Introduction:

We will consider a smooth Riemannian metric G on R2, which is assumed
to be complete and has compactly supported Gaussian curvature. By using the
Uniformization theorem we obtain an isometry from (R2.G) onto
(4, g = 7\-2(dx2 + dy2)) where % is either the unit open ball or all of IR2
and A 1is a positive real valued C ~function.

We then will show that the hypotheses on (IR2.G) imply that % is
necessarily equal to R2 and that the behavior of A at infinity is
determined by the integral of the Gaussian curvature k of G (equivalently

the integral of the Gaussian curvature k of g). More precisely we will

prove that,

1 2 2
lim In(A) + (— xdA)l +
(x.;)-m " (4" J;RZ Jintx )

exists and that

IndA
2

R

is necessarily less than or equal to 2w. Here dA denotes the Riemannian
area element of G.

A consequence of the theorem will be that it allows one to produce a
homotopy from a given complete Riemannian metric with compactly supported
Gaussian curvature to one which is isometric to the Euclidean metric while

preserving the completeness and the support of the Gaussian curvature of each

Riemannian metric along the path. We use this fact in [Sa]



First let us consider an example.

1.1 Example

% 1
A(x,y) = ————
~|x2 + y2

for x2 + y2 2 1 and a positive Cm-function on R™.

It is easy to show that J kdA = 2m.
2
R

To show that we consider the map

¥ BAB,(0) » R

Vxy) = (=2 —L— . $ In (" + ¥))

Jx2 + y2 J;2 + y2

where BI(O) denotes the ball of radius 1 on Rz. Clearly this map is an

isometry onto the cylinder induced from the Euclidean metric in the ambient

space R3. The curve x2 + y2 = 4 1is mapped to the geodesic (ul,u2, In(2)):
u? + ug = 1} on the cylinder and hence the original curve itself must be a

geodesic which is closed. Thus by the Gauss Bennett Theorem we obtain

J kdA = I kdA = 2mw.
R> B,(0)

Now we consider the Riemannian metric 7\_2(dx2 + dy2) where A = (X)a for

some a € R. Then for this Riemannian metric,

I kdA = J A (1n XM)dxdy = a f A(ln X)dxdy = 2ma.
2 R .

Thus for this class of metrics we see that



lim In A + (j%;f KdA)ln(x2 + y2)
(x,y)= RZ

exists.
Our objective is to show the existence of this limit for all complete
isothermal metrics with compactly supported Gauss curvature.
A consequence of this result is that for a Riemannian metric
2

A_2(dx + dy2) of the type considered here, the associated Riemannian metric

A2ax® + dy?) for 0 < t < 1 1is complete also.

2. Main results:

2.1 Theorem: Suppose that G 1is a complete Riemannian metric on R2 such
that its Gaussian curvature k 1is compactly supported. Then there
exists an isometry from (Rz,G) onto (RZ, (g = 7\-2(dx2 + dy2)) where A

2

00
is a positive C —-function on R~ and the following are satisfied:

(a) 1lim In(A(x.y)) + %;-(J xdA) ln(x2 + y2) exists, and
(x,y)—> lR2

@ [ wangom
IR2

where dA denotes the Riemannian area element associated to G.

2.2 Corollary: Suppose that G, g, and A are as in Theorem 2.1. Then for

all t € [0,1], the Riemannian metric ?\—2t(dx2 + dy2) is complete.

In the remainder of the paper we will prove these results. In section 3,
we will state some facts which are probably already known; however, we will
provide the proofs for completeness. In section 4 we will develop the

principal technique for the proofs of the main results. We will generalize



the well-known results of Julia on the existence of a Julia ray of a
hol onor phi ¢ function around an essential singularity. Essentially we will
replace the term"ray" with "geodesic". The main results will be proved in

section 5.

3. Prelimnaries:

2

Let K denote either R™ or the unit open disk.

In this section we consider a conplete R emannian netric

-2 2 2
g=X (dx +dy ) on ~ and assune that the Gaussian curvature K has

conpact support and that icdA < 0 (we wll drop this assunption in section
%
5). To fix notation, assume that supp(ie) CBI_(O) (Euclidean ball) for some

r >0. The goal of this section is to prove sone prelinminary results which
are useful later on. These results are probably valid in a nuch nore general
setting, and at least the first one is well-known. For the sake of

conpl et eness we present the proofs.

W assune that geodesies are paraneterized by arclength. The topol ogical
netric induced by the Riemannian netric g is denoted by d and is conplete
by the Hopf- Renow Theorem

Note that since g is isothermal, angles between tangent vectors
neasured with respect to the Euclidean netric agree with angl es neasured with
respect to g. Thus notions such as orthogonality are unanbi gous. All
rmgnitudés and inner products of tangent vectors are with respect to g

unless it is witten IhIL or <* *>g !nwhichcasethe guantities are with
-

respect to the Euclidean netric of R2.

Lenma 3.1 There is apoint p € dB[(O) such that the geodesic a: R-* %

defined by cr(Q =p and a'('O) = T;‘;)’]l;l' has the property that

a(t) €A (B (0O) for every t > 0.



Proof: Suppose not. For q € aBr(O) denote by ol the geodesic defined by
aq(O) =q and &q(O) = ﬁgﬁ“ Let 6 >0 and T > O be such that for all

q € aB_(0) od(t) ¢ B _(q) for t € (0,7) and d(o(7), B _(0)) > 5. Assume
without loss of generality that &6 < 1. By the hypothesis, for every

q € 6Br(0) there exists s > O such that aq(s) € aBr(O). It follows that

s > 7. Now by the continuity of aq(t) on t and q, we can find T > 7
such that for every q € 6Br(0) there exists t € [1,T] such that aq(t) €
where ¥: = {p € Rzl d(p. aBr(O)) < 6}. Let x € 4 be given. Since the
Riemannian metric is complete find y € aBr(O) such that d(x,y) 2 d(x.,q) for

every q € aBr(O). Let t_ = d(x.y). (Then x = ¢”(tx)). We claim that

X
t { T. Assume otherwise. Let t € [T,T] be such that Uy(t) €Y. Let

q € 8B_(0) be such that d(q.0”(t)) < 6. Then d(q.x) < d(q. o”(t)) +
d(ay(t),ay(tx)) <6+ (t, -t) <&+ (t -7)<t_ which contradicts the
definition of the point y; that is, y is not the closest point to x on

6Br(0). But since T 1is fixed and x is arbitrary, it follows that A is

bounded with respect to d which violates the completeness of d.

Lemma 3.2: let o0 : R-> % be a geodesic such that o(t) ¢ Cl(Br(O)) for
every t > 0. Then there exists T > O such that for every t > T, the
geodesic v: R - % defined by wv(0) = o(t) and 5(0) 1 5(t) never enters

B_(0).

Proof: For t >0, let v': R - Rz denote the geodesic defined by vt(O) =

o(t) and 5t(0) 1 5(t). (When we write a 1L b we will always assume that
(a,b) is positively oriented).

t

Now we only need to prove that there exists tO > 0 such that v 0 does

t

. o . P . . . .
not enter Br(O). since then v is an infinite geodesic which lies entirely



t
in (Br(O))c on which « = 0. Thus v 0 does not intersect with itself.

t
Then v separates U into two connected components of which on one k = O.

t
(Denote this component by %). Hence U[to,m) Nvo O(IR) = {a(tO)}, since

t
otherwise we have a geodesic triangle formed by o and v 0 in (Br(O))c

such that the sum of the interior angles is greater than w, thus violating
the Gauss Bonnet Theorem. Now a(to,m) C % and using the same reasoning as
above, vt(R) C % for every t > t and therefore v° does not enter Br(O)
for every t > tO.

Suppose now that »' intersects Br(O) for every t > O. Ve show that
this leads to a contradiction.

Define T: (0,®) - (0,0) as the smallest value T(t) such that

oY (T(v)) € 8 B_(0). Note that if t

t t
v 1('rl) =0 2(72) then the Gauss Bonnet Theorem asserts that

,To 2> 0 are such that

1'°2

1,t2 >0, T

t t
v 1[O,Tl] na Br(O) #9 or that v 2[0.T2] noa Br(O) # 9 . Therefore

p(.): [0,») -3 Br(O); P, = vt(T(t)) is monotone on J Br(O) and one to one.
[+
Let {tn}n_1 be an increasing sequence of positive real numbers such
that
(i) t »® as n-oo,

(ii) lim P, exists (lim P, =P € d Br(O)), and
n® n n n

t .t
(ii1) lim » *(T(t))) exists (lim » P(T(t,)) = V).
n-xo n-»
Let a,B: R - % be geodesics defined by
(a) «(0) = B(0) = p.
(b) a(0) = -v, and

(c) v 1 B(0).



Let € > O be such that PB(-e,e) C (Br/2(0))°. (Note that

supp (k) C Br/2(0))'

t
By continuity p(-e.e) N v n [O.T(tn)] #© for all large n. Without loss of

generality assume that this is true for all n. Let {sn}:=1 C (-e.e) and

t
{6_ € [0.T(t )]}, ; be defined by B(s.)) =» "(6)-

‘gu)

Fig 1
Let n > m and consider the égodesic parallelogram with sides a[tm.tn].
tn “m
v [O,Bn], ﬁ[sn.sm] and v [O,Bm] as shown in Fig 1. Since this

parallelogram bounds a region on which x = 0 and since the interior angles
t
at a(tn) and a(tm) are both w/2, it follows that the angle between v n(Bn)

t
and B(sn) is equal to the angle between v ln(Gm) and B(sm). But since

t

this sequence of angles converges to #/2, it follows that v N and B meet

orthogonally for all n.

Now let n > m be given. Consider the family of geodesics

Wit e 19, 8 €[0.07 Ot) = ‘m 28 ;m i
sl 129 8,1 m) =V (6) and u (tm) 1v 7 (8). It is



t t
easily seen that ue(tn) =uv n(9) for every 6 and ue(T) Nnv n[0,9n] =@ for

6 t
T € [tm.tn). In particular it follows that u m(1') Nv n[O,Bn] = @ for every

T € [tm,tn].

Thus t, "t < 2e¢. But this is a contradiction because {tk} - ® ag

k = o, o

Note that instead of working with a family of geodescis {vt} which are
orthogonal to o, we can work with a family which makes a certain fixed angle

with o and obtain the same conclusion. We stated this as a lemma.

Lemma 3.3: Let o0: R -2 % be a geodesic such that o(t) ¢ Cl(Br(O)) for
every t > 0. Let a € (-w,m). Then there exists T > O such
that for all t > 7, the geodesic v: R -4 defined by »(0) = o(t) and

5(0) makes an angle a to é(t) never enters Br(O).

Let v be a geodesic as in the conclusion of lemma 3.2 or 3.3. Then v
separates A into two connected components and v is an infinite geodesic.
Therefore there exists T > O such that v(t) € Br(O) for every t > T and
thus we may produce a geodesic which makes a desired angle to v such that
this new geodesic never enters Br(O). Moreover, two such geodesics can be
constructed as in Figure 2 below such that R2 is separated into six

connected components and Br(O) is contained in one of these components.

N

FIG & \



Next we construct a geodesic polygon enclosing Br(O) such that none of

the boundary geodesics enter Br(O). We will assume that I kdA < 0. If %

|R2

is a geodesic n-gon, then by the Gauss Bonnet theorem ,

(n-2)7r + I kdA = sum of the interiror angles of %.
%

Since we wish to enclose Br(O), we pick an n-gon with interior angles

a € (m/4,7/2) such that
(n-2)7w + I kdA = na.
%*

Now construct n-geodesics as follows:

Start with any infinite geodesic LPE R » 4% such that v, separates 4 into

two components such that Br(O) is in one of the components (existence follows
from lemma 3.2). Let T1 be large enough that for all t > T1 a geodesic

through vl(t) which makes a positively oriented angle a to v, will never

1
enter Br(O). Let vy be such a geodesic through vl(Tl). Now start with

v, and repeat the construction to obtain LRy and so on, to obtain geodesics

DI,D2,...,Dn.

Lemma 3.4: Dn intersects Dl and Dk does not intersect v if

1
1 ¢k <n.



N
=

Fig 3

Jda
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The second assertion follows trivially since otherw se the Gauss Bonnet

theorem i s viol at ed.

W need to prove that upn intersects K. Let p denote the point of

i ntersection of Ve and ». 1" Let 172 [0,1] -» 4 be a regular curve such

that 17(0) il TJ(1) = P;» 17 does not intersect with itself, 17 intersects

Vh at Py only, 77 intersects D1 at Py only and 17 and

v%i>5, S H_?J- forma pol ygon cont ai ni ng I?(O). Such a curve can be
constructed easily. If iy intersects \ we already have such a curve.
Ot herwi se the piecewi se geodesic curve formed by i>,...,i>p is such that

Cl(Bg(0)) is contained in one of the connected conponents of " <created by it
and since this conponent is diffeonorphic to ~ and K = 0, we have an
isonetry from that connected conponent to an open subset of R2 with the
Eucl i dean netric.

Now approxi mate 17 by a pi ecewi se geodesic curve f: [osL] -»< for
a > 0. This approximtion can be done, for exanple, using the existence of
geodesi cal |y convex nei ghborhoods of arbitrary points (cf [MI]).

Qur approximation is done such that f does not intersect itself or any

of the v, that i> does not nmeet and such that f Pl v =p p.., f fi uy =p,.

Suppose that f has cornersat 0<t. < ... <t, =a Let Q =f(t.), 1 <

I < k.
b ’Yn

Fig 4
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Consider the geodesic polygon G with corners at Pye---Pp_q- Ql""’Qk'
Let the interior angles at P71 Ql....,Qk be TorTye e My respectively.
Since G encloses Br(O), by Gauss Bonnet we obtain,

(n2)a + ot -t = J‘ kdA + (n+k - 3)w.
2
R
since na = J‘ kdA + (n-2)w, we obtain
2
R
Tt et 2a = (k-1)w. (1)

Consider the unit tangent vector v to v at P and parallel
transport it along § to obtain a field v(t), t € [0,1]. By equation (1) it

follows that v(1) makes an angle (w-a) with v, at Q . Let o [0.€) » ¥
k

1
be the geodesic such that o(0) = Qk and &(0) = v(1). Then since &(O)
points into the flat side ﬁl of v,, it follows that o[0,») C R, -

Therefore . El and o separate Rz such that on one side k = 0. Denote
this side by %. Since % is simply connected, absolute parallelism is
defined on %.

Let X be a vector field on % obtained by parallel transporting v on
% and let Y be the unit vector field orthogonal to X on % such that
(X,Y) is positively oriented.

Start from t = O and increase t. If at some t # O, ¢§(§(t)) € £[0,a]
(where 7T is in the domain of definition of ¢¥.)(§(t)) replace the portion
of & between E(t) and ¢§(§(t))‘by ¢¥.)(§(t)). The curve obtained after
this modification will also be denoted by §. Note that § is a piecewise

geodesic curve.
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Now at all t € [0,a], E(tt) are either tangential to X or (E(ti),
Xf(t)) is positively oriented. Hence for all t € [0,a], ¢§(§(t)) is defined
for all 70 and % = {$:(E(t)): T 2 0; t € [0.a]).

Since A(ln A)) =0 on %, there exists a holomorphic function f: % ->C
such that %e(f) = %-ln A (we now identify R with C). Let y: £ ->C be a
holomorphic function such that '(z) = ef(z) for all z € ®%. Then
N'(z)l2 = A2(z) for all z € & and then g = \p*(dx2 + dy2). Thus ¢ maps
goedesicsbin % into straight lines in R2. After a suitable rotation of
R™, we assume that Y maps v to the positive real axis. of 1is a
piecewise linear curve such that each piece is either horizontal or slanted
downwards. Also yov(t) = g% for all t € [0,a]. In particular oo is
parallel to the positive real axis. Since &% = {¢§ (§E(t)): T 20, t € [0,a]}
and since Yof does not intersect itself (since it always points downward),
it follows that ¢ is one to one. Hence y: % - Y(%) is an isometry where
¥(%) is a region in Rz bounded by two horizontal lines and a piecewise
linear curve between them. Now tw» y o Dl(—T) is a straight line which is
positively inclined to the horizontal direction by a and thus it meets
Yy o v making an angle a. Therefore v and vy meet at an angle a.

4. Julia geodesics for holomorphic functions with essential singularities at
infinity.

The purpose of this section is to generalize the following theorem due to

Julia [Hil]. This generalization provides the key to the proof of our main

result.

Theorem 4.1 [Hil]. Let f: C\Br(O) - C be a holomorphic function which has

an essential singularity at infinity. Then there is Bo such that for
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each 6>0 and each R>r, £ '(0) N {z = |z]el®: |z] >R, 0 € (6, - 5.
90 + 8) contains infinitely many points for all w € C with the possible

exception of one point.

i6
Definition 4.2 [Hil]: The ray {z = |z]e 0. |z] > R} is called a Julia ray.

Definition 4.3 [Hil]: Let f: V- C be a holomorphic function where V is

an open subset of €. Then z € C is called a Lacunary point for f if

z € £(V).

In the sequel we shall show that if J‘ kdA € O and g 1is complete,
2
R

then one can define a Julia geodesic of g, and a corresponding theorem to

theorem 4.1 holds once we replace rays by radial geodesics of g.

Definition 4.4: A semi-infinite geodesic means o where o: R-> 4 is

[0.=)

a geodesic which does not meet Cl(Br(O)).

Definition 4.5: Two semi-infinite geodesics o, and o, are parallel if for

all t large enough, the orthogonal geodesic to o, at al(t) (which

1

does not enter Cl(Br(O)) by lemma 2.3) meets o orthogonally.

210,

Definition 4.6: A geodesic sector containing a semi-infinite geodesic o

means a region bounded by two intersecting semi-infinite geodesics a9,

and 02

0[0,») is contained in the region.

which are not parallel to each other or to o, and such that



I

Fig 5

Definition 4.7: Let h: Na(O) - C be a holomorphic function such that

lim h(z) # «, but there exists a sequence (zn} converging to z, € 5
z=-0%

such that lim h(zn) = o, A semi-infinite geodesic o is a Julia
n-xo

geodesic for h if it has the following property:

Let & be any geodesic sector containing o. Then h has at most one
%

Lacunary point.

Consider the following special case which motivates definition 4.6 in

particular and this section in general.

Suppose that F: C\Ba(O) - C (a > 0) is a one to one holomorphic map such

that F has a simple pole at infinity. Let A(z) = |£z— F(z)|. Extend A

smoothly to R2 such that A(z) > O for all z. Consider the Riemannian

metric g = 7\-2(«!::2 + dy2). It is clear that F wmaps geodescis of g to

straight lines. Thus if h: C\Ba(O) -+ € 1is a holomorphic map which has an

essential singularity, then hOF.l has an essential singularity at infinity

and hence it has a Julia ray n. Then F

1, n 1s a Julia geodesic of g.

Unfortunately even when xdA = 0 and supp(x) is compact, it does

g
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not follow that A(z) = 'gd; F(z)| for some holomorphic function defined on

(Br(O))c (even though it holds on any simply connected open set).

Theorem 4.6: Let h: “(Br(O)) = C be a holomorphic map such that
lim h(z) # @, but there exists a sequence (zn) converging to z € &%
z-3%

with 1lim h(z ) = ». Suppose that g is complete and
o n

xdA  O. Then there exists a Julia geodesic.

R2

Proof: Let n € N and ae(;-, g—] be such that (n-2)r = xdA = na.

Let LDCRRREL N be geodesics which do not enter Br(O) and which form the

sides of a closed n-gon as in the previous section.

Fig 6

v, separates 9 into two connected components. Let !i be the

i
component on which x = 0. Consider the map ¥,: [0.®) x R - 4 defined by

*i(ontz): = Di(t2) and

¥ (t.t,): = gxpwi(o.tz)(tl iv/2 i-i(o.tz)).
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This map is a diffeomorphism and ¢i when considered as a complex map is
holomorphic.

Now let a?: [0,°) > %, 6 € [-n/2, w/2] be a family of semi-infinite
geodesics defined by,

a?(t) = ¢1(t cos 6, t sin 60).
Since a € (0, m/2] it follows that

o3[0.=) N v*(R) # ¢ for all 8 > w/2.
Since both *1 and wz map straight lines to geodesics, w;l ° ¢1=
w;l(ﬁl n ﬂz)-e ¢;1(91 n %2) is a linear map. Therefore {w;l (U?):
0 € (0,7/2]} is a family of straight lines eminating from a point Py € Rz.

Define the family of geodescis ae’ R a-Rz, e € (-6

5° 922) for suitable

21°

921,922 € (-w,m) by

ag(t): = \pz(p2 + (t cos B, t sin 0))

for which the right hand side is defined, which occurs when the second
coordinate of Py + (t cos 6, t sin 8) is nonnegative.

The following facts are extremely important.

91 92 61 92
Fact 1: 1If o [0.@) N o, [0,2) # ¢, then o, and o," are the same

geodesic (including the parametrization).

Fact 2: The curves Myt (-m/2.71/2] e»mz and % (—921,922) a»mz defined

by



1600

n+l

Fig 8
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1,(8) = of(a) and uy(6) = oh(a)

are such that their images coincide on %1 n %2 whenever a is large enough.

Now using the family {ag) and WB define P3 € R2 and a family of
geodesics {ag} such that {w—l(ag)} eminates from P3 and the family {036}
and {ag} agree on %2 n %3. Continue this way to produce families of

. 6 . . 2
geodesics {aj}j=1,2,..., and points {pj}j=1.2,...,n in R™. After

?+1[b,m) both lie

n

reindexing the families we may assume that if ag[b,w) and o

in % N &%, for some b, then 09 = Henceforth we will
i i+l ll[b )

o,
1+1|[b,m)

drop the subscript i from ag. Let the range of p be [-1/2,0]

(6 € (—m/2,»)). Whenever a is large enough we can define a curve
" a 6
u [-1/2,0] 24 by p (8) =0 (a).

The difficulty is that p need not be a closed curve (even when

j kdA = 0).
/]

Consider the family of curves T [-n/2,6] - 4 defined by

n :
1n(9) = pke (). n€ N and k 1is a positive number to be determined. Note
that 1n(6) € %, when 0 1is small and when 6 1is large. When 0 is large,

-1 . . . .
G wl o 1n(9) is a family of concentric arcs, each with center at some

Ph+1 €.

It is clear that p

1 is independent of k, and if k is large enough,

-1 -1 . . .o
*1 (7n) and *1 (7n+1) do not intersect. Fix k at such a value. Let dn' =
{ae(t): 0 € [-n/2,0], ke < t < ken+1}. By the above there exists a closed
curve s € dn which does not meet T °T Y-

Now let & = {z € C: Re(z) 2 In k, Im(z) € [-7/2.6]) and let & =



[ 7Too

<

Aland A,
overlap

Fig 7
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{z €% n+ lIn(k) € %e(z) < (n+1) + In k}. Let H: & »C be H(x + iy) =
h(ay(exp x)). Clearly (x + iy) » ay(exp x) 1is holomorphic and hence H is

A

holomorphic. Let Hn: %

o C be Hn(x + iy) = H(n + x + iy).

Consider the family of holomorphic functions {Hn: int(ﬁo) e»C}nem. Ve
claim that this is not a normal family of meromorphic functions. Suppose that

it is.

Case 1: There exists a subsequence of {Hn} (say {an}:_l) converging to some

f: ﬁo - C which is holomorphic on int(%o).

Let e > O be small enough such that (after possibly redefining it), s,

is in {o2(t): ~ w2+ e <y <O -e, ke <t < (k1) 1TE). Let &O = {x +

iy € ﬁoz e+n+Ink {x<(ntl) + Ink-e; -1/2 + e {y {6 -¢€}. then f|~
%

0
is bounded; say |f|§ | < M. Then whenever k is large enough |H | | < M.
0 %,
By the definition of {Hn} it follows that |h|s | <M whenever k is
"k

large enough. But now by the Maximum modulus theorem, h is bounded in a
neighborhood of infinity, contradicting the fact that h has an essential

singularity at infinity.

Case 2: There exists a subsequence {Hn }:_1 of {Hn} converging to infinity on
o k=

int(ﬁl}. Then {ﬁl—}z_l converges to zero on ﬁl; as in case 1, this

implies that (%) is bounded in a neighborhood of infinity, yielding a

contradiction.

We have proved that {Hn}:=1 is not a normal family; and therefore, there
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exists z € int(%l) such that for an arbitrary neighborhood D of z, in

o

int(ﬁl) and arbitrary k € N, U Hn(D) is either € or the complement of a
n=k

singleton [Hil]. Now let 2y = X, + iyo and consider the semi-infinite

y

geodesic o We claim that it is a Julia geodesic. Let 1 < j < n

0
Iro.=)
Yo Yo
be such that o E.ﬁj. Let o€ be a geodesic sector containing o I[a ]

for some a..
By making the sector smaller if necessary we may assume that o C ﬁj.

Since # is bounded by semi-infinite geodesics it follows that w;l(d) is a

_ Y
sector in R2 bounded by two straight lines and it contains w.l oo Ol .
[a.®)
Moreover, by the definition of a geodesic sector (definition 4.5) neither of
. ) ) -1 -1 Y0 .
the straight lines bounding wj (d) are parallel to wj o . It is clear

vhen e is small and b is large, the set Q = {ae(t)i 0 < (yo—e,y0+e),

t 2 b} 1is contained in o, since ¢;1 maps such a set into w;l(d) when e
and %- are small enough. Consider the set B1 ={x + iy € ﬁlt y € (yo - €,
Yo * e)}. Let D be a neighborhood of z, in Bl’ of the form D = (x0 - b,
X + 6) x (yo € ¥yt e). Let 2 € N be such that & + In(k) 2 In(b).

Then

U H (D) = U H(Dn) = U {h(c” (exp x)): n + Xg = 8 < x
n=28 n=2 n=2£

Cxg+6+m;y)-ely,{yy+ e} C h(Q).

Hence h(f2) contains the complement of a singleton. Since Q2 C « it follows

Yo
a is a Julia geodesic.
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5. Proof of the Main Theorem:

First let us assume that AU = Rz.

0.

I

Let us first consider the special case when I kdA
2
R

On (Br(O))c, In A is a harmonic function, since «

]

- M- Since

2\

Aln A dxdy = I kdA = O, there is a holomorphic function

B_(0) R

f: (Br(O))c-e C such that In A = Re(f). We claim that f has a removable

singularity at «. So suppose not. Then ef has an essential singularity at

[+4]
o, Expand ef in terms of the Laurent’s series at : ef(z) = 2 anzn,
n=—o

where a # O for infinitely many n > O. Define

o a

h(z): = 2 ——2-zn+1. Note that h: (B_(0))® - € is holomorphic and has an
D= n+l r
n#z-1

essential singularity at o,

y,
Let Oy =0 0 be a Julia geodesic for h and suppose that aO[O,W) lies

on ﬁi corresponding to the geodesic V., as in section 4. Let us drop the

subscript i in &i' v, and wi' Since % 1is simply connected, the map
. f ..
F:i=z]e dz: #->C

is well-defined.
Furthermore, since |é§-(J‘ef(z)dz)| = Ief(z)l = AN(z)., it follows that F
maps geodesics to straight lines and is one-to-one onto some half plane.

Since % 1is simply connected, define ln z on % by fixing Im(ln(aO(O))) €
[0,27). Now

F(z) = a_lln(z) + h(z) on % (¢)
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Case 1: Suppose that a_ = 0.

In this case F(z) = h(z). But F maps % into a half plane thus

contradicting the fact that h maps arbitrary geodesic sectors of o

°l [0.%)
in % onto € or C\{singleton}.
Case 2: Suppose that a_, # 0. Denote 51—-F by G. Then
-1
G - In(z) = gl—-h(z) on %. (30¢)

Note that G © v is not necessarily a horizontal or vertical line;
however, G(®) is a half plane and G o % is a semi-infinite straight line
in G(®). Let p be either a horizontal or a vertical line which makes an
angle with 11: =G o 9, less than or equal to /2. Now G o pu is a
semi-infinite geodesic in %. By parallel translating p (in the Euclidean
sense) if necessary, we may assume that G_1 o un extends to an infinite
geodesic which does not meet Br(O). Denote the flat side of p by ¥. By
parallel translating p into ¢, if necessary, we may assume that |z| > 1
on ¥, so that # € (Inz) >0 on ¢.

Now if G(¥) is contained in a left half plane, then so is G(¢¥) - In(¥)
and hence % is not a Julia geodesic.

Suppose that G(¥) 1is contained in the right half plane C, = {z € C:

%(z) 2 0}. By adding a real constant to G (which will be added to zl—-h(z)

-1 .
also) we assume that G(¥) = C_. Then by (39¢) we obtain

id-1In(¢l)=—2-nhocl=0 on C_. (+)
a__l +
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where 0 has the property that any sector containing 17 is mapped to <C or

<Q {singl eton}.

Si nce In(G~1) maps <C into <C, it follows [Dono], that there exists

a positive Borel measure T on R such that

Ote(In(G*)) =ax + xf 1 Mdr(£)
\' (a-Y) + x

where a > 0 and_r—15-dT(f) <« Let si :={(x,y): |yl <TX} where

S

R\"'&J
T€R is greater than 1/2.

W claim that

lim I ~———— dr (f) = 0.
d 3(x,y)»> “p (§-y)" + x

Note that if x > 2, then

%_5- < - §_—Y2— on si, since

(f-yy +x2 r +1
if |f1 <2yl then
(f-y)2:x% 1 x2=|-,\>2,1>,,L32JLJ]

and

if |f1 >2|y| then

2 2
(ORI RN (TR TR LS S g B

2 8r

Now the dom nated convergence theorem applies; and therefore,
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. 1 1
lim —_— dr(E) = lim ———=——dr(f) =0 (++)
43 (x,y) I,R (E9)° + I,R y)w (Ey)® + 2
and
do( ] -1 . J 1
e(id - In(G ))(x + iy) = x(1 - a - | ———5— d7(¥))- (+++)

R (E—Y) + X

Now let o as above be such that 1 C #. Then 6(sd) I3 C\{singleton}.
However, by (++) and (+++), %e(id - ln(G—l))(x + iy) does not change sign
wherever x 1is large enough and (x,y) € #. Therefore 6(s#f) C (a half plane)

U (a compact subset) giving the desired contradiction.

The only remaining case is that for which G(¥) is contained in the upper
half plane U = {x+iy y 2 O} and 7 is the imaginary axis. Again by adding
constants to h and G we assume that G maps ¥ onto %U. Since

ln(Gfl)(%) CC, it follows that [Dono],

-1 . 1 £
In(G = - d ,
n( )(z) i(az + B + J; ((§_z) 1+ Ez) 7(§))

1

1+ g2

where T 1is a positive Borel measure on R such that J
R

a2 0 and B 1is a constant. As in the previous case, if o = {(x+iy) € C:

dr(f) < =,

x > 0, |y| € »x} for some ~ then lim l-J (E%E - ——l—~2)d7(§) = 0.
49 (x,y)=> y R 1+ ¢
There im(id - ln(G_l))(x+iy) does not change sign in o when y is
large enough and we have a contradiction of (+) as in the previous case since

n C 4.
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Hence the hypothesis that f has a pole at infinity leads to a

contradiction. We conclude that f has a removable singularity at infinity.

Now since lim In A = lim Re(f) exists, we have proved theorem 2.1
x2+y2%m x2+y2aw
for the special case kdA = O.
lR2
Next let us consider the case f kdA > 0. Let a = %; kdA. VWe can
2 2
R R
construct A € C (R®) such that A > 0 and A(x,y) = —5—354 OO (Br(O)) .
(x™+y™)

Consider the Riemannian metric g = (X)2(dx2 + dy2), where A = (é). Let K,

K and K denote the Gaussian curvatures of g,g and g: = (7\)2(dx2 + dyz)

respectively. Similarly, let dA, dA and dA denote the corresponding area

elements.

Note the following:

(i) % = A 12 A _ A ln A —NA In A =0 on (Br(O))c.
2 2N
(ii) I Rak =J Aln?xdxdy:\[ Aln?\dxdy:—f A In X dxdy
R R R> B>
=2ra - 2ma = O

Therefore there exists a holomorphic function f: (Br(O))c'a C such that
In X = Re(f).

(iii) g is complete.

Perhaps the easiest way to prove this is to prove that the assoicated
topological metric d is complete. Since d 1is complete, it sufficies to

show that there is a constant a > 0 such that d ¢ ad. Since
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E(x.y) :

inf J‘H&(t)ﬂ~ dt (similar definition holds for
0:[0,1]-R g

ag(0)=x
o(1)=y
o is piecewise regular

d), it suffices to prove that there exists a > 0 such that for an arbitrary

tangent vector v € RZ, il < alivily.

Let v = (vl,vz) € Tp(mz) i.e. written in natural coordinates of RZ.

Then uvuz = M(p)(v] + v3) = AENZE@2S + va) = (@) uvuz.
1
o2+ 2

But A 1is bounded on the compact set Br(w) and A(x.y) =

(where a > 0) on (Br(O))C.

Therefore there is an a > O such that A(x,y) { a for all (x.,y) € R?

hence, HVHZ < a2 Hvﬂz for an arbitrary tangent vector v of R2, thus

proving the completeness of g.
Now, by theorem 2.1, in the special case J‘di = 0 (already proved), f
has a removable singularity at o,

Therefore lim ln(x(x,y)) exists.
(Cay?)e

But ln(X(x,y)) 2ya/2

In(A(x.y)) + In((=2 + y)™?)

In(A(x.y)) + /2 In(xZ + y2)

In(A(x.y)) + i%.J‘zdi) In(x®> + y2) on (B_(0))*
R

"

Therefore lim (In(A(x.y)) + (%;-I kdA) ln(x2 + y2)) exists, which is
(Py)w R

what we wanted to show.

The case J kdA < O is the only remaining case.
2
R

Let a = - é% kdA and let A = A\ € CP(Rz) where A 1is as in the
2
R
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previous case. As before J‘ A(ln N)dxdy = O; hence, In(X) = Re(f) on
2
R
(Br(O))c for some holomorphic map f: (Br(O))c~4 R2. We will prove that f
has a removable singularity at ® so that the proof follows as in the

> - 2 2
previous case. However we cannot prove the completeness of (A) 2(dx + dy”)

directly in this case.

Consider the case that d is an integer. Then |A| = IAI = ralef(z)l on

~

>

(Br(O))C, where r = Jx2+y2 = lzla Ief(z)|.

The proof proceeds as in the case J‘di = 0 and we contradict the
supposition that f(z) has a nonremovable singularity at .

If a is not an integer, then |A]| = |z|a Ief(z)l on (BP(O))C.

Suppose that f(z) has a nonremovable singularity at infinity. Then

[+ 0]
ef(z) has an essential singularity at infinity. Let ef(z) = 2 a,nzn be
==
. f(z) e s

the Laurent expansion of e at infinity. Let h(z) =

ot 2 1 +k

b E:T—%—a-zn+ YK where k € N and k > a. Clearly h(z) converges on
n=-—

compact subsets of (Br(O))c and hence defines a holomorphic function on
(Br(O))c. Also, since a # 0 for infinitely many positive n, h(z) has an
essential singularity at infinity. Let 9% be a Julia geodesic of h with
respect to the Riemannian metric g. Let v be a geodesic which separates
R™ into two components such that on one component, say X%, o, C %. Since %
is simply connected and O ¢ %, z » z* ef(z) is a well defined holomorphic

function on %, and so is

nt+l+a

o ntl + a
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Also |F'(2)]| = |zaf(z)| = [A(z)|; hence F maps geodesics on % to
straight lines. Therefore F maps % injectively onto a half plane.

Let # be a small geodesic sector containing 95- By removing a compact
subset of o we can ensure that

F(#) C {z € C: |z| > a} for some a > O.

Then

k-a aa forall z €4,

Ih(z)] = 25%F(z) 2 r

contradicting the fact that h(d) D C\{singleton}.

This proves Theorem 2.1 for %A = R2. o

Now we will prove that A is necessarily equal to Rz. Assume the
contrary; i.e., AU = Bl(O). In the following, we continue to use Ba(p) to
denote the ball of radius a and center p determined by the Euclidean
metric, while ﬁa(p) will be the ball of radius a and center p determined
by the metric g. We denote the boundary of %a(p) by ya(p) and the boundary
of B (p) by S,(p).

Let A: 4 » (0,°) be a smooth function such that A(x,y) =

on

x“+y
%\Br(O). let a = J‘di and A: = A(A)_alzv. Since A 1is positive and

bounded above and below on %, it follows that g: = (X) 2 (dx> + dy2) is also
a complete metric and g has Gaussian curvature k with support in Br(O).

It is easily seen that E has the property that the integral of the Gaussian
curvature of g is zero. Now replace A by X and define g: = ()\)_2 (dx2

+ dyz). Let f: %\Br(O)-a C be a holomorphic function such that
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In X = Re(f).

l-‘\"»y\
Case |: e'™'dz = 0.
S

T

Inthis case let F °U\I%(O) -» C be a hol onor phi ¢ functi on such that

F(z) =ef(®. Snce |x| =|F(z)|, it follows that F*(dx?+ dy?) =
2 2 2
X (dx +dy ). Inparticular, F maps geodesies of g onto straight |ines

and the lengths are preserved. It follows F(z) -» » as z -»d°U but this is

r
not possible since this inplies that F =» on <KB (0).

Case 2: ﬂ e'rdz * 0.

L.

S
_ I
| L [ f(=2)
Let B e dz.
= & )
S N
Let F <WBr(O) -» C be a holonorphic function such that F (z) = e N +

fi/lz. v will showthat F(z) is unbounded in <\/\B!_(O). | f p€Sr, let a

00

be the radial line through p and let o nmeet S at . Let {xn}n:I be

a sequence of points on a in <WB?O) whi ch converge to q. The
n(l)'?=l

conpl eteness of g inplies that {d(p,x) } . is unbounded where d is the

r
topol ogi cal netric associated with g. Let ¢ be the dianeter of B (0) with
respect to d. clearly ¢ << Nowsuppose L <°° is suchthat |Fz)| <L
for all z € <I\B(0). Let y€aH(<HB(O} satisfy d(p,y) =3 L +c.

3L r 3L
Qearly 9L, (y) fl B(0) =0. yL. (y) neets a at one or nore poi nts between
y and . Let z be the point on afl tf~ (y) which is between y and q
3L

and such that (y,z) € S, (y)» If u is ageodesic with respect to g in

98 (y) joining y to z, then
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F(z) - F(y) = J F'(w)do = J (ef @) 4 Byau
i u

= j ef(w)dw + J‘A gdw ,
1 a

N
where o0 denotes the portion of o which is between y and =z.

But Ief(m)dm = 3L, since this is the length of u and j g: B{1n|z|
;7 a
- Inly[}. So

[ Baol < 18l 1 .
[o}

By increasing L, if necessary we ensure that L > |B]| In (%). Then
|F(z) - F(g)| > 2L, which contradicts the assumption that |F| < L. Thus F

is unbounded on °H\Br(0). Since lim F(z) # « (since that implies that
z-3%

©)}, F has a Julia geodesic. But the argument used in the case J kdA
2
R

F

=0 for A= IR2 now applies, and we get a contradiction. Therefore % = IR2.

This completes the proof of Theorem 2.2. o

Proof of Corollary 2.2: 1t follows from Theorem 2.1 that if g is complete,

then there exists a constant a > O such that A(Jx2+y2) 2 -;_—.

1 2 2

for x2+y 2.
|22
x“+y

Then it is easy to verify that g: = (7_\')_'2(dx2 + dy2) is complete. Let

Let _7-\' be a C  function such that A(x.y) =

d be the topological metric corresponding to E By making a smaller,



if necessary, we conclude that g 2 ag.
2 2 2

Let

t € [0,1].

A

t

X2+y2

2
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(i—)t for x =y 2 r7; then 7\—2't(dx2 + dy2) 2 atg. But since g is

complete, )\--2t(dx2 + dy2) is complete.

Q.E.D.
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