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Complete Isothermal Riemannian Metrics on WT having
Compactly Supported Gaussian Curvature

2
Abstract: We consider a smooth Riemannian metric G on K which is assumed

to be complete and has compactly supported Gaussian curvature. Using the

uniformization theorem one can produce an isometry from (K ,G) onto (̂ .g)

where <W is either the open unit ball of K or K itself and g is an

—2 2 2isothermal Riemannian metric, i.e., g = X (dx + dy ) where X is a positive

real valued smooth function. We will prove that °U is necessarily equal to

K and the behavior of X at infinity is determined by the integral of the

2
Gaussian curvature of G on R . In particular if this integral is zero then

X is continuous at infinity and bounded away from zero.



1. Introduction:

We will consider a smooth Riexnannian metric G on R , which is assumed

to be complete and has compactly supported Gaussian curvature. By using the

Uniformization theorem we obtain an isometry from (IK ,G) onto

(<*, g = X~2(dx2 + dy2)) where « is either the unit open ball or all of R 2

00

and X is a positive real valued C -function.

We then will show that the hypotheses on (R ,G) imply that < is

necessarily equal to R and that the behavior of X at infinity is

determined by the integral of the Gaussian curvature K of G (equivalently

the integral of the Gaussian curvature K of g). More precisely we will

prove that,

lim ln(X) + (-L f *dA)ln(x2 + y2)
(x.y)H« 4ir JR2

exists and that

I KdA

R2

is necessarily less than or equal to 2ir. Here dA denotes the Riemannian

area element of G.

A consequence of the theorem will be that it allows one to produce a

homotopy from a given complete Riemannian metric with compactly supported

Gaussian curvature to one which is isometric to the Euclidean metric while

preserving the completeness and the support of the Gaussian curvature of each

Riemannian metric along the path. We use this fact in [Sa]



First let us consider an example.

1.1 Example

~ 1 2 2 M r

X(x,y) = - for x + y > 1 and a positive C -function on IR[_ __

NX + V

It is easy to show that fcdA = 2?r.

V
To show that we consider the map

IR3

.̂y) := ( X . y , i In (x2 + y2))
f~2 2 f~2 2
NX + V NX + V

where B- (0) denotes the ball of radius 1 on IR . Clearly this map is an

isometry onto the cylinder induced from the Euclidean metric in the ambient

3 2 2
space K . The curve x + y = 4 is mapped to the geodesic (u1 ,u^, ln(2)):
2 2
u1 + Up = 1} on the cylinder and hence the original curve itself must be a

geodesic which is closed. Thus by the Gauss Bennett Theorem we obtain

I »cdA = I icdA = 2TT.
IR2 B2(0)

—2 2 2 ~ OL
Now we consider the Riemannian metric X (dx + dy ) where X = (X) for

some a € K. Then for this Riemannian metric,

I icdA = I A (In Xa)dxdy = a \ A(ln X)dxdy = 2rra.

V V V

Thus for this class of metrics we see that



1 r 9 2
lim In X + (j- »cdA)ln(x + y )

(x,y)-**> ™ J p 2

exists.

Our objective is to show the existence of this limit for all complete

isothermal metrics with compactly supported Gauss curvature.

A consequence of this result is that for a Riemannian metric

-2 2 2
X (dx + dy ) of the type considered here, the associated Riemannian metric
-2t 2 2

X (dx + dy ) for 0 < t < 1 is complete also.

2. Main results:

2.1 Theorem: Suppose that G is a complete Riemannian metric on R such

that its Gaussian curvature K is compactly supported. Then there

exists an isometry from (K ,G) onto (IR , (g = X" (dx + dy )) where X

is a positive C -function on IR and the following are satisfied:

(a) lim ln(X(x,y)) + x~ ( | *odA) ln(x2 + y2) exists, and
i*.y; R^

icdA < 2TT,

where dA denotes the Riemannian area element associated to G.

2.2 Corollary: Suppose that G, g, and X are as in Theorem 2.1. Then for

~"2t Q 2
all t € [0,1], the Riemannian metric X (dx + dy ) is complete.

In the remainder of the paper we will prove these results. In section 3,

we will state some facts which are probably already known; however, we will

provide the proofs for completeness. In section 4 we will develop the

principal technique for the proofs of the main results. We will generalize



the well-known results of Julia on the existence of a Julia ray of a

holomorphic function around an essential singularity. Essentially we will

replace the term "ray" with "geodesic". The main results will be proved in

section 5.

3. Preliminaries:

Let K denote either R or the unit open disk.

In this section we consider a complete Riemannian metric

—2 2 2
g = X (dx + dy ) on ^ and assume that the Gaussian curvature K has

compact support and that icdA < 0 (we will drop this assumption in section

5). To fix notation, assume that supp(ie) C B (0) (Euclidean ball) for some

r > 0. The goal of this section is to prove some preliminary results which

are useful later on. These results are probably valid in a much more general

setting, and at least the first one is well-known. For the sake of

completeness we present the proofs.

We assume that geodesies are parameterized by arclength. The topological

metric induced by the Riemannian metric g is denoted by d and is complete

by the Hopf-Renow Theorem.

Note that since g is isothermal, angles between tangent vectors

measured with respect to the Euclidean metric agree with angles measured with

respect to g. Thus notions such as orthogonality are unambigous. All

magnitudes and inner products of tangent vectors are with respect to g

unless it is written IhlL or <#.*>o' ln w h i c h c a s e t h e quantities are with

respect to the Euclidean metric of R .

Lenma 3.1 There is a point p € dB (0) such that the geodesic a: R -* %

defined by cr(O) = p and a(0) = T̂ -TT has the property that

a(t) € Cl(Br(O)) for every t > 0.



Proof: Suppose not. For q € 3B (0) denote by a q the geodesic defined by

aq(0) = q and <jq(0) = ^jp Let 6 > 0 and r > 0 be such that for all

q € 3Br(0) a
q(t) € dB^q) for t € (0,T) and d(aq(-r), 3Br(0)) > 6. Assume

without loss of generality that 6 < T. By the hypothesis, for every

q € dB (0) there exists s > 0 such that aq(s) € dB (0). It follows that

s > T. Now by the continuity of crq(t) on t and q, we can find T > T

such that for every q € dB (0) there exists t € [T, T ] such that aq(t) € 1

where f: = {p € K : d(p, dB (0)) < 6}. Let x € <H be given. Since the

Riemannian metric is complete find y € SB (0) such that d(x,y) > d(x,q) for

every q € dB (0). Let t = d(x,y). (Then x = o^tx)). We claim that

t < T. Assume otherwise. Let t € [T, T ] be such that oy(t) € f. Let

q € dB (0) be such that dfa.o^t)) < 6. Then d(q,x) < d(q, o^t)) +

d(c7y(t),c7y(t )) < 5 + (t - t) < 5 + (t - T ) < t which contradicts the

definition of the point y; that is, y is not the closest point to x on

dBr(0). But since T is fixed and x is arbitrary, it follows that <W is

bounded with respect to d which violates the completeness of d.

3.2: Let a : R -* ̂  be a geodesic such that cr(t) € C1(B (0)) for

every t > 0. Then there exists T > 0 such that for every t > T, the

geodesic v: IR -* °U defined by u(0) = a(t) and v(0) 1 a(t) never enters

Br(0).

Proof: For t > 0, let D*: K -» IR denote the geodesic defined by ut(0) =

a(t) and v (0) 1 a(t). (When we write a l b we will always assume that

(a,b) is positively oriented).

Now we only need to prove that there exists tQ > 0 such that v does

not enter B r(0), since then v is an infinite geodesic which lies entirely



c Z0

in (Br(0)) on which K = 0. Thus v does not intersect with itself.

Then v separates <W into two connected components of which on one K = 0.

(Denote this component by #). Hence cr[to,«>) fi v (K) = {a(t0)}, since
t0 c

otherwise we have a geodesic triangle formed by a and i> in (B (0))

such that the sum of the interior angles is greater than TT, thus violating

the Gauss Bonnet Theorem. Now cr(t̂ ,«>) C # and using the same reasoning as

above, i> (K) C 9fc for every t > tft and therefore v does not enter B (0)

for every t > t~.

Suppose now that v intersects B (0) for every t > 0. We show that

this leads to a contradiction.

Define T: (0,«>) -» (0,«>) as the smallest value T(t) such that

Dt(T(t)) € d Br(0). Note that if tj.tg > 0, Tj.Tg > 0 are such that
tl *2

v (r.) = v (T^) then the Gauss Bonnet Theorem asserts that

h *2
v [ O . T ^ fl a B (0) * 0 or that v [ 0 , T O ] fl d B (0) * 0 . Therefore

Pr#\
: C0-00) "* 9 B (0); p = D (T(t)) is monotone on d B (0) and one to one.

CO

Let {t } - be an increasing sequence of positive real numbers such

that

(i) t -> » as n -» °>,

(ii) lim p exists (lim p t = p € 3 Br(0)), and
n*» n n*» n

t

n n-*» n
t t

(iii) lim v n(T(t )) exists (lim v n(T(t )) = v).
n n900

Let a,/3: R -> W be geodesies defined by

(a) a(0) = 0(0) = p,

(b) a(0) = -v, and

(c) v 1 0(0).



Let e > 0 be such that P(-e.fc) C (Br/2(0))
c. (Note that

supp (K) CB r / 2(0)).

t
By continuity |5(-e.e) fi i) n [O,T(t )] / 0 for all large n. Without loss of

CO

generality assume that this is true for all n. Let {s
n}n==1

 c (~e»e) and

{6n € [O.T(tn)]}~=1 be defined by jS(sn) = v
 n(9 n).

Fig 1
Let n > m and consider the geodesic parallelogram with sides a[t ,t ],

t t
v n [0,9 ], /5[s ,s ] and v m[0,9 ] as shown in Fig 1. Since thisn n mJ "* mJ

parallelogram bounds a region on which K = 0 and since the interior angles

at a(t ) and a(t ) are both ir/2, it follows that the angle between v n(9n)

#t
and J3(s ) is equal to the angle between i> m(0 ) and P(s ). But sincen m m

t
this sequence of angles converges to ir/2, it follows that D and P meet

orthogonally for all n.

Now let n > m be given. Consider the family of geodesies

u9: [t ,t ] -•«, 9 € [0,9 ], uG(t ) = v m(9) and u°(t ) ± v m(9). It ism n m m m
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easily seen that u6(tn) = D
 n(G) for every 9 and U G(T) H V n[0,9 ] = 0 for

9 t
T € [tm.tn). In particular it follows that u m(-r) D v n[O,0 ] = 0 for every

T € [t ,t ].L m nJ

Thus t - t < 2e. But this is a contradiction because {t, } -» « asn m * kJ

Note that instead of working with a family of geodescis {u } which are

orthogonal to a, we can work with a family which makes a certain fixed angle

with a and obtain the same conclusion. We stated this as a lemma.

3.3: Let a: R -* <W be a geodesic such that a(t) C C1(B (0)) for

every t > 0. Let a € (-TT.TT). Then there exists T > 0 such

that for all t £ T, the geodesic i>: R -» 4 defined by D(0) = a(t) and

D(0) makes an angle a to a(t) never enters B (0).

Let v be a geodesic as in the conclusion of lemma 3.2 or 3.3. Then v

separates V into two connected components and v is an infinite geodesic.

Therefore there exists T > 0 such that u(t) C B (0) for every t > T and

thus we may produce a geodesic which makes a desired angle to D such that

this new geodesic never enters B (0). Moreover, two such geodesies can be

constructed as in Figure 2 below such that K is separated into six

connected components and B (0) is contained in one of these components.

f\G



Next we construct a geodesic polygon enclosing B (0) such that none of

the boundary geodesies enter B (0). We will assume that icdA < 0. If 2
r J ^

is a geodesic n-gon, then by the Gauss Bonnet theorem ,

(n-2)ir + icdA = sum of the interiror angles of 9L

Since we wish to enclose B (0), we pick an n-gon with interior angles

a € (ir/4,Tr/2) such that

(n-2)Tr + I icdA = na.
2ft

Now construct n-geodesics as follows:

Start with any infinite geodesic v^: K -> <M such that v^ separates °U into

two components such that B (0) is in one of the components (existence follows

from lemma 3.2). Let T. be large enough that for all t > T- a geodesic

through i>-i(t) which makes a positively oriented angle a to D- will never

enter B (0). Let D O be such a geodesic through D1(T1). NOW start with

vo and repeat the construction to obtain uo, and so on, to obtain geodesies

n

3.4: D intersects i>1 and v1 does not intersect Dn if
n 1 k 1

1 < k < n.



Tig 3



10

The second assertion follows trivially since otherwise the Gauss Bonnet

theorem is violated.

We need to prove that u intersects IK. Let pi denote the point of

intersection of v. and ».+1- Let 17: [0,1] -» <tt be a regular curve such

that 17(0) = p -, TJ(1) = p-, 17 does not intersect with itself, 17 intersects

v at p - only, 77 intersects D- at p- only and 17 and

vo,i>~, . . . ,i> - form a polygon containing B (0). Such a curve can be
£ o . n J. r

constructed easily. If i>- intersects v we already have such a curve.

Otherwise the piecewise geodesic curve formed by i>-,...,i> is such that

C1(B (0)) is contained in one of the connected components of ^ created by it

and since this component is diffeomorphic to ^ and K = 0, we have an

isometry from that connected component to an open subset of R with the

Euclidean metric.

Now approximate 17 by a piecewise geodesic curve f: [O.SL] -» < for

a > 0. This approximation can be done, for example, using the existence of

geodesically convex neighborhoods of arbitrary points (cf [Mil]).

Our approximation is done such that f does not intersect itself or any

of the v. that i>- does not meet and such that f PI v =p ,, f fi u. =p..

Suppose that f has corners at 0 < t. < .. . < t, = a. Let Q. = f(t.), 1 <

j < k.

Fig 4
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Consider the geodesic polygon G with corners at p1 P _i • Qi Qu-

Let the interior angles at Pn_jj. Qj.....^ be ^ Q ^ I * " * ' *\9 r e sP e c t i v e ly-

Since G encloses Br(0), by Gauss Bonnet we obtain,

(n-2)a + TrQ + ... + y = icdA + (n+k - 3)TT.

iR2

since na = icdA + (n-2)7r, we obtain

R2

^0 + •• + ^ k ~ 2a = (k-l)Tr. (1)

Consider the unit tangent vector v to v at p - and parallel

transport it along f to obtain a field v(t), t € [0,1]. By equation (1) it

follows that v(l) makes an angle (ir-a) with v^ at (X. Let o' [0,€) -» <W

be the geodesic such that a(0) = Q, and a(0) = v(l). Then since a(0)

points into the flat side flL of D., it follows that a[0,«>) C R

2 _

Therefore D , f 1 and a separate R such that on one side *c = 0. Denote

this side by 95. Since # is simply connected, absolute parallelism is

defined on Si.

Let X be a vector field on 9fc obtained by parallel transporting v on

# and let Y be the unit vector field orthogonal to X on # such that

(X,Y) is positively oriented.
V

Start from t = 0 and increase t. If at some t ̂  0, ^ (f(t)) € f[0,a]
v

(where r is in the domain of definition of 4>,#^(f(t)) replace the portion

of f between f(t) and *^(f(t)) by tf#^(f(t)). The curve obtained after

this modification will also be denoted by f. Note that f is a piecewise

geodesic curve.
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Now at all t € [0,a], fCt*) are either tangential to X or

is positively oriented. Hence for all t € [0,a], **(?(t)) is defined

for all T > 0 and 94 = (**(f(t)); T > 0; t € [0,a]}.

Since A(ln X)) = 0 on 94, there exists a holomorphic function f: 94 -» C

such that 94e(f) = ~ In X (we now identify IR with <D). Let \f>: 94 -> C be a

£

holomorphic function such that ^'(z) = e (z) for all z € $. Then

|x//'(z)|2 = X2(z) for all z € 94 and then g = x//*(dx2 + dy 2). Thus ^ maps

2
goedesics in 94 into straight lines in IR . After a suitable rotation of

IR , we assume that ^ maps v to the positive real axis. \/>°f is a

piecewise linear curve such that each piece is either horizontal or slanted

downwards. Also \|/oy(t) = ^— for all t € [0,a]. In particular \//oa is

parallel to the positive real axis. Since 94 = {<f> (f (t)): r > 0, t € [0,a]}

and since \pog does not intersect itself (since it always points downward),

it follows that \p is one to one. Hence yp: 94 -» >K#) is an isometry where

2
is a region in IR bounded by two horizontal lines and a piecewise

linear curve between them. Now t » >// o V^(-T) is a straight line which is

positively inclined to the horizontal direction by a and thus it meets

>// o v making an angle a. Therefore v and v~ meet at an angle a.

4. Julia geodesies for holomorphic functions with essential singularities at

infinity.

The purpose of this section is to generalize the following theorem due to

Julia [Hil]. This generalization provides the key to the proof of our main

result.

Theorem 4.1 [Hil]. Let f: <C\Br(O) -» C be a holomorphic function which has

an essential singularity at infinity. Then there is 8 Q such that for
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each 6 > 0 and each R > r, f *(«) fl {z = |z|e10: |z| > R, 0 € (QQ - 6,

eQ + 6) contains infinitely many points for all w € C with the possible

exception of one point.

16
Definition 4.2 [Hil]: The ray {z = |z|e : |z| > R} is called a Julia ray.

Definition 4.3 [Hil]: Let f: V -» C be a holomorphic function where V is

an open subset of <D. Then z € C is called a Lacunary point for f if

z € f(V).

In the sequel we shall show that if icdA < 0 and g is complete,

V
then one can define a Julia geodesic of g, and a corresponding theorem to

theorem 4.1 holds once we replace rays by radial geodesies of g.

Definition 4.4: A semi-infinite geodesic means a I where o- R -» <% is

a geodesic which does not meet C1(B (0)).

Definition 4.5: Two semi-infinite geodesies a- and a^ are parallel if for

all t large enough, the orthogonal geodesic to a^ at cr-(t) (which

does not enter C1(B (0)) by lemma 2.3) meets ao\ orthogonally.
r TO,00)

Definition 4.6: A geodesic sector containing a semi-infinite geodesic a

means a region bounded by two intersecting semi-infinite geodesies a-

and cu which are not parallel to each other or to a, and such that

a[0,0(>) is contained in the region.



Fig 5

Definition 4.7: Let h: *\B (0) -> C be a holomorphic function such that

lim h(z) * », but there exists a sequence {z^} converging to zQ € 311

such that lim h(z ) = «. A semi-infinite geodesic a is a Julia

geodesic for h if it has the following property:

Let 91 be any geodesic sector containing a. Then hi has at most one

Lacunary point.

Consider the following special case which motivates definition 4.6 in

particular and this section In general.

Suppose that F: C\Ba(O) -> C (a > 0) is a one to one holooorphic nap such

that F has a simple pole at infinity. Let X(z) s | ~ F(z) |. Extend X

smoothly to tC such that X(z) > 0 for all z. Consider the Riemannian

•2 2 2
metric g = X (dx + dy ). It is clear that F maps geodescis of g to

straight lines. Thus if h: C\B (0) -> C is a holomorphic map which has an

essential singularity, then h°F~ has an essential singularity at infinity

and hence it has a Julia ray 17. Then F~ ° 17 Is a Julia geodesic of g.

Unfortunately even when I xdA « 0 and supp(ic) is compact, it does

V



not follow that X(z) = |^ F(z) | for some holomorphic function defined on

(Br(0))
c (even though it holds on any simply connected open set).

Theorem 4.6: Let h: «\(Br(0)) -> C be a holomorphic nap such that

lim h(z) j£ », but there exists a sequence (z ) converging to z C W
Z-H3* n

with lim h(z ) = ». Suppose that g is complete and

icdA £ 0. Then there exists a Julia geodesic.

V

Proof: Let n € M and a € (£, £] be such that (n-2)w m

Let D be geodesies which do not enter B (0) and which form the

sides of a closed n-gon as in the previous section.

Fig 6

p. separates V into two connected components. Let 9L be the

component on which ic & 0. Consider the «ap + : £0.«) x R -» * defined by

^(O.tg): « »i(t2) and
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This map is a diffeomorphism and \p. when considered as a complex map is

holomorphic.

Now let aQy [0,«>) 4<|, 9 C [-TT/2, TT/2] be a family of semi-infinite

geodesies defined by,

c M t ) = ^-(t cos 9, t sin 9).

Since a € (0, 7T/2] it follows that

i)2(K) ± <f> for all 9 > ir/2.

Since both >/>- and ^ map straight lines to geodesies, \f>p o >/>.."•
-I -I -| C\

yp^ (#- fl 9L) -* \̂ 2 (9L fl 9L)
 i s a linear map. Therefore { ^ (cr-):

2
9 € (O.TT/2]} is a family of straight lines eminating from a point p^ € IR .

fl P
Define the family of geodescis a'- K -> K , 0 € (~02l

f022^ f o r s u i t a b l e

9 2 r G 2 2 € ^ - ^ b y

: = * 2(p 2 + (t cos 9, t sin 9))

for which the right hand side is defined, which occurs when the second

coordinate of p^ + (t cos 9, t sin 9) is nonnegative.

The following facts are extremely important.

61 9 2 61 02
Fact 1: If a. [0,«°) 0 o* [0,«>) * <f>, then a. and o^ are the same

geodesic (including the parametrization).

Fact 2: The curves p,^. (-TT/2.TT/2] ̂  R 2 and ]x^. (-9^,0^) ^ ^ defined

by



n+l

Fig 8
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aj(a) and ̂

are such that their images coincide on 9L (1 9L whenever a is large enough.

Now using the family {a~} and ^ define p~ € R and a family of

geodesies {a~} such that {>// (cr~)} eminates from p^ and the family {Vcfi}

and {a~} agree on 3L (1 UL. Continue this way to produce families of

0 2
geodesies {<*.}.- o and points {p.}.^ o in R . After

0 B
reindexing the families we may assume that if a.[b,<») and <7.+1[b,«>) both lie

0 0
in 91. (1 9L 1 for some b, then o. \ = a. 1 i . Henceforth we will

1 X l ^[ba)) 1 + I |
[) [)

0 ^
drop the subscript i from a.. Let the range of p be [-TT/2,0]

(0 € (-TT/2,«>)). Whenever a is large enough we can define a curve

u [-TT/2,0] -><« by jxa(0) = a9(a).

J
The difficulty is that p. need not be a closed curve (even when

KdA = 0).

Consider the family of curves T : [-ir/2,0] -> ̂  defined by

k e
n

nr (0) = )LX (0), n € IN and k is a positive number to be determined. Note

that ^n(0) € #. when 0 is small and when 0 is large. When 0 is large,

8»+ j ° ^ ( 6 ) is a family of concentric arcs, each with center at some

€ «•

It is clear that p . is independent of k, and if k is large enough,

xf/j (nrn) and ^ C*n+1) do not intersect. Fix k at such a value. Let d : =

{ae(t): 0 € [-TT/2,0], ke11 < t < ke n + 1}. By the above there exists a closed

curve s € si which does not meet nr or nr

n n n n+1
Now let ^ = {z € C: Re(z) > In k, Im(z) € [ -TT/2 ,0 ] } and le t ^



17a.

overlap

Fig 7
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{z € #: n + ln(k) < 9te(z) < (n+1) + Ink}. Let H: 91 -» C be H(x + iy) =

h(oy(exp x)). Clearly (x + iy) » cr^exp x) is holomorphic and hence H is

holomorphic. Let H : 9L -> C be Hn(x + iy) = H(n + x + iy).

Consider the family of holomorphic functions {H : int(9L) -» ̂ ^e^- We

claim that this is not a normal family of meromorphic functions. Suppose that

it is.

00

}
00

Case 1: There exists a subsequence of {H } (say {H } v i) converging to some
n i^ k-1

f: 9L -» C which is holomorphic on int(9L).

Let e > 0 be small enough such that (after possibly redefining it), s

is in {aG(t): - TT/2 + e < y < 6 - e, ke e + n < t < (k+l)en+1"e>. Let S Q = {x +

iy € 91 : e + n + In k < x < (n+1) + In k-e; -TT/2 + e < y < 9 - e } . then f |

is bounded; say |f | | < M. Then whenever k is large enough |H | < M.

By the definition of {H } it follows that |h| | < M whenever k is
n s

"k

large enough. But now by the Maximum modulus theorem, h is bounded in a

neighborhood of infinity, contradicting the fact that h has an essential

singularity at infinity.

vO

Case 2: There exists a subsequence {H }, 1 of {H } converging to infinity on

co

}
1 co

. Then {TJ—}** converges to zero on 9L ; as in case 1, this
\ '

implies that {^) is bounded in a neighborhood of infinity, yielding a

contradiction.
00

We have proved that {H } - is not a normal family; and therefore, there
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exists z € int(9L) such that for an arbitrary neighborhood D of z Q in

and arbitrary k € IN, U H (D) is either C or the complement of a
i nn=k

singleton [Hil], Now let z Q = x Q + iyQ and consider the semi-infinite

y0
geodesic ° \ . W e claim that it is a Julia geodesic. Let 1 < j < n

v v
be such that a C SL. Let si be a geodesic sector containing a L .

for some a. .

By making the sector smaller if necessary we may assume that si C #..
j

Since si is bounded by semi-infinite geodesies it follows that yjT. (si) is a
J

•y

sector in K bounded by two straight lines and it contains >//. o a I

La» )
Moreover, by the definition of a geodesic sector (definition 4.5) neither of

—1 — 1 y0
the straight lines bounding \p. (si) are parallel to >//. a . It is clear

J J
0

when e is small and b is large, the set Q = {a (t): 0 < (yo~^.yQ+^)»

t > b} is contained in si, since \p. maps such a set into >//. (si) when e
j «i

and r- are small enough. Consider the set B. = {x + iy € 9L : y € (yQ - e,

y^ + fc)}. Let D be a neighborhood of z^ in B1 , of the form D = (x^ - 6,

x n + 6) x (yn - e, y n + e). Let £ € IN be such that £ + ln(k) >

Then

00 00 00

U H (D) = U H(EH-n) = U ^((/(exp x)): n + xn - 6 < x

6 + n; y Q - e < yQ < yQ + e} C

Hence h(Q) contains the complement of a singleton. Since Q C si it follows

y0
a is a Julia geodesic.
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5. Proof of the Main Theorem:

2
First let us assume that °ll = IR .

Let us first consider the special case when icdA = 0.

V
On (B (0))C, In X is a harmonic function, since K = - * v ^ /x/. Since

Aln X dxdy = icdA = 0, there is a holomorphic function

Br(0) R 2

f: (Br(0))
C -* C such that In X = Re(f). We claim that f has a removable

singularity at <». So suppose not. Then e has an essential singularity at

CO

<*>. E x p a n d e i n t e r m s o f t h e L a u r e n t ' s s e r i e s a t 0 0 : e ^ ^ = 2 a z ,
n==-co n

where a ^ 0 for inf ini te ly many n > 0. Define
00 a 1

h(z): = 2 j ^ z 1 1 . Note that h: (B r(0))C -* C i s holomorphic and has an
n=-oo

essential singularity at <».

y 0
Let o~ = o be a Julia geodesic for h and suppose that OrJO,™) lies

on 3fc. corresponding to the geodesic v.9 as in section 4. Let us drop the

subscript i in #., i>., and >J/.. Since 9fc is simply connected, the map

F : =

is well-defined.

Furthermore, since |̂ - (J ef^z^dz)| = | e f ^ \ =X(z), it follows that F

maps geodesies to straight lines and is one-to-one onto some half plane.

Since & is simply connected, define In z on & by fixing Im(ln(cro(O))) €

[0,2ir). Now

F(z) = a_1ln(z) + h(z) on & (*)
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Case 1: Suppose that a . = 0 .

In this case F(z) = h(z). But F maps Sk into a half plane thus

contradicting the fact that h maps arbitrary geodesic sectors of on\

in $ onto C or <C\{singleton}.

Case 2: Suppose that a t ? 0. Denote F by G. Then
1 a

G - ln(z) = — h(z) on 9L (**)

Note that G o v is not necessarily a horizontal or vertical line;

however, G(#) is a half plane and G o <T is a semi-infinite straight line

in G(9fc). Let ju be either a horizontal or a vertical line which makes an

angle with 17: = G o o less than or equal to ir/2. Now G o JI is a

semi-infinite geodesic in Sfc. By parallel translating \x (in the Euclidean

sense) if necessary, we may assume that G o JJ, extends to an infinite

geodesic which does not meet B (0). Denote the flat side of \i by y\ By

parallel translating ]± into ^, if necessary, we may assume that |z| > 1

on y, so that 3i € (In z) > 0 on if.

Now if G(y) is contained in a left half plane, then so is G(^) -

and hence a n is not a Julia geodesic.

Suppose that G(^) is contained in the right half plane <C+ = {z € C:

#(z) £ 0}. By adding a real constant to G (which will be added to h(

also) we assume that G(^) = <C+. Then by (**) we obtain

id - lnCG"1) = -£— h o G"1 =: 9 on C + . (+)
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where 0 has the property that any sector containing 17 is mapped to <C or

<C\{singleton}.

Since ln(G~ ) maps <C+ into <C+, it follows [Dono], that there exists

a positive Borel measure T on R such that

9te(ln(G *)) = ax + xf 1 ^ dr(£)
\ (q-Y) + x

where a > 0 and 5-dT(f) < «>. Let si := {(x,y): |y| < TX} where

T € R is greater than 1/2.

We claim that

dr(f) = 0.

1 8 -Y2
Note that if x > 2, then 5 5- < - I — 1 — on si, since

(f-y) + x2 r + 1

if |f I < 2|y| then

(f-y)2 + x
2 1 x2 = |-+ \ > 2 + L > 2 + L > JL_J_!

2T 8T 8T

and

if |f I > 2|y| then

• „? •
8-r

Now the dominated convergence theorem applies; and therefore,
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r — i — d T ( f ) = r llm
J (f-y)^ + X^

 J
ro (x,y)

Ji f C \

d3(x,y)^» J
ro ( f -y)" + x* J

ro (x,y)H«» ( f - y ) 2 + x
2

and

-1 r 1
SJe(id - ln(G ) ) (x + iy) = x ( l - a - 5 5"dT(f)). (+++)

R

Now let rf as above be such that 17 C si. Then 6(d) D C\{singleton}.

However, by (++) and (+++), 9ie(id - ln(G ))(x + iy) does not change sign

wherever x is large enough and (x,y) € si. Therefore B(si) C (a half plane)

U (a compact subset) giving the desired contradiction.

The only remaining case is that for which G(^) is contained in the upper

half plane °& = {x+iy y 2 0} and 17 is the imaginary axis. Again by adding

constants to h and G we assume that G maps ^ onto °tt. Since

ln(G""1)((W) C C", it follows that [Dono],

= I(az f ( 7 ^
J
K « * ) 1 +

where r is a positive Borel measure on IR such that K dT(f) < °°,

a > 0 and ]3 is a constant. As in the previous case, if si = {(x+iy) € <D:

x > 0, |y| < -YX} for some T then Iim ^ [ ( ^ —p)dr(f) = 0.

^3(x,y)-^>y J
R
 f 1 + f

There im(id - ln(G ))(x+iy) does not change sign in si when y is

large enough and we have a contradiction of (+) as in the previous case since

7] C Si.
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Hence the hypothesis that f has a pole at infinity leads to a

contradiction. We conclude that f has a removable singularity at infinity.

Now since lim In X = lim Re(f) exists, we have proved theorem 2.1
2 2 2 2 ^

x +y H » x +y HCO
for the special case *cdA = 0.

f *cdA > 0. Let a = ̂ -Next let us consider the case I *cdA > 0. Let a = ̂ - I KXLA. We can
,2

construct X € C?"(IR ) such that X > 0 and X(x,y) = — 5 — 5 — on (B (0))C.
x +y )

Consider the Riemannian metric g = (X) (dx + dy ), where X = (—). Let K,
X

r*, ^ < ~ y s y > k 2 2 2

K and K denote the Gaussian curvatures of g,g and g: = (X) (dx + dy )

respectively. Similarly, let dA, dA and dA denote the corresponding area

elements.

Note the following:

(i) g = Ll»l =
 A ln ̂  -J ln ̂  = 0 on (B (0))C.

2X 2X r

(ii) I KdA = I A In X dxdy = | A In X dxdy = - | A In X dxdy
ID ID^1 ID4^* ID^1

U\ IK IK IK

= 2ira - 2ira = 0.

Therefore there exists a holomorphic function f: (B (0))C -* C such that

In X = Re(f).

(iii) g is complete.

Perhaps the easiest way to prove this is to prove that the assoicated

topological metric d is complete. Since d is complete, it sufficies to

show that there is a constant a > 0 such that d i ad. Since
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d(x,y) := inf o ll<7(t)ll~ dt (similar definition holds for
er:[O.l>*r J g

a(O)=x

a is piecewise regular

d), it suffices to prove that there exists a > 0 such that for an arbitrary

2
tangent vector v € IR , Hvll < allvll~.

g g
Let v = ( v . . , ^ ) € T (R ) i . e . written in natural coordinates of K .

Then llvll2 = X2(p)(v2 + v
2 ) = (X(p))2(Mp)2(vJ + v 2) = (X(p))2 Hvll2.

** / \ . -I

But X is bounded on the compact set B (nr) and X(x,y) = — g =;—/e>
T (xZ + y Z ) a / Z

(where a > 0) on (Br(0))
C.

Therefore there is an a > 0 such that X(x,y) < a for all (x,y) € K

2 2 2 2

hence, Hvll < a Hvll for an arbitrary tangent vector v of K , thus

proving the completeness of g.

Now, by theorem 2.1, in the special case icdA = 0 (already proved), f

has a removable singularity at °>.

Therefore lim ln(X(x,y)) exists.

(xZ+y )H»

But ln(\(x,y)) = ln(\(x,y)) + ln((x2 + y2)0^2)
= ln(X(x,y)) + a/2 ln(x2 + y2)
= ln(X(x,y)) + i J KdA) ln(x

2 + y2) on (Br(0))
C-

K2

Therefore lim (ln(X(x,y)) + {^- icdA) ln(x2 + y2)) exists, which is
2 2 J 2

what we wanted to show.

The case j icdA < 0 is the only remaining case.

V
Let a = - — \ KdA and let X = XX € C°°(IR ) where X is as in the

K2
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previous case. As before A(ln A)dxdy = 0; hence, ln(X) = Re(f) on

V
(B (0))° for some holomorphic map f: (B (0))C -> R2. We will prove that f

has a removable singularity at » so that the proof follows as in the

~ -2 2 2
previous case. However we cannot prove the completeness of (X) (dx + dy )

directly in this case.

Consider the case that d is an integer. Then |X| = |—| = r |e on

A'
fv fr\wc v I 2^ 2 I ia I f (z) I(B (0)) , where r = >lx +y = |z| |e v ' |.

The proof proceeds as in the case icdA = 0 and we contradict the

supposition that f(z) has a nonremovable singularity at °°.

If a is not an integer, then |x| = |z|a | e f ^ | on (Br(0))
C.

Suppose that f(z) has a nonremovable singularity at infinity. Then

00

e * ' has an essential singularity at infinity. Let e ^ ' = 2 a z be
n=~co

f (z}
the Laurent expansion of e v ' at infinity. Let h(z) =

c o a . 1 1 ,

^ +i .—
 z • where k € IN and k > a. Clearly h(z) converges on

n=-co

compact subsets of (B (0})C and hence defines a holomorphic function on

(B (0)) . Also, since a ^ 0 for infinitely many positive n, h(z) has an

essential singularity at infinity. Let an be a Julia geodesic of h with

respect to the Riemannian metric g. Let v be a geodesic which separates
2

R into two components such that on one component, say #, a 0 C 9L Since #

is simply connected and 0 € #, z » z a e ^Z^ is a well defined holomorphic

function on #, and so is

F(z) = J za,f
, , - a z n + 1 + a

ef(z>dz = 2 * A on *.
n+1 + a
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Also |F'(z)| = |zaf(z)| = |X(z)|; hence F maps geodesies on # to

straight lines. Therefore F maps # injectively onto a half plane.

Let d be a small geodesic sector containing ao. By removing a compact

subset of si we can ensure that

F(s<) C {z 6 C: |z| > a} for some a > 0.

Then

|h(z) | = z k ^ ( z ) > rk a a > a for all z € si,

contradicting the fact that h(s4) D <C\{singleton}.

o
This proves Theorem 2.1 for <W = IR . D

Now we will prove that °U is necessarily equal to IR . Assume the

contrary; i.e., <W = B1 (0). In the following, we continue to use B (p) to
l a

denote the ball of radius a and center p determined by the Euclidean

metric, while 28 (p) will be the ball of radius a and center p determined

by the metric g. We denote the boundary of SB (p) by \f (p) and the boundary
a a

of BJp) by Sa(p).
Let A: H -» (0,00) be a smooth function such that X(x,y) = -5—<r o n

x +yy

<W\Br(O). Let a = icdA and X: = X(X) . Since X is positive and

~ ~ -2 2 2
bounded above and below on *W, it follows that g: = (X) (dx + dy ) is also

a complete metric and g has Gaussian curvature K with support in B (0).

It is easily seen that g has the property that the integral of the Gaussian

curvature of g is zero. Now replace X by X and define g' = (X) (dx

o
+ dy ). Let f: <W\B (0) -* C be a holomorphic function such that
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In X = Re(f).

Case l: eiV"'dz = 0.

S

In this case let F: °U\B (0) -» C be a holomorphic function such that

F'(z) = ef(z). Since |x| = |F'(z)|, it follows that F*(dx2 + dy2) =

—2 2 2

X (dx + dy ). In particular, F maps geodesies of g onto straight lines

and the lengths are preserved. It follows F(z) -»• » as z -» d°U but this is

not possible since this implies that F = » on <K\B (0).

Case 2: j ef ̂ d z * 0.j

L . r
~ 2iri J

Let B
iSTTl ,

Sr
Let F: <W\B (0) -» C be a holomorphic function such that F'(z) = e ^' +

fi/z. We will show that F(z) is unbounded in <V\B (0). If p € S , let a

00

be the radial line through p and let o meet S1 at q. Let {x } _1 be

a sequence of points on a in <W\B (0) which converge to q. The
00

completeness of g implies that {d(p,x) } . is unbounded where d is the

topological metric associated with g. Let c be the diameter of B (0) with

respect to d. clearly c < <». Now suppose L < °° is such that |F(z) | < L

for all z € <fl\Br(0). Let y € a H (<H\Br(O)} satisfy d(p,y) = 3 L + c.

Clearly 9L, (y) fl B (0) = 0. yL. (y) meets a at one or more points between

y and q. Let z be the point on a fl tf^ (y) which is between y and q

and such that (y,z) € SL, (y) • If u is a geodesic with respect to g in

9&3L(y) joining y to z, then
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F(z) - F(y) = J F'(«)<k, = J ( e f ^ + g)

-J .'(-)*,+ J J * .

where a denotes the portion of a which is between y and z.

But e ^ M<o = 3L, since this is the length of ]i and 2. - /?{ln|z|

JLi a

- ln|y|}. So

By increasing L, if necessary we ensure that L > |/3| In (—). Then

|F(z) - F(g) | > 2L, which contradicts the assumption that |F| < L. Thus F

is unbounded on <W\B (0). Since lim F(z) ̂  » (since that implies that
r z^W

F = «>), F has a Julia geodesic. But the argument used in the case *cdA

V
= 0 for ^ = K now applies, and we get a contradiction. Therefore ^ = K .

This completes the proof of Theorem 2.2. D

Proof of Corollary 2.2: It follows from Theorem 2.1 that if g is complete,

I 2 2 1
then there exists a constant a > 0 such that X(>lx +y ) > —.

oo — 1 2 2 2
Let X be a C function such that X(x,y) = — ^ ^ for x + y > r .

I 2 2
NX +y

__ o 2 2
Then it is easy to verify that g: = (X) (dx + dy ) is complete. Let
d be the topological metric corresponding to g. By making a smaller,
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— t 2 2
if necessary, we conclude that g > ag. Let t € [0,1]. X NX +y >

(—) for x = y > r ; then X (dx + dy ) > a g. But since g is
a

•~2t 2 2
complete, X (dx + dy ) is complete.

Q.E.D.
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