NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

COMPLETE ISOTHERMAL RIEMANNIAN METRICS ON \mathbb{R}^{2} HAVING COMPACTLY SUPPORTED GAUSSIAN CURVATURE

by
Sandra Samelson
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
Research Report No. 89-55

July 1989

Complete Isothermal Riemannian Metrics on $\mathbf{R}^{\mathbf{2}}$ having Compactly Supported Gaussian Curvature

Abstract: We consider a smooth Riemannian metric G on \mathbb{R}^{2} which is assumed to be complete and has compactly supported Gaussian curvature. Using the uniformization theorem one can produce an isometry from (\mathbb{R}^{2}, G) onto (थ,g) where \mathscr{U} is either the open unit ball of \mathbb{R}^{2} or \mathbb{R}^{2} itself and g is an isothermal Riemannian metric, i.e., $g=\lambda^{-2}\left(d x^{2}+d y^{2}\right)$ where λ is a positive real valued smooth function. We will prove that \mathscr{U} is necessarily equal to \mathbb{R}^{2} and the behavior of λ at infinity is determined by the integral of the Gaussian curvature of G on \mathbb{R}^{2}. In particular if this integral is zero then λ is continuous at infinity and bounded away from zero.

1. Introduction:

We will consider a smooth Riemannian metric G on \mathbb{R}^{2}, which is assumed to be complete and has compactly supported Gaussian curvature. By using the Uniformization theorem we obtain an isometry from (\mathbb{R}^{2}, G) onto ($4, g=\lambda^{-2}\left(d x^{2}+d y^{2}\right)$) where q is either the unit open ball or all of \mathbb{R}^{2} and λ is a positive real valued C^{∞}-function.

We then will show that the hypotheses on $\left(\mathbb{R}^{2}, G\right)$ imply that \boldsymbol{q} is necessarily equal to \mathbb{R}^{2} and that the behavior of λ at infinity is determined by the integral of the Gaussian curvature κ of G (equivalently the integral of the Gaussian curvature κ of g). More precisely we will prove that,

$$
\lim _{(x, y) \rightarrow \infty} \ln (\lambda)+\left(\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} k d A\right) \ln \left(x^{2}+y^{2}\right)
$$

exists and that

$$
\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}
$$

is necessarily less than or equal to 2π. Here $d A$ denotes the Riemannian area element of G.

A consequence of the theorem will be that it allows one to produce a homotopy from a given complete Riemannian metric with compactly supported Gaussian curvature to one which is isometric to the Euclidean metric while preserving the completeness and the support of the Gaussian curvature of each Riemannian metric along the path. We use this fact in [Sa]

First let us consider an example.

1.1 Example

$$
\tilde{\lambda}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}} \text { for } x^{2}+y^{2} \geq 1 \text { and a positive } C^{\infty} \text {-function on } \mathbb{R}^{2}
$$

It is easy to show that $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}=2 \pi$.
To show that we consider the map

$$
\begin{gathered}
\psi: \mathbb{R}^{2} \mathrm{~B}_{1}(0) \rightarrow \mathbb{R}^{3} \\
\psi(\mathrm{x}, \mathrm{y}):=\left(\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \cdot \frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \cdot \frac{1}{2} \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)
\end{gathered}
$$

where $B_{1}(0)$ denotes the ball of radius 1 on \mathbb{R}^{2}. Clearly this map is an isometry onto the cylinder induced from the Euclidean metric in the ambient space \mathbb{R}^{3}. The curve $x^{2}+y^{2}=4$ is mapped to the geodesic $\left(u_{1}, u_{2}, \ln (2)\right)$: $u_{1}^{2}+u_{2}^{2}=1$ \} on the cylinder and hence the original curve itself must be a geodesic which is closed. Thus by the Gauss Bennett Theorem we obtain $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}=\int_{\mathrm{B}_{2}(0)} \kappa \mathrm{dA}=2 \pi$.

Now we consider the Riemannian metric $\lambda^{-2}\left(\mathrm{dx}^{2}+\mathrm{dy}^{2}\right)$ where $\lambda=(\tilde{\lambda})^{\alpha}$ for some $\alpha \in \mathbb{R}$. Then for this Riemannian metric,

$$
\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}=\int_{\mathbb{R}^{2}} \Delta\left(\ln \tilde{\lambda}^{\alpha}\right) \mathrm{dxdy}=\alpha \int_{\mathbb{R}^{2}} \Delta(\ln \tilde{\lambda}) \mathrm{dxdy}=2 \pi \alpha .
$$

Thus for this class of metrics we see that

$$
\lim _{(x, y) \rightarrow \infty} \ln \lambda+\left(\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \kappa \mathrm{dA}\right) \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

exists.
Our objective is to show the existence of this limit for all complete isothermal metrics with compactly supported Gauss curvature.

A consequence of this result is that for a Riemannian metric $\lambda^{-2}\left(\mathrm{dx}^{2}+\mathrm{dy}^{2}\right)$ of the type considered here, the associated Riemannian metric $\lambda^{-2 t}\left(d x^{2}+\mathrm{dy}^{2}\right)$ for $0 \leq \mathrm{t} \leq 1$ is complete also.

2. Main results:

2.1 Theorem: Suppose that G is a complete Riemannian metric on \mathbb{R}^{2} such that its Gaussian curvature κ is compactly supported. Then there exists an isometry from $\left(\mathbb{R}^{2}, G\right)$ onto $\left(\mathbb{R}^{2},\left(g=\lambda^{-2}\left(d x^{2}+d y{ }^{2}\right)\right)\right.$ where λ is a positive C^{∞}-function on \mathbb{R}^{2} and the following are satisfied:
(a) $\lim _{(x, y) \rightarrow \infty} \ln (\lambda(x, y))+\frac{1}{4 \pi}\left(\int_{\mathbb{R}^{2}} \kappa d A\right) \ln \left(x^{2}+y^{2}\right)$ exists, and
(b) $\int_{\mathbb{R}^{2}} k \mathrm{dA} \leq 2 \pi$,
where $d A$ denotes the Riemannian area element associated to G.
2.2 Corollary: Suppose that G, g, and λ are as in Theorem 2.1. Then for all $t \in[0,1]$, the Riemannian metric $\lambda^{-2 t}\left(d x^{2}+d y{ }^{2}\right)$ is complete.

In the remainder of the paper we will prove these results. In section 3, we will state some facts which are probably already known; however, we will provide the proofs for completeness. In section 4 we will develop the principal technique for the proofs of the main results. We will generalize
the well-known results of Julia on the existence of a Julia ray of a holomorphic function around an essential singularity. Essentially we will replace the term "ray" with "geodesic". The main results will be proved in section 5.

3. Preliminaries:

Let K denote either $R^{\mathbf{2}}$ or the unit open disk.
In this section we consider a complete Riemannian metric $\begin{array}{ll}-2 & 2\end{array}$
$g=X \quad(d x+d y)$ on \wedge and assume that the Gaussian curvature K has compact support and that $\int_{\text {ald }} i o d A \leq 0$ (we will drop this assumption in section 5). To fix notation, assume that $\operatorname{supp}(i e) C B_{\mathbf{r}}(0)$ (Euclidean ball) for some $r>0$. The goal of this section is to prove some preliminary results which are useful later on. These results are probably valid in a much more general setting, and at least the first one is well-known. For the sake of completeness we present the proofs.

We assume that geodesies are parameterized by arclength. The topological metric induced by the Riemannian metric g is denoted by d and is complete by the Hopf-Renow Theorem.

Note that since g is isothermal, angles between tangent vectors measured with respect to the Euclidean metric agree with angles measured with respect to g. Thus notions such as orthogonality are unambigous. All magnitudes and inner products of tangent vectors are with respect to g unless it is written IhlL or $\left\langle^{\#} .{ }^{*}\right\rangle^{\prime}{ }^{\prime}$ lnwhichcasethe quantities are with respect to the Euclidean metric of R^{2}.

Lenma 3.1 There is a point $p € d B \underset{\mathbf{r}}{ }(0)$ such that the geodesic $a: R-\star \%$
 $a(t) € C l\left(B_{r}(0)\right)$ for every $t>0$.

Proof: Suppose not. For $q \in \partial B_{r}(0)$ denote by σ^{q} the geodesic defined by $\sigma^{\mathrm{q}}(0)=\mathrm{q}$ and $\dot{\sigma}^{\mathrm{q}}(0)=\frac{\mathrm{q}}{\|\mathrm{q}\|}$. Let $\delta>0$ and $\tau>0$ be such that for all $\mathrm{q} \in \partial \mathrm{B}_{\mathrm{r}}(0) \sigma^{\mathrm{q}}(\mathrm{t}) \notin \partial \mathrm{B}_{\mathrm{r}}(\mathrm{q})$ for $\mathrm{t} \in(0, \tau)$ and $\mathrm{d}\left(\sigma^{\mathrm{q}}(\tau), \partial \mathrm{B}_{\mathrm{r}}(0)\right)>\delta$. Assume without loss of generality that $\delta<\tau$. By the hypothesis, for every $q \in \partial B_{r}(0)$ there exists $s>0$ such that $\sigma^{q}(s) \in \partial B_{r}(0)$. It follows that $s>\tau$. Now by the continuity of $\sigma^{q}(t)$ on t and q, we can find $T>\tau$ such that for every $q \in \partial B_{r}(0)$ there exists $t \in[\tau, T]$ such that $\sigma^{q}(t) \in \mathscr{y}$ where $\mathscr{V}:=\left\{p \in \mathbb{R}^{2}: d\left(p, \partial B_{r}(0)\right)<\delta\right\}$. Let $x \in \mathscr{Q}$ be given. Since the Riemannian metric is complete find $y \in \partial B_{r}(0)$ such that $d(x, y) \geq d(x, q)$ for every $q \in \partial B_{r}(0)$. Let $t_{x}=d(x, y)$. (Then $x=\sigma^{y}(t x)$). We claim that $t_{x} \leq T$. Assume otherwise. Let $t \in[\tau, T]$ be such that $\sigma^{y}(t) \in \mathscr{V}$. Let $\mathrm{q} \in \partial \mathrm{B}_{\mathrm{r}}(0)$ be such that $\mathrm{d}\left(\mathrm{q}, \sigma^{\mathrm{y}}(\mathrm{t})\right)<\delta$. Then $\mathrm{d}(\mathrm{q}, \mathrm{x}) \leq \mathrm{d}\left(\mathrm{q}, \sigma^{\mathrm{y}}(\mathrm{t})\right)+$ $\mathrm{d}\left(\sigma^{\mathrm{y}}(\mathrm{t}), \sigma^{\mathrm{y}}\left(\mathrm{t}_{\mathrm{x}}\right)\right)<\delta+\left(\mathrm{t}_{\mathrm{x}}-\mathrm{t}\right)<\delta+\left(\mathrm{t}_{\mathrm{x}}-\tau\right)<\mathrm{t}_{\mathrm{x}}$ which contradicts the definition of the point y; that is, y is not the closest point to x on $\partial B_{r}(0)$. But since T is fixed and x is arbitrary, it follows that \mathcal{U} is bounded with respect to d which violates the completeness of d.

Lemma 3.2: Let $\sigma: \mathbb{R} \rightarrow \mathscr{U}$ be a geodesic such that $\sigma(\mathrm{t}) \notin \mathrm{Cl}\left(\mathrm{B}_{\mathrm{r}}(0)\right)$ for every $t>0$. Then there exists $\tau>0$ such that for every $t \geq \tau$, the geodesic $v: \mathbb{R} \rightarrow थ$ defined by $v(0)=\sigma(\mathrm{t})$ and $\dot{v}(0) \perp \dot{\sigma}(\mathrm{t})$ never enters $\mathrm{B}_{\mathrm{r}}(0)$.

Proof: For $t>0$, let $v^{t}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ denote the geodesic defined by $v^{t}(0)=$ $\sigma(\mathrm{t})$ and $\dot{v}^{\mathrm{t}}(0) \perp \dot{\sigma}(\mathrm{t})$. (When we write $\mathrm{a} \perp \mathrm{b}$ we will always assume that (a, b) is positively oriented).

Now we only need to prove that there exists $t_{0}>0$ such that $v^{t_{0}}$ does not enter $B_{r}(0)$, since then $\dot{v}^{t} 0$ is an infinite geodesic which lies entirely
in $\left(B_{r}(0)\right)^{c}$ on which $\kappa \equiv 0$. Thus $v^{t} 0$ does not intersect with itself. Then $v^{\mathrm{t} 0}$ separates $थ$ into two connected components of which on one $\kappa \equiv 0$. (Denote this component by \mathscr{R}). Hence $\sigma\left[\mathrm{t}_{0}, \infty\right) \cap{ }^{\mathrm{t}}{ }^{\mathrm{t}}(\mathbb{R})=\left\{\sigma\left(\mathrm{t}_{0}\right)\right\}$, since otherwise we have a geodesic triangle formed by σ and $v^{t_{0}}$ in $\left(B_{r}(0)\right)^{c}$ such that the sum of the interior angles is greater than π, thus violating the Gauss Bonnet Theorem. Now $\sigma\left(\mathrm{t}_{0}, \infty\right) \subset \mathscr{F}$ and using the same reasoning as above, $v^{t}(\mathbb{R}) \subset \not \subset$ for every $t>t_{0}$ and therefore v^{t} does not enter $B_{r}(0)$ for every $t>t_{0}$.

Suppose now that v^{t} intersects $B_{r}(0)$ for every $t>0$. We show that this leads to a contradiction.

Define $T:(0, \infty) \rightarrow(0, \infty)$ as the smallest value $T(t)$ such that $v^{t}(T(t)) \in \partial B_{r}(0)$. Note that if $t_{1}, t_{2}>0, \tau_{1}, \tau_{2}>0$ are such that $v^{t_{1}}\left(\tau_{1}\right)=v^{t_{2}}\left(\tau_{2}\right)$ then the Gauss Bonnet Theorem asserts that $v^{t} 1^{1}\left[0, \tau_{1}\right] \cap \partial B_{r}(0) \neq \emptyset$ or that $v^{t} 2^{2}\left[0, \tau_{2}\right] \cap \partial B_{r}(0) \neq \emptyset$. Therefore $p_{(\cdot)}:[0, \infty) \rightarrow \partial B_{r}(0) ; p_{t}=v^{t}(T(t))$ is monotone on $\partial B_{r}(0)$ and one to one. Let $\left\{t_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of positive real numbers such that
(i) $\quad t_{n} \rightarrow \infty$ as $n \rightarrow \infty$,
(ii) $\lim _{n \rightarrow \infty} p_{t_{n}}$ exists $\left(\lim _{n \rightarrow \infty} p_{t_{n}}=p \in \partial B_{r}(0)\right)$, and
(iii) $\lim _{n \rightarrow \infty} \dot{v}^{t_{n}}\left(T\left(t_{n}\right)\right)$ exists $\left(\lim _{n \rightarrow \infty} \dot{v}^{t_{n}}\left(T\left(t_{n}\right)\right)=v\right)$.

Let $\alpha, \beta: \mathbb{R} \rightarrow \mathscr{U}$ be geodesics defined by
(a) $\alpha(0)=\beta(0)=\mathbf{p}$,
(b) $\dot{\alpha}(0)=-v$, and
(c) $v \perp \dot{\beta}(0)$.

Let $\epsilon>0$ be such that $\beta(-\epsilon, \epsilon) \subset\left(B_{r / 2}(0)\right)^{c}$. (Note that $\left.\operatorname{supp}(\kappa) \subset \mathrm{B}_{\mathrm{r} / 2}(0)\right)$.

By continuity $\beta(-\epsilon, \epsilon) \cap v^{t_{n}}\left[0, T\left(t_{n}\right)\right] \neq \varnothing$ for all large n. Without loss of generality assume that this is true for all n. Let $\left\{s_{n}\right\}_{n=1}^{\infty} \subset(-\epsilon, \epsilon)$ and $\left\{\theta_{n} \in\left[0, T\left(t_{n}\right)\right]\right\}_{n=1}^{\infty}$ be defined by $\beta\left(s_{n}\right)=v^{t_{n}}\left(\theta_{n}\right)$.

Let $n>m$ and consider the $\underset{m}{\text { Fig }} 1$ genic parallelogram with sides $\sigma\left[t_{m}, t_{n}\right]$, $v^{t_{n}}\left[0, \theta_{n}\right], \beta\left[s_{n}, s_{m}\right]$ and $v^{t_{m}}\left[0, \theta_{m}\right]$ as shown in Fig 1. Since this parallelogram bounds a region on which $\kappa \equiv 0$ and since the interior angles at $\sigma\left(\mathrm{t}_{\mathrm{n}}\right)$ and $\sigma\left(\mathrm{t}_{\mathrm{m}}\right)$ are both $\pi / 2$, it follows that the angle between $i^{\mathrm{t}} \mathrm{n}^{\left(\theta_{\mathrm{n}}\right)}$ and $\dot{\beta}\left(s_{n}\right)$ is equal to the angle between $\dot{v}^{t_{m}}\left(\theta_{m}\right)$ and $\dot{\beta}\left(s_{m}\right)$. But since this sequence of angles converges to $\pi / 2$, it follows that $v^{t_{n}}$ and β meet orthogonally for all n.

Now let $n>m$ be given. Consider the family of geodesics $u^{\theta}:\left[t_{m}, t_{n}\right] \rightarrow थ, \theta \in\left[0, \theta_{m}\right], u^{\theta}\left(t_{m}\right)=v^{t_{m}}(\theta)$ and $\dot{u}^{\theta}\left(t_{m}\right) \perp \dot{v}^{t_{m}}(\theta)$. It is
easily seen that $u^{\theta}\left(t_{n}\right)=v^{t}{ }^{\mathrm{n}}(\theta)$ for every θ and $u^{\theta}(\tau) \cap v^{t} n^{n}\left[0, \theta_{n}\right]=\varnothing$ for $\tau \in\left[t_{m}, t_{n}\right)$. In particular it follows that $u^{\theta_{m}}(\tau) \cap v^{t_{n}}\left[0, \theta_{n}\right]=\varnothing$ for every $\tau \in\left[t_{m}, t_{n}\right]$.

Thus $t_{n}-t_{m}<2 \epsilon$. But this is a contradiction because $\left\{t_{k}\right\} \rightarrow \infty$ as $\mathrm{k} \rightarrow \infty$.

Note that instead of working with a family of geodescis $\left\{v^{t}\right\}$ which are orthogonal to σ, we can work with a family which makes a certain fixed angle with σ and obtain the same conclusion. We stated this as a lemma.

Lemma 3.3: Let $\sigma: \mathbb{R} \rightarrow \mathbb{Q}$ be a geodesic such that $\sigma(t) \notin \operatorname{Cl}\left(\mathrm{B}_{\mathrm{r}}(0)\right)$ for every $t>0$. Let $\alpha \in(-\pi, \pi)$. Then there exists $\tau>0$ such that for all $t \geq T$, the geodesic $v: \mathbb{R} \rightarrow \mathbb{Q}$ defined by $v(0)=\sigma(t)$ and $\dot{v}(0)$ makes an angle α to $\dot{\sigma}(\mathrm{t})$ never enters $\mathrm{B}_{\mathrm{r}}(0)$.

Let v be a geodesic as in the conclusion of lemma 3.2 or 3.3. Then v separates q into two connected components and v is an infinite geodesic. Therefore there exists $\tau>0$ such that $v(t) \notin B_{r}(0)$ for every $t>\tau$ and thus we may produce a geodesic which makes a desired angle to v such that this new geodesic never enters $B_{r}(0)$. Moreover, two such geodesics can be constructed as in Figure 2 below such that \mathbb{R}^{2} is separated into six connected components and $\mathrm{B}_{\mathrm{r}}(0)$ is contained in one of these components.

Next we construct a geodesic polygon enclosing $B_{r}(0)$ such that none of the boundary geodesics enter $\mathrm{B}_{\mathrm{r}}(0)$. We will assume that $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA} \leq 0$. If \mathscr{R} is a geodesic n -gon, then by the Gauss Bonnet theorem,

$$
(\mathrm{n}-2) \pi+\int_{\mathscr{R}} \kappa \mathrm{dA}=\text { sum of the interiror angles of } \wp .
$$

Since we wish to enclose $B_{r}(0)$, we pick an n-gon with interior angles $\alpha \in(\pi / 4, \pi / 2)$ such that

$$
(\mathrm{n}-2) \pi+\int_{\mathscr{R}} \kappa \mathrm{dA}=\mathrm{n} \alpha .
$$

Now construct n -geodesics as follows:

Start with any infinite geodesic $v_{1}: \mathbb{R} \rightarrow$ थ such that v_{1} separates $\mathscr{O}_{\text {into }}$ two components such that $B_{r}(0)$ is in one of the components (existence follows from lemma 3.2). Let T_{1} be large enough that for all $t>T_{1}$ a geodesic through $v_{1}(t)$ which makes a positively oriented angle α to v_{1} will never enter $\mathrm{B}_{\mathrm{r}}(0)$. Let v_{2} be such a geodesic through $v_{1}\left(\mathrm{~T}_{1}\right)$. Now start with v_{2} and repeat the construction to obtain v_{3}, and so on, to obtain geodesics $v_{1}, v_{2}, \ldots, v_{n}$.

Lemma 3.4: v_{n} intersects v_{1} and v_{k} does not intersect v_{1} if $1<k<n$.

Fig 3

The second assertion follows trivially since otherwise the Gauss Bonnet theorem is violated.

We need to prove that u_{n} intersects $I K$. Let p_{i} denote the point of intersection of v_{i} and $\gg_{1^{+1}}$ Let 17: $[0,1]-\gg$ be a regular curve such that $17(0)=p_{n}=1 T J(1)=p_{1}, 17$ does not intersect with itself, 17 intersects v_{n} at P_{n-1} only, 77 intersects D_{1} at p_{1} only and 17 and
 constructed easily. If i> intersects \quad i we already have such a curve. Otherwise the piecewise geodesic curve formed by i>r,...,i>n is such that Cl ($\mathrm{Br}_{\mathbf{r}}(0)$) is contained in one of the connected components of A created by it and since this component is diffeomorphic to \wedge and $K=0$, we have an isometry from that connected component to an open subset of R with the Euclidean metric.

Now approximate 17 by a piecewise geodesic curve $f:[O . S L] \rightarrow$ for a $>$ 0. This approximation can be done, for example, using the existence of geodesically convex neighborhoods of arbitrary points (cf [Mil]).

Our approximation is done such that f does not intersect itself or any of the v_{1} that $i>_{I}$ does not meet and such that $f P I v_{n}=p n_{1} f f_{i} u_{1}=p p_{1}$
 $\mathbf{j} \leq \mathbf{k}$.

Fig 4

Consider the geodesic polygon G with corners at $p_{1}, \ldots, p_{n-1}, Q_{1}, \ldots, Q_{k}$. Let the interior angles at $p_{n-1}, Q_{1}, \ldots, Q_{k}$ be $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}$, respectively. Since G encloses $B_{r}(0)$, by Gauss Bonnet we obtain,

$$
(n-2) \alpha+\gamma_{0}+\ldots+\gamma_{k}=\int_{\mathbb{R}^{2}} \kappa d A+(n+k-3) \pi
$$

since $n \alpha=\int_{\mathbb{R}^{2}} \kappa \mathrm{~d} A+(n-2) \pi$, we obtain

$$
\begin{equation*}
\gamma_{0}+\ldots+\gamma_{k}-2 \alpha=(k-1) \pi \tag{1}
\end{equation*}
$$

Consider the unit tangent vector v to v_{n} at p_{n-1} and parallel transport it along ξ to obtain a field $v(t), t \in[0,1]$. By equation (1) it follows that $v(1)$ makes an angle $(\pi-\alpha)$ with v_{1} at Q_{k} Let $\sigma:[0, \epsilon) \rightarrow \mathscr{U}$ be the geodesic such that $\sigma(0)=Q_{k}$ and $\dot{\sigma}(0)=v(1)$. Then since $\dot{\sigma}(0)$ points into the f lat side \mathscr{R}_{1} of v_{1}, it follows that $\sigma[0, \infty) \subset \mathbb{R}_{1}$. Therefore v_{n}, ξ_{1} and σ separate \mathbb{R}^{2} such that on one side $\kappa \equiv 0$. Denote this side by \mathscr{R}. Since \mathscr{K} is simply connected, absolute parallelism is defined on \Re.

Let X be a vector field on \mathscr{R} obtained by parallel transporting v on \mathscr{R} and let Y be the unit vector field orthogonal to X on \mathscr{K} such that (X, Y) is positively oriented.

Start from. $t=0$ and increase t. If at some $t \neq 0, \phi_{\boldsymbol{T}}(\xi(t)) \in \xi[0, a]$ (where τ is in the domain of definition of $\phi_{(\cdot)}^{X}(\xi(t))$ replace the portion of ξ between $\xi(\mathrm{t})$ and $\phi_{\mathrm{t}}^{\mathrm{X}}(\xi(\mathrm{t}))$ by $\phi_{(\cdot)}^{\mathrm{X}}(\xi(\mathrm{t}))$. The curve obtained after this modification will also be denoted by ξ. Note that ξ is a piecewise geodesic curve.

Now at all $\mathrm{t} \in[0, \mathrm{a}], \dot{\xi}\left(\mathrm{t}^{\ddagger}\right)$ are either tangential to X or $\left(\dot{\xi}\left(\mathrm{t}^{ \pm}\right)\right.$, $\left.X_{\xi(t)}\right)$ is positively oriented. Hence for all $t \in[0, a], \phi_{\tau}^{X}(\xi(t))$ is defined for all $\tau \geq 0$ and $\mathscr{K}=\left\{\phi_{\tau}^{X}(\xi(\mathrm{t})) ; \tau \geq 0 ; \mathrm{t} \in[0, \mathrm{a}]\right\}$.

Since $\Delta(\ln \lambda))=0$ on \mathscr{K}, there exists a holomorphic function $f: \mathscr{R} \rightarrow \mathbb{C}$ such that $\mathscr{K e}(f)=\frac{1}{2} \ln \lambda$ (we now identify \mathbb{R}^{2} with \mathbb{C}). Let $\psi: \mathscr{R} \rightarrow \mathbb{C}$ be a holomorphic function such that $\psi^{\prime}(z)=e^{f}(z)$ for all $z \in \mathscr{K}$. Then $\left|\psi^{\prime}(z)\right|^{2}=\lambda^{2}(z)$ for all $z \in \mathscr{R}$ and then $g=\psi^{*}\left(d x^{2}+d y^{2}\right)$. Thus ψ maps goedesics in \mathscr{F} into straight lines in \mathbb{R}^{2}. After a suitable rotation of \mathbb{R}^{2}, we assume that ψ maps v_{n} to the positive real axis. $\psi \circ \xi$ is a piecewise linear curve such that each piece is either horizontal or slanted downwards. Also $\psi^{\circ} \mathrm{V}(\mathrm{t})=\frac{\partial}{\partial \mathrm{x}}$ for all $\mathrm{t} \in[0, \mathrm{a}]$. In particular $\psi^{\circ} \sigma$ is parallel to the positive real axis. Since $\mathscr{R}=\left\{\phi_{\tau}^{X}(\xi(\mathrm{t})): \tau \geq 0, \mathrm{t} \in[0, \mathrm{a}]\right\}$ and since $\psi \circ \xi$ does not intersect itself (since it always points downward), it follows that ψ is one to one. Hence $\psi: \mathscr{R} \rightarrow \psi(\mathscr{R})$ is an isometry where $\psi(\mathscr{K})$ is a region in \mathbb{R}^{2} bounded by two horizontal lines and a piecewise linear curve between them. Now $t \mapsto \psi \circ v_{1}(-\tau)$ is a straight line which is positively inclined to the horizontal direction by α and thus it meets $\psi \circ v_{n}$ making an angle α. Therefore v_{n} and v_{1} meet at an angle α.

4. Julia geodesics for holomorphic functions with essential singularities at

 infinity.The purpose of this section is to generalize the following theorem due to Julia [Hil]. This generalization provides the key to the proof of our main result.

Theorem 4.1 [Hil]. Let $f: \mathbb{C} B_{r}(0) \rightarrow \mathbb{C}$ be a holomorphic function which has an essential singularity at infinity. Then there is θ_{0} such that for
each $\delta>0$ and each $R>r, f^{-1}(\omega) \cap\left\{z=|z| e^{i \theta}:|z|>R, \theta \in\left(\theta_{0}-\delta\right.\right.$, $\theta_{0}+\delta$) contains infinitely many points for all $\omega \in \mathbb{C}$ with the possible exception of one point.

Definition 4.2 [Hil]: The ray $\left\{z=|z| e^{i \theta} 0:|z| \geq R\right\}$ is called a Julia ray.

Definition 4.3 [Hil]: Let $f: V \rightarrow \mathbb{C}$ be a holomorphic function where V is an open subset of \mathbb{C}. Then $z \in \mathbb{C}$ is called a Lacunary point for f if $\mathbf{z} \notin f(\mathrm{~V})$.

In the sequel we shall show that if $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA} \leq 0$ and g is complete, then one can define a Julia geodesic of g , and a corresponding theorem to theorem 4.1 holds once we replace rays by radial geodesics of g .

Definition 4.4: A semi-infinite geodesic means $\left.\sigma\right|_{[0, \infty)}$ where $\sigma: \mathbb{R} \rightarrow \mathscr{U}$ is a geodesic which does not meet $\mathrm{Cl}\left(\mathrm{B}_{\mathrm{r}}(0)\right)$.

Definition 4.5: Two semi-infinite geodesics σ_{1} and σ_{2} are parallel if for all t large enough, the orthogonal geodesic to σ_{1} at $\sigma_{1}(t)$ (which does not enter $\mathrm{Cl}\left(\mathrm{B}_{\mathrm{r}}(0)\right)$ by lemma 2.3) meets $\left.\sigma_{2}\right|_{[0, \infty)}$ orthogonally.

Definition 4.6: A geodesic sector containing a semi-infinite geodesic σ means a region bounded by two intersecting semi-infinite geodesics σ_{1} and σ_{2} which are not parallel to each other or to σ, and such that $\sigma[0, \infty)$ is contained in the region.

Fig 5

Definition 4.7: Let $h: N_{B_{a}}(0) \rightarrow C$ be a holomorphic function such that $\lim _{z \rightarrow \infty} h(z) \neq \infty$, but there exists a sequence $\left\{z_{n}\right\}$ converging to $z_{0} \in \partial \Omega$ $z \rightarrow 39$
such that $\lim _{n \rightarrow \infty} h\left(\mathbf{z}_{\mathbf{n}}\right)=\infty$. A semi-infinite geodesic σ is a Julia geodesic for h if it has the following property:

Let $\left\{\right.$ be any geodesic sector containing σ. Then $\left.h\right|_{g}$ has at most one Lacunary point.

Consider the following special case which motivates definition 4.6 in particular and this section in general.

Suppose that $F: C B_{a}(0) \rightarrow C(a>0)$ is a one to one holomorphic map such that F has a simple pole at infinity. Let $\lambda(z)=\left|\frac{d}{d z} F(z)\right|$. Extend λ smoothly to \mathbb{R}^{2} such that $\lambda(z)>0$ for all z. Consider the Riemannian metric $g=\lambda^{-2}\left(d x^{2}+d y^{2}\right)$. It is clear that F maps geodescis of g to straight lines. Thus if $h: \mathrm{CB}_{\mathrm{a}}(0) \rightarrow C$ is a holomorphic map which has an essential singularity, then $h \circ F^{-1}$ has an essential singularity at infinity and hence it has a Julia ray η. Then $F^{-1} \circ \eta$ is a Julia geodesic of g. Unfortunately even when $\int_{R^{2}} \kappa d A=0$ and supp (k) is compact, it does
not follow that $\lambda(z)=\left|\frac{d}{d z} F(z)\right|$ for some holomorphic function defined on $\left(B_{r}(0)\right)^{c}$ (even though it holds on any simply connected open set).

Theorem 4.6: Let $h: \Upsilon\left(B_{r}(0)\right) \rightarrow C$ be a holomorphic map such that $\lim _{z \rightarrow \partial \psi} h(z) \neq \infty$, but there exists a sequence $\left(z_{n}\right)$ converging to $z \in \partial q$ With $\lim _{n \rightarrow \infty} h\left(z_{n}\right)=\infty$. Suppose that g is complete and $\int_{\mathbb{R}^{2}} \kappa d A \leq 0$. Then there exists a Julia geodesic.

Proof: Let $n \in \mathbb{N}$ and $\alpha \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$ be such that $(n-2) \pi=\int_{R^{2}} \kappa d A=n \alpha$.
Let $v_{1} \ldots \ldots v_{n}$ be geodesics which do not enter $B_{r}(0)$ and which form the sides of a closed n-gon as in the previous section.

Fig 6
v_{i} separates into two connected components. Let \mathbb{S}_{i} be the component on wish $k \equiv 0$. Consider the map $\boldsymbol{\psi}_{i}:[0, \infty) \times R \rightarrow \boldsymbol{I}$ defined by $\psi_{i}\left(0, t_{2}\right):=v_{i}\left(t_{2}\right)$ and

$$
\psi_{i}\left(t_{1}, t_{2}\right):=\exp _{\psi_{i}\left(0, t_{2}\right)}\left(t_{1} e^{i \pi / 2} \dot{\psi}_{i}\left(0, t_{2}\right)\right)
$$

This map is a diffeomorphism and ψ_{i} when considered as a complex map is holomorphic.

Now let $\sigma_{1}^{\theta}:[0, \infty) \rightarrow$ थ, $\theta \in[-\pi / 2, \pi / 2]$ be a family of semi-infinite geodesics defined by,

$$
\sigma_{1}^{\theta}(t)=\psi_{1}(t \cos \theta, t \sin \theta)
$$

Since $\quad \alpha \in(0, \pi / 2]$ it follows that

$$
\sigma_{1}^{\theta}[0, \infty) \cap v^{2}(\mathbb{R}) \neq \phi \quad \text { for all } \quad \theta>\pi / 2
$$

Since both ψ_{1} and ψ_{2} map straight lines to geodesics, $\psi_{2}^{-1} \circ \psi_{1}$: $\psi_{1}^{-1}\left(\mathscr{K}_{1} \cap \mathscr{K}_{2}\right) \rightarrow \psi_{2}^{-1}\left(\mathscr{K}_{1} \cap \mathscr{K}_{2}\right)$ is a linear map. Therefore $\left\{\psi_{2}^{-1}\left(\sigma_{1}^{\theta}\right)\right.$: $\theta \in(0, \pi / 2]\}$ is a family of straight lines eminating from a point $p_{2} \in \mathbb{R}^{2}$. Define the family of geodescis $\sigma_{2}^{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \theta \in\left(-\theta_{21}, \theta_{22}\right)$ for suitable $\theta_{21}, \theta_{22} \in(-\pi, \pi)$ by

$$
\sigma_{2}^{\theta}(\mathrm{t}):=\psi_{2}\left(\mathrm{p}_{2}+(\mathrm{t} \cos \theta, \mathrm{t} \sin \theta)\right)
$$

for which the right hand side is defined, which occurs when the second coordinate of $p_{2}+(t \cos \theta, t \sin \theta)$ is nonnegative.

The following facts are extremely important.

Fact 1: If $\sigma_{1}^{\theta_{1}}[0, \infty) \cap \sigma_{2}^{\theta_{2}}[0, \infty) \neq \phi$, then $\sigma_{1}^{\theta_{1}}$ and $\sigma_{2}^{\theta_{2}}$ are the same geodesic (including the parametrization).

Fact 2: The curves $\mu_{1}:(-\pi / 2 . \pi / 2] \rightarrow \mathbb{R}^{2}$ and $\mu_{2}:\left(-\theta_{21}, \theta_{22}\right) \rightarrow \mathbb{R}^{2}$ defined by

Fig 8

$$
\mu_{1}(\theta)=\sigma_{1}^{\theta}(\mathrm{a}) \text { and } \mu_{2}(\theta)=\sigma_{2}^{\theta}(\mathrm{a})
$$

are such that their images coincide on $\mathscr{R}_{1} \cap \mathscr{K}_{2}$ whenever a is large enough.
Now using the family $\left\{\sigma_{2}^{\theta}\right\}$ and ψ_{3} define $p_{3} \in \mathbb{R}^{2}$ and a family of geodesics $\left\{\sigma_{3}^{\theta}\right\}$ such that $\left\{\psi^{-1}\left(\sigma_{3}^{\theta}\right)\right\}$ eminates from p_{3} and the family $\left\{\sigma_{2}^{3} \theta\right\}$ and $\left\{\sigma_{3}^{\theta}\right\}$ agree on $\mathscr{R}_{2} \cap \mathscr{R}_{3}$. Continue this way to produce families of geodesics $\left\{\sigma_{j}^{\theta}\right\}_{j=1,2, \ldots, n}$ and points $\left\{p_{j}\right\}_{j=1,2, \ldots, n}$ in \mathbb{R}^{2}. After reindexing the families we may assume that if $\sigma_{i}^{\theta}[b, \infty)$ and $\sigma_{i+1}^{\theta}[b, \infty)$ both lie in $\mathscr{K}_{i} \cap \mathscr{F}_{i+1}$ for some b, then $\sigma_{\left.i\right|_{[b, \infty)} ^{\theta}}=\sigma_{i+\left.1\right|_{[b, \infty)} ^{\theta}}$. Henceforth we will drop the subscript i from σ_{i}^{θ}. Let the range of ρ be $[-\pi / 2, \hat{\theta}]$ $(\hat{\theta} \in(-\pi / 2, \infty))$. Whenever a is large enough we can define a curve

$$
u \quad[-\pi / 2, \hat{\theta}] \rightarrow \text { U by } \mu^{\mathrm{a}}(\theta)=\sigma^{\theta}(\mathrm{a}) .
$$

The difficulty is that μ need not be a closed curve (even when $\left.\int_{\text {ql }} \kappa \mathrm{dA}=0\right)$.

Consider the family of curves $\gamma_{n}:[-\pi / 2, \hat{\theta}] \rightarrow$ U defined by $\gamma_{n}(\theta)=\mu^{\mathrm{ke}^{\mathrm{n}}}(\theta), \mathrm{n} \in \mathbb{N}$ and k is a positive number to be determined. Note that $\gamma_{n}(\theta) \in \mathscr{R}$, when θ is small and when θ is large. When θ is large, $\theta \mapsto \psi_{1}^{-1} \circ \gamma_{n}(\theta)$ is a family of concentric arcs, each with center at some $\mathrm{p}_{\mathrm{n}+1} \in$ थ.

It is clear that p_{n+1} is independent of k, and if k is large enough, $\psi_{1}^{-1}\left(\gamma_{n}\right)$ and $\psi_{1}^{-1}\left(\gamma_{n+1}\right)$ do not intersect. Fix k at such a value. Let α_{n} : = $\left\{\sigma^{\theta}(\mathrm{t}): \theta \in[-\pi / 2, \hat{\theta}], \mathrm{ke}^{\mathrm{n}}<\mathrm{t}<\mathrm{ke}^{\mathrm{n}+1}\right\}$. By the above there exists a closed curve $s_{n} \in A_{n}$ which does not meet γ_{n} or γ_{n+1}.

Now let $\hat{\mathscr{K}}=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq \ln k$, $\operatorname{Im}(z) \in[-\pi / 2, \hat{\theta}]\}$ and let $\hat{\mathscr{O}}_{\mathrm{n}}=$

Fig 7
$\{\mathrm{z} \in \hat{\mathscr{R}}: \mathrm{n}+\ln (\mathrm{k}) \leq \mathscr{K e}(\mathrm{z}) \leq(\mathrm{n}+1)+\ln \mathrm{k}\}$. Let $\mathrm{H}: \hat{\mathscr{K}} \rightarrow \mathbb{C}$ be $\mathrm{H}(\mathrm{x}+\mathrm{iy})=$ $h\left(\sigma^{y}(\exp x)\right)$. Clearly $(x+i y) H \sigma^{y}(\exp x)$ is holomorphic and hence H is holomorphic. Let $H_{n}: \hat{\mathscr{R}}_{0} \rightarrow \mathbb{C}$ be $H_{n}(x+i y)=H(n+x+i y)$. Consider the family of holomorphic functions $\left\{H_{n}: \operatorname{int}\left(\hat{\mathscr{F}}_{0}\right) \rightarrow \mathbb{C}\right\}_{n \in \mathbb{N}}$. We claim that this is not a normal family of meromorphic functions. Suppose that it is.

Case 1: There exists a subsequence of $\left\{H_{n}\right\}$ (say $\left\{H_{n_{k}}\right\}_{k=1}^{\infty}$) converging to some $\mathrm{f}: \hat{\mathscr{F}}_{0} \rightarrow \mathbb{C}$ which is holomorphic on $\operatorname{int}\left(\hat{\mathscr{F}}_{0}\right)$.

Let $\epsilon>0$ be small enough such that (after possibly redefining it), s_{n} is in $\left\{\sigma^{\theta}(\mathrm{t}):-\pi / 2+\epsilon \leq \mathrm{y} \leq \hat{\theta}-\epsilon, k e^{\epsilon+\mathrm{n}} \leq \mathrm{t} \leq(\mathrm{k}+1) \mathrm{e}^{\mathrm{n}+1-\epsilon}\right\}$. Let $\widetilde{\mathscr{R}}_{0}=\{\mathrm{x}+$ iy $\left.\epsilon \hat{\mathscr{F}}_{0}: \epsilon+\mathrm{n}+\ln \mathrm{k} \leq \mathrm{x} \leq(\mathrm{n}+1)+\ln \mathrm{k}-\epsilon ;-\pi / 2+\epsilon \leq \mathrm{y} \leq \hat{\theta}-\epsilon\right\}$. then $\left.\mathrm{f}\right|_{\widetilde{\mathscr{R}}_{0}}$
 By the definition of $\left\{H_{n}\right\}$ it follows that $|h|_{S_{n_{k}}} \mid<M$ whenever k is large enough. But now by the Maximum modulus theorem, h is bounded in a neighborhood of infinity, contradicting the fact that h has an essential singularity at infinity.

Case 2: There exists a subsequence $\left\{\mathrm{H}_{\mathrm{n}_{k}}\right\}_{k=1}^{\infty}$ of $\left\{\mathrm{H}_{\mathrm{n}}\right\}$ converging to infinity on $\operatorname{int}\left(\hat{\mathscr{F}}_{1}\right\}$. Then $\left\{\frac{1}{\hat{H}_{n_{k}}}\right\}_{k=1}^{\infty}$ converges to zero on $\hat{\mathscr{R}}_{1}$; as in case 1 , this implies that $\left(\frac{1}{h}\right)$ is bounded in a neighborhood of infinity, yielding a contradiction.

We have proved that $\left\{H_{n}\right\}_{n=1}^{\infty}$ is not a normal family; and therefore, there
exists $z \in \operatorname{int}\left(\hat{\Re}_{1}\right)$ such that for an arbitrary neighborhood D of z_{0} in $\operatorname{int}\left(\hat{\mathscr{F}}_{1}\right)$ and arbitrary $k \in \mathbb{N}, \underset{n=k}{\bigcup} H_{n}(D)$ is either \mathbb{C} or the complement of a singleton [Hil]. Now let $z_{0}=x_{0}+i y_{0}$ and consider the semi-infinite geodesic $\left.{ }^{y_{0}}\right|_{[0, \infty)}$. We claim that it is a Julia geodesic. Let $1 \leq j \leq n$ be such that $\sigma^{y_{0}} \subseteq \mathscr{R}_{j}$. Let A be a geodesic sector containing $\left.\sigma^{y_{0}}\right|_{[a, \infty]}$ for some a..

By making the sector smaller if necessary we may assume that $A \subset \mathscr{K}_{j}$. Since \mathscr{A} is bounded by semi-infinite geodesics it follows that $\psi_{j}^{-1}(\mathscr{A})$ is a sector in \mathbb{R}^{2} bounded by two straight lines and it contains $\left.\psi_{j}^{-1} \quad{ }^{-1} \sigma^{y_{0}}\right|_{[a, \infty)}$. Moreover, by the definition of a geodesic sector (definition 4.5) neither of the straight lines bounding $\psi_{j}^{-1}(A)$ are parallel to $\psi_{j}^{-1} \sigma^{y_{0}}$. It is clear when ϵ is small and b is large, the set $\Omega=\left\{\sigma^{\theta}(t): \theta \leq\left(y_{0}-\epsilon, y_{0}+\epsilon\right)\right.$, $t \geq b\}$ is contained in A, since ψ_{j}^{-1} maps such a set into $\psi_{j}^{-1}(\mathscr{A})$ when ϵ and $\frac{1}{b}$ are small enough. Consider the set $B_{1}=\left\{x+i y \in \mathscr{R}_{1}: y \in\left(y_{0}-\epsilon\right.\right.$, $\left.\left.y_{0}+\epsilon\right)\right\}$. Let D be a neighborhood of z_{0} in B_{1}, of the form $D=\left(x_{0}-\delta\right.$, $\left.x_{0}+\delta\right) \times\left(y_{0}-\epsilon, y_{0}+\epsilon\right)$. Let $\ell \in \mathbb{N}$ be such that $\ell+\ln (k) \geq \ln (b)$. Then

$$
\begin{aligned}
\bigcup_{n=\ell}^{\infty} H_{n}(D)= & \bigcup_{n=\ell}^{\infty} H(D+n)=\bigcup_{n=\ell}^{\infty}\left\{h\left(\sigma^{y}(\exp x)\right): n+x_{0}-\delta \leq x\right. \\
& \left.\leq x_{0}+\delta+n ; y_{0}-\epsilon \leq y_{0} \leq y_{0}+\epsilon\right\} \subset h(\Omega)
\end{aligned}
$$

Hence $h(\Omega)$ contains the complement of a singleton. Since $\Omega \subset \mathscr{A}$ it follows ${ }_{\sigma}{ }^{y_{0}}$ is a Julia geodesic.

5. Proof of the Main Theorem:

First let us assume that $\quad \mathcal{U}=\mathbb{R}^{2}$.
Let us first consider the special case when $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}=0$.
On $\left(B_{r}(0)\right)^{c}, \ln \lambda$ is a harmonic function, since $k=-\frac{\Delta(\ln \lambda)}{2 \lambda}$. Since $\int_{B_{r}(0)} \Delta \ln \lambda d x d y=\int_{\mathbb{R}^{2}} \kappa d A=0$, there is a holomorphic function
$f:\left(B_{r}(0)\right)^{\mathbf{C}} \rightarrow \mathbb{C}$ such that $\ln \lambda=\operatorname{Re}(f)$. We claim that f has a removable singularity at ∞. So suppose not. Then e^{f} has an essential singularity at ∞. Expand e^{f} in terms of the Laurent's series at ∞ : $e^{f(z)}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$, where $a_{n} \neq 0$ for infinitely many $n>0$. Define $h(z):=\sum_{n=-\infty}^{\infty} \frac{a_{n}}{n+1} z^{n+1}$. Note that $h:\left(B_{r}(0)\right)^{c} \rightarrow \mathbb{C}$ is holomorphic and has an $\mathrm{n} \neq-1$
essential singularity at ∞.
Let $\sigma_{0}=\sigma^{\mathbf{y}_{0}}$ be a Julia geodesic for h and suppose that $\sigma_{0}[0, \infty)$ lies on \mathscr{H}_{i} corresponding to the geodesic v_{i}, as in section 4 . Let us drop the subscript i in \mathscr{K}_{i}, v_{i}, and ψ_{i}. Since \mathscr{R} is simply connected, the map

$$
\mathrm{F}:=\int \mathrm{e}^{\mathrm{f}} \mathrm{dz}: \mathscr{R} \rightarrow \mathbb{C}
$$

is well-defined.
Furthermore, since $\left|\frac{d}{d z}\left(\int e^{f(z)} d z\right)\right|=\left|e^{f(z)}\right|=\lambda(z)$, it follows that F maps geodesics to straight lines and is one-to-one onto some half plane.

Since \mathscr{K} is simply connected, define $\ln z$ on \mathscr{K} by fixing $\operatorname{Im}\left(\ln \left(\sigma_{0}(0)\right)\right) \in$ [$0,2 \pi$). Now

$$
\begin{equation*}
F(z)=a_{-1} \ln (z)+h(z) \quad \text { on } \mathscr{H} \tag{*}
\end{equation*}
$$

Case 1: Suppose that $a_{-1}=0$.
In this case $F(z)=h(z)$. But F maps \mathscr{R} into a half plane thus contradicting the fact that h maps arbitrary geodesic sectors of $\left.\sigma_{0}\right|_{[0, \infty)}$ in \mathscr{R} onto \mathbb{C} or $\mathbb{C} \backslash\{$ singleton .

Case 2: Suppose that $a_{-1} \neq 0$. Denote $\frac{1}{a_{-1}} F$ by G. Then

$$
\begin{equation*}
G-\ln (z)=\frac{1}{a_{-1}} h(z) \quad \text { on } \mathscr{K} \tag{**}
\end{equation*}
$$

Note that $G \circ v$ is not necessarily a horizontal or vertical line; however, $G(\Re)$ is a half plane and $G \circ \sigma_{0}$ is a semi-infinite straight line in $G(\mathscr{K})$. Let μ be either a horizontal or a vertical line which makes an angle with $\eta:=G \circ \sigma_{0}$ less than or equal to $\pi / 2$. Now $G \circ \mu$ is a semi-infinite geodesic in \mathscr{R}. By parallel translating μ (in the Euclidean sense) if necessary, we may assume that $G^{-1} \circ \mu$ extends to an infinite geodesic which does not meet $B_{r}(0)$. Denote the $f l a t$ side of μ by \mathscr{S}. By parallel translating μ into $\mathscr{\varphi}$, if necessary, we may assume that $|z|>1$ on $\mathscr{\varphi}$, so that $\mathscr{R} \in(\ln z)>0$ on $\mathscr{\varphi}$.

Now if $G(\mathscr{\varphi})$ is contained in a left half plane, then so is $G(\mathscr{\varphi})-\ln (\mathscr{\varphi})$ and hence σ_{0} is not a Julia geodesic.

Suppose that $G(\mathscr{\varphi})$ is contained in the right half plane $\mathbb{C}_{+}=\{z \mathbb{C}$: $\mathscr{K}(z) \geq 0\}$. By adding a real constant to G (which will be added to $\frac{1}{a_{-1}} h(z)$ also) we assume that $G(\varphi)=\mathbb{C}_{+}$. Then by (**) we obtain

$$
\begin{equation*}
i d-\ln \left(G^{-1}\right)=\frac{1}{a_{-1}} h \circ G^{-1}=: \theta \text { on } \mathbb{C}_{+} \tag{+}
\end{equation*}
$$

where 0 has the property that any sector containing 17 is mapped to <C or <C \backslash \{singleton\} .

Since $\ln \left(\mathrm{G} \mathrm{\sim}^{1}\right)$ maps $<C_{+}$into $<C_{+}$, it follows [Dino], that there exists a positive Bore measure T on R such that

$$
\operatorname{ste}\left(\ln \left(G^{-\star}\right)\right)=a x+x f_{\mathbf{(q - Y)}} 1 ـ_{\mathbf{+ x}} \wedge d r(£)
$$

where $a \geq 0$ and $\underset{R(x)}{\int} 5-d T(f) \lll$. Let si $:=\{(x, y):|y| \leq T X\}$ where $T € R$ is greater than $1 / 2$.

We claim that

$$
\lim _{A(x, y) \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{(\xi-y)^{2}+x^{2}} d r(f)=0
$$

Note that if $x>2$, then $\frac{1}{5}-5-\leq-\frac{8}{1}-Y^{2}$ on si, since

$$
(f-y)+x^{2} r+1
$$

if $|f I \leq 2| y \mid$ then
and

$$
\begin{aligned}
& \text { if }|f I>2| y \mid \text { then } \\
& (\xi-y)^{2} \bullet i r \bullet\left(\xi / 2+\frac{\xi}{2}-y\right)^{2}+x^{2} \geq \frac{\xi^{2}}{2}+x^{2} \geq \frac{\xi^{2}+1}{2} \geq 2_{8-x}^{2}
\end{aligned}
$$

Now the dominated convergence theorem applies; and therefore,

$$
\begin{equation*}
\lim _{\mathscr{A} \ni(x, y) \rightarrow \infty} \int_{\mathbb{R}} \frac{1}{(\xi-y)^{2}+x^{2}} \mathrm{~d} \tau(\xi)=\int_{\mathbb{R}} \lim _{(x, y) \rightarrow \infty} \frac{1}{(\xi-y)^{2}+x^{2}} \mathrm{~d} \tau(\xi)=0 \tag{++}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{K e}\left(i d-\ln \left(G^{-1}\right)\right)(x+i y)=x\left(1-\alpha-\int_{\mathbb{R}} \frac{1}{(\xi-y)^{2}+x^{2}} d \tau(\xi)\right) . \tag{+++}
\end{equation*}
$$

Now let \mathscr{A} as above be such that $\eta \subseteq \mathscr{A}$. Then $\theta(\mathcal{A}) \supseteq \mathbb{C} \backslash$ singleton\}. However, by $(++)$ and $(+++)$, $\neq\left(i d-\ln \left(G^{-1}\right)\right)(x+i y)$ does not change sign wherever x is large enough and $(x, y) \in \mathscr{A}$. Therefore $\theta(\mathbb{A}) \subseteq$ (a half plane) U (a compact subset) giving the desired contradiction.

The only remaining case is that for which $G(\mathscr{\varphi})$ is contained in the upper half plane $\mathscr{U}=\{x+i y \mathrm{y} \geq 0\}$ and η is the imaginary axis. Again by adding constants to h and G we assume that G maps $\mathscr{\varphi}$ onto \mathscr{U}. Since $\ln \left(\mathrm{G}^{-1}\right)(\mathscr{U}) \subseteq \mathbb{C}^{-}$, it follows that [Dono],

$$
\ln \left(\mathrm{G}^{-1}\right)(\mathrm{z})=\mathrm{i}\left(\alpha z+\beta+\int_{\mathbb{R}}\left(\frac{1}{(\xi-z)}-\frac{\xi}{1+\xi^{2}}\right) \mathrm{d} \tau(\xi)\right)
$$

where τ is a positive Borel measure on \mathbb{R} such that $\int_{\mathbb{R}} \frac{1}{1+\xi^{2}} d \tau(\xi)<\infty$, $\alpha \geq 0$ and β is a constant. As in the previous case, if $\mathscr{A}=\{(x+i y) \in \mathbb{C}$: $x \geq 0,|y| \leq r x\}$ for some r then $\lim _{A(x, y) \rightarrow \infty} \frac{1}{y} \int_{\mathbb{R}}\left(\frac{1}{\xi-z}-\frac{1}{1+\xi^{2}}\right) d \tau(\xi)=0$.

There $\operatorname{im}\left(i d-\ln \left(G^{-1}\right)\right)(x+i y)$ does not change sign in A when y is large enough and we have a contradiction of (+) as in the previous case since η 드

Hence the hypothesis that f has a pole at infinity leads to a contradiction. We conclude that f has a removable singularity at infinity.

Now since $\lim \ln \lambda=\lim \operatorname{Re}(f)$ exists, we have proved theorem 2.1 $x^{2}+y^{2} \rightarrow \infty \quad x^{2}+y^{2} \rightarrow \infty$
for the special case $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}=0$.
Next let us consider the case $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}>0$. Let $\alpha=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \kappa \mathrm{dA}$. We can construct $\hat{\lambda} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that $\hat{\lambda}>0$ and $\hat{\lambda}(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{\alpha}}$ on $\left(B_{r}(0)\right)^{c}$. Consider the Riemannian metric $\tilde{g}=(\tilde{\lambda})^{2}\left(d x^{2}+d y{ }^{2}\right)$, where $\tilde{\lambda}=\left(\frac{\lambda}{\lambda}\right)$. Let K, $\tilde{\mathrm{K}}$ and $\hat{\mathrm{K}}$ denote the Gaussian curvatures of $\mathrm{g}, \tilde{\mathrm{g}}$ and $\hat{\mathrm{g}}:=(\hat{\lambda})^{2}\left(\mathrm{dx} \mathrm{x}^{2}+\mathrm{dy}^{2}\right)$ respectively. Similarly, let $d A, d \tilde{A}$ and $d \hat{A}$ denote the corresponding area elements.

Note the following:
(i) $\tilde{K}=\frac{\Delta \ln \tilde{\lambda}}{2 \tilde{\lambda}}=\frac{\Delta \ln \lambda-\Delta \ln \hat{\lambda}}{2 \tilde{\lambda}}=0 \quad$ on $\left(B_{r}(0)\right)^{c}$.
(ii) $\int_{\mathbb{R}^{2}} \tilde{K} d \tilde{A}=\int_{\mathbb{R}^{2}} \Delta \ln \tilde{\lambda} d x d y=\int_{\mathbb{R}^{2}} \Delta \ln \lambda d x d y=-\int_{\mathbb{R}^{2}} \Delta \ln \hat{\lambda} \mathrm{dxdy}$

$$
=2 \pi \alpha-2 \pi \alpha=0
$$

Therefore there exists a holomorphic function $f:\left(B_{r}(0)\right)^{\mathbf{C}} \rightarrow \mathbb{C}$ such that $\ln \tilde{\lambda}=\operatorname{Re}(f)$.
(iii) \tilde{g} is complete.

Perhaps the easiest way to prove this is to prove that the assoicated topological metric \tilde{d} is complete. Since d is complete, it sufficies to show that there is a constant $a>0$ such that $d \leq a \tilde{d}$. Since

$$
\begin{array}{ll}
\tilde{\mathrm{d}}(\mathrm{x}, \mathrm{y}):= & \inf _{\sigma:[0,1] \rightarrow \mathbb{R}^{2}}^{\sigma(0)=\mathrm{x}} \\
\sigma(1)=\mathrm{y} \\
& \sigma \text { is piecewise regular }
\end{array}
$$

d), it suffices to prove that there exists a >0 such that for an arbitrary tangent vector $v \in \mathbb{R}^{2},\|v\|_{g} \leq$ allv $\| \tilde{g}$.

Let $v=\left(v_{1}, v_{2}\right) \in T_{p}\left(\mathbb{R}^{2}\right)$ i.e. written in natural coordinates of \mathbb{R}^{2}.
Then $\|v\|_{g}^{2}=\lambda^{2}(p)\left(v_{1}^{2}+v_{2}^{2}\right)=(\hat{\lambda}(p))^{2}\left(\tilde{\lambda}(p)^{2}\left(v_{1}^{2}+v_{2}^{2}\right)=(\hat{\lambda}(p))^{2}\|v\|_{g}^{2}\right.$.
But $\hat{\lambda}$ is bounded on the compact set $B_{r}(\gamma)$ and $\hat{\lambda}(x, y)=\frac{1}{\left(x^{2}+y^{2}\right)^{\alpha / 2}}$ (where $\alpha>0$) on $\left(\mathrm{B}_{\mathrm{r}}(0)\right)^{\mathrm{c}}$.

Therefore there is an $a>0$ such that $\hat{\lambda}(x, y) \leq a$ for all $(x, y) \in \mathbb{R}^{2}$ hence, $\|v\|_{g}^{2} \leq a^{2}\|v\|_{g}^{2}$ for an arbitrary tangent vector v of \mathbb{R}^{2}, thus proving the completeness of $\tilde{\mathbf{g}}$.

Now, by theorem 2.1, in the special case $\int \kappa \mathrm{dA}=0$ (already proved), f has a removable singularity at ∞.

Therefore $\lim \ln (\tilde{\lambda}(x, y))$ exists.

$$
\left(x^{2}+y^{2}\right) \rightarrow \infty
$$

But $\ln (\tilde{\lambda}(x, y))=\ln (\lambda(x, y))+\ln \left(\left(x^{2}+y^{2}\right)^{\alpha / 2}\right)$

$$
\begin{aligned}
& =\ln (\lambda(x, y))+\alpha / 2 \ln \left(x^{2}+y^{2}\right) \\
& \left.=\ln (\lambda(x, y))+\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \kappa d A\right) \ln \left(x^{2}+y^{2}\right) \text { on } \quad\left(B_{r}(0)\right)^{c}
\end{aligned}
$$

Therefore $\lim _{\left(x^{2}+y^{2}\right) \rightarrow \infty}\left(\ln (\lambda(x, y))+\left(\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \kappa d A\right) \ln \left(x^{2}+y^{2}\right)\right)$ exists, which is what we wanted to show.

The case $\int_{\mathbb{R}^{2}} \kappa \mathrm{dA}<0$ is the only remaining case.
Let $\alpha=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \kappa \mathrm{dA}$ and let $\tilde{\lambda}=\hat{\lambda} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ where $\hat{\lambda}$ is as in the
previous case. As before $\int_{\mathbb{R}^{2}} \Delta(\ln \tilde{\lambda}) d x d y=0$; hence, $\ln (\tilde{\lambda})=\operatorname{Re}(f)$ on $\left(B_{r}(0)\right)^{c}$ for some holomorphic map $f:\left(B_{r}(0)\right)^{c} \rightarrow \mathbb{R}^{2}$. We will prove that f has a removable singularity at ∞ so that the proof follows as in the previous case. However we cannot prove the completeness of $(\tilde{\lambda})^{-2}\left(d x^{2}+\mathrm{dy}^{2}\right)$ directly in this case.

Consider the case that d is an integer. Then $|\lambda|=|\underset{\lambda}{\underset{\lambda}{\lambda}}|=r^{\alpha}\left|e^{f(z)}\right|$ on $\left(B_{r}(0)\right)^{c}$, where $r=\sqrt{x^{2}+y^{2}}=|z|^{\alpha}\left|e^{f(z)}\right|$.

The proof proceeds as in the case $\int \kappa \mathrm{dA}=0$ and we contradict the supposition that $f(z)$ has a nonremovable singularity at ∞.

If α is not an integer, then $|\lambda|=|z|^{\alpha}\left|e^{f(z)}\right|$ on $\left(B_{r}(0)\right)^{c}$.
Suppose that $f(z)$ has a nonremovable singularity at infinity. Then $e^{f(z)}$ has an essential singularity at infinity. Let $e^{f(z)}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ be the Laurent expansion of $e^{f(z)}$ at infinity. Let $h(z)=$
$\sum_{n=-\infty}^{\infty} \frac{a_{n}}{n+1+\alpha} z^{n+1+k}$, where $k \in \mathbb{N}$ and $k>\alpha$. Clearly $h(z)$ converges on compact subsets of $\left(B_{r}(0)\right)^{c}$ and hence defines a holomorphic function on $\left(B_{r}(0)\right)^{c}$. Also, since $a_{n} \neq 0$ for infinitely many positive $n, h(z)$ has an essential singularity at infinity. Let σ_{0} be a Julia geodesic of h with respect to the Riemannian metric g. Let v be a geodesic which separates \mathbb{R}^{2} into two components such that on one component, say $\mathscr{K}, \sigma_{0} \subset \mathscr{K}$. Since \mathscr{R} is simply connected and $0 \notin \mathscr{K}, z \nrightarrow z^{\alpha} e^{f(z)}$ is a well defined holomorphic function on \mathscr{F}, and so is

$$
F(z)=\int z^{\alpha} e^{f(z)} d z=\sum_{n=-\infty}^{\infty} \frac{a_{n} z^{n+1+\alpha}}{n+1+\alpha} \text { on } \mathscr{H} .
$$

Also $\left|F^{\prime}(z)\right|=\left|z^{\alpha} f(z)\right|=|\lambda(z)|$; hence F maps geodesics on \mathscr{K} to straight lines. Therefore F maps \mathscr{F} injectively onto a half plane.

Let A be a small geodesic sector containing σ_{0}. By removing a compact subset of A we can ensure that

$$
F(\mathbb{A}) \subset\{z \in \mathbb{C}:|z| \geq a\} \text { for some } a>0
$$

Then

$$
|h(z)|=z^{k-\alpha} F(z) \geq r^{k-\alpha} a \geq a \quad \text { for all } z \in \mathscr{A}
$$

contradicting the fact that $h(\mathbb{A}) \supset \mathbb{C} \backslash$ singleton\}.
This proves Theorem 2.1 for $\mathscr{U}=\mathbb{R}^{2}$.

Now we will prove that $थ$ is necessarily equal to \mathbb{R}^{2}. Assume the contrary: i.e., $\mathscr{U}=\mathrm{B}_{1}(0)$. In the following, we continue to use $\mathrm{B}_{\mathrm{a}}(\mathrm{p})$ to denote the ball of radius a and center p determined by the Euclidean metric, while $\mathscr{F}_{a}(p)$ will be the ball of radius a and center p determined by the metric g. We denote the boundary of $\mathscr{F}_{a}(p)$ by $\mathscr{\varphi}_{a}(p)$ and the boundary of $B_{a}(p)$ by $S_{a}(p)$.

Let $\hat{\lambda}: u \rightarrow(0, \infty)$ be a smooth function such that $\hat{\lambda}(x, y)=\frac{1}{x^{2}+y^{2}}$ on on $B_{r}(0)$. Let $\alpha=\int \kappa d A$ and $\hat{\lambda}:=\lambda(\hat{\lambda})^{-\alpha / 2 \pi}$. Since $\hat{\lambda}$ is positive and bounded above and below on $थ$, it follows that $\tilde{g}:=(\tilde{\lambda})^{-2}\left(d x^{2}+d y^{2}\right)$ is also a complete metric and \tilde{g} has Gaussian curvature $\tilde{\kappa}$ with support in $B_{r}(0)$. It is easily seen that $\tilde{\mathbf{g}}$ has the property that the integral of the Gaussian curvature of \tilde{g} is zero. Now replace λ by $\tilde{\lambda}$ and define g : $=(\lambda)^{-2}\left(d x^{2}\right.$ $+d y^{2}$). Let $f: Q N B_{r}(0) \rightarrow \mathbb{C}$ be a holomorphic function such that
$\operatorname{In} X=\operatorname{Re}(f)$.

Case 1: $\quad e^{f_{i v}^{f} \prime \prime} d z=0$.

$$
S_{r}
$$

In this case let $F: O U \backslash \underset{F}{ }(0) \rightarrow>C$ be a holomorphic function such that $F^{\prime}(z)=e^{f(z)}$. Since $|x|=\left|F^{\prime}(z)\right|$, it follows that $F^{*}\left(d x^{2}+d y^{2}\right)=$ $\begin{array}{lll}-2 & 2\end{array}$

X ($d x+d y$). In particular, F maps geodesies of g onto straight lines and the lengths are preserved. It follows $F(z) \rightarrow \infty \gg$ as $z \rightarrow d^{\circ} U$ but this is not possible since this implies that $F=>$ on $\langle K| B(0)$.

Case 2: $\int_{\mathrm{S}_{\mathbf{r}}} e^{f} \wedge \mathrm{dz} * 0$.

Let $F:\left\langle W B_{r}(0) \rightarrow C\right.$ be a holomorphic function such that $F^{\prime}(z)=e^{\prime} \wedge^{\prime}+$ $f i / z$. We will show that $F(z)$ is unbounded in $\left\langle V \backslash_{r}(0)\right.$. If $p \in S_{r}$, let a 00 be the radial line through p and let o meet S_{1}^{-}at q. Let $\left\{x^{n}\right\}^{n-1}$ be a sequence of points on a in $\langle\hat{W}| \vec{r}(0)$ which converge to q. The (n ${ }_{n=1}^{00}$
completeness of g implies that $\{d(p, x)\}$. is unbounded where d is the topological metric associated with g. Let C be the diameter of $B(0)$ with respect to d. clearly $c \lll$. Now suppose $L<\infty$ is such that $|F(z)|<L$
 Clearly $9 \mathrm{~L},(\mathrm{y}) \mathrm{fl} \mathrm{B}(0)=0$. yL . (y) meets a at one or more points between y and q. Let z be the point on $a f l t f^{\wedge}(y)$ which is between y and q and such that $(y, z) \in S L,(y) \cdot$ If u is a geodesic with respect to g in 9 $\boldsymbol{\alpha}_{3 L}(y)$ joining y to z, then

$$
\begin{aligned}
F(z)-F(y) & =\int_{\mu} F^{\prime}(\omega) d \omega=\int_{\mu}\left(e^{f(\omega)}+\frac{\beta}{\omega}\right) d \omega \\
& =\int_{\mu} e^{f(\omega)} d \omega+\int_{\hat{\sigma}} \frac{\beta}{\omega} d \omega
\end{aligned}
$$

where $\hat{\sigma}$ denotes the portion of σ which is between y and z.
But $\int_{\mu} e^{f(\omega)} d \omega=3 L$, since this is the length of μ and $\int_{\hat{\sigma}} \frac{\beta}{\omega}=\beta\{\ln |z|$
$-\ln |y|\}$. So

$$
\left|\int_{\hat{\sigma}} \frac{\beta}{\omega} \mathrm{d} \omega\right|<|\beta| \ln \left(\frac{1}{\mathrm{r}}\right)
$$

By increasing L, if necessary we ensure that $L>|\beta| \ln \left(\frac{1}{r}\right)$. Then $|F(z)-F(g)|>2 L$, which contradicts the assumption that $|F|<L$. Thus F is unbounded on $\mathscr{Q} \mathrm{B}_{\mathrm{r}}(0)$. Since $\lim _{z \rightarrow \partial \mathscr{}} F(z) \neq \infty$ (since that implies that $F \equiv \infty), F$ has a Julia geodesic. But the argument used in the case $\int_{\mathbb{R}^{2}} \kappa d A$ $=0$ for $\mathscr{U}=\mathbb{R}^{2}$ now applies, and we get a contradiction. Therefore $\mathscr{U}=\mathbb{R}^{2}$. This completes the proof of Theorem 2.2.

Proof of Corollary 2.2: It follows from Theorem 2.1 that if g is complete, then there exists a constant $a>0$ such that $\lambda\left(\sqrt{x^{2}+y^{2}}\right) \geq \frac{1}{a}$.

Let $\bar{\lambda}$ be a C^{∞} function such that $\bar{\lambda}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ for $x^{2}+y^{2} \geq r^{2}$. Then it is easy to verify that $\bar{g}:=(\bar{\lambda})^{-2}\left(d x^{2}+d y^{2}\right)$ is complete. Let $\overline{\mathrm{d}}$ be the topological metric corresponding to $\overline{\mathrm{g}}$. By making a smaller,
if necessary, we conclude that $g \geq a \bar{a}$. Let $t \in[0,1] . \lambda^{t} \sqrt{x^{2}+y^{2}} \geq$ $\left(\frac{1}{a}\right)^{t}$ for $x^{2}=y^{2} \geq r^{2}$; then $\lambda^{-2 t}\left(d x^{2}+d y^{2}\right) \geq a^{t} \bar{g}$. But since \bar{g} is complete, $\lambda^{-2 t}\left(d x^{2}+d y^{2}\right)$ is complete.

> Q.E.D.

References

[Sa] S. Samelson, Global Tchebychev nets on two dimensional Riemannian surfaces with compactly supported Gauss curvature, under preparation.
[BT] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer Verlag, 1985.
[Hi] M.W. Hirsch, Differential Topology, Springer Verlag, 1983.

