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1. Introduction.

It is well known that smooth motions of nonlinear elastic bodies generally will break

down in finite time due to the formation of shock waves. On the other hand, for thermoelastic

materials, the conduction of heat provides dissipation that competes with the destabilizing

effects of nonlinearity in the elastic response. The work of Coleman and Gurtin [2] on the

growth and decay of acceleration waves provides a great deal of insight concerning the

interplay between dissipation and nonlinearity in one-dimensional nonlinear thermoelastic

bodies. Assuming that the elastic modulus, specific heat, and thermal conductivity are strictly

positive, the stress-temperature modulus is nonzero, and that the elastic response is genuinely

nonlinear they show that acceleration waves of small initial amplitude decay but waves of

large initial amplitude can explode in finite time. In other words, thermal diffusion manages to

restrain waves of small amplitude but nonlinearity in the elastic response is dominant for

waves of large amplitude.

For smooth initial data that are close to equilibrium (in appropriate Sobolev norms )

global existence and decay of classical solutions to the field equations of one-dimensional

nonlinear thermoelasticity has been established by Slemrod [11], Zheng and Shen [13, 14],

Jiang [8], and Hrusa and Tarabek [7]. Further, assuming that the constitutive relations are of



a special form, Dafermos and Hsiao [5] have shown that for certain smooth initial data with

large gradients the solution of the Cauchy problem will develop singularities in finite time.

However, the equations of motion studied in [5] are partially uncoupled and consequently do

not satisfy the assumptions used to establish global existence when the data are close to

equilibrium. In particular, for the equations of [5], if the initial temperature is spatially

homogeneous then the temperature remains constant in time while the strain e and the velocity

v satisfy the system

et(x,t) = vx(x,t)

( L 1 ) vt(x,t) = p(e(x,t))x, x e OR, t > 0,

of nonlinear elasticity. If the elastic response function p is nonlinear then solutions of (1.1)

generally will develop singularities in finite time even if the initial data are very smooth and

small (cf. Lax [9] and MacCamy and Mizel [10]). Moreover, as Dafermos and Hsiao point

out, their constitutive relations for the stress and internal energy are not consistent with the

existence of a free energy.

In this paper we study a special class of nonlinear thermoelastic materials. Our

constitutive relations are similar to those used by Dafermos and Hsiao [5]. Although we

do not claim that our constitutive equations are appropriate to any real material, they do satisfy

the assumptions used to establish global existence of smooth solutions when the data are close

to the equilibrium. Moreover, they are fully compatible with the second law of

thermodynamics; in particular there is a free energy. We consider the Cauchy problem in

which the body occupies the entire real line and the initial values of the strain, velocity, and



temperature are prescribed. As our main result, we show that there are smooth initial data for

which the solution will develop singularities in finite time. Our proof follows the argument of

Dafermos and Hsiao [5] very closely. The primary difference is that our equations of

evolution contain an additional term that prevents us from using the maximum principle to

obtain an important a priori bound. This difficulty is overcome by exploiting some relations

associated with the second law of thermodynamics.

2. Balance of Laws and Constitutive Equations.

Consider a homogeneous one-dimensional body that occupies the interval B in a

(fixed) reference configuration and has unit reference density. We denote by

8 the strain,

v the velocity,

a the stress,

e the internal energy,

q the heat flux, and

T the absolute temperature.

Each of the above fields is assumed to be a smooth function of the reference position x and the

time t; the strain and the temperature are required to satisfy

(2.1) £ > - ^ T > a

In the absence of external heat supply and body force, the laws of balance of momentum



and energy can be written as

(2.2) v t = Gx

et + q* = ae t, X G B , t > 0.

A thermoelastic material is described by constitutive relations of the form

a(x,t) = o(e(x,t), T(x,t))

(2.3) e(x,t) = e(e(x,t), T(x,t))

q(x,t) = q(e(x,t), T(x,t), Tx(x,t)).

The second law of thermodynamics imposes restrictionsK' on a, e, and q. In particular, a

A

and e are required to satisfy the compatibility relation

(2.4) e^e.T) = c(e,T)-To^e/T), V e > - 1 , T > 0

and q must obey the heat conduction inequality

(2.5) g-5(e,T,g)<0, V e > - 1 , T > 0 , gelR.

We note that (2.4) is equivalent to the existence of a free energy,

(2.6) V = V(e,T),

and a corresponding entropy,

1. The idea of using the second law of thermodynamics to obtain restrictions on constitutive relations is

due to Coleman and Noll [4]. The restrictions (2.4), (2.5) follow from the results of [4]. Coleman and

Noll assume that the stress and internal energy are independent of the temperature gradient. A subsequent

argument of Coleman and Mizel [3] shows that compatibility with the second law requires that stress and

internal energy (as well as the entropy and free energy) be independent of the temperature gradient



(2.7) Ti=Ti(e,T),

which satisfy

(2.8) y = e-Tn,

and

(2.9) cr = V£, T1 = -VT.

An important consequence of (2.6), (2.7), (2.9) is the identity

(2.10) \|/t + r |T t - ae t =0 ,

which is equivalent to Gibbs's relation

(2.11) e t -Tr | t -Ge t =0,

by virtue of (2.8). In view of (2.11), the equation of balance of energy (2.2)3 can be

rewritten as

(2.12) TTit+qx = 0.

We refer to the recent book of Day [6] for more information on one-dimensional nonlinear

thermoelasticity.

Here we consider special constitutive equations of the form

(2.13) e(e,T) = P(£) + c (T -T) - p Te

5(e,T,Tx) = -KTX,

where p : (-1, °°) —> IR is a given smooth function,

(2.14) P(e): = T p ^ d ^ V e >-1,
•'o



and p, T, c, K are constants with

(2.15) T,c, K > 0 .

It is easy to check that these constitutive equations satisfy (2.4) and (2.5) and that

(2.16) V(e,T) = P(e) + pe (T-T) + cTlog(T/T) + c (T-T)

is a free energy; moreover the corresponding entropy is given by

(2.17) Ti(e,T) = - (3 e - c log( T /T).

Remark 2 . 1 : Dafermos and Hsiao [5] assume that the stress and the heat flux are given by

(2.13)1? (2.13)3 and that

As they point out, their constitutive relations comply with (2.4) only if T = 0.

3. Formation of Singularities.

We assume that the body occupies the entire real line in its reference configuration

(i.e. B = \R) and that the stress, internal energy, and heat flux are given by (2.3), where a, e,

and q have the special forms (2.13). We assume further that

(3.1) p G C4 ( - 1, oo), p(0) = 0, p'($) > 0 V £ > - 1,

and that

(3.2) T, c, K > 0.

We seek a smooth solution of (2.2) when the initial values of the strain, velocity, and

temperature are prescribed. Thus we consider the initial value problem



et(x,t) = vx(x,t),

vt(x,t) = p'(e(x,t)) ex(x,t) + p 9x(x,t),
(3.3)

c0t(x,t) = K 6xx(x,t) + p (9 +T) vx(x,t), x e (R, t > 0,

£(x,0) = eo(x), v(x,0) = vo(x), 9(x,0) = 9o(x), xelR,

where EQ, V0, and 9Q are given functions and

(3.4) 9(x,t): = T(x,t)-T.

The existence of a local solution can be established by a standard contraction-mapping

argument and we omit the details. The relevant result is recorded below.

Proposition : Assume that (3.1), (3.2) hold,

(3.5) e0, v0, 90 € H3((R),

and that

(3.6) eo(x)>-l, 90(x)>-T VxelR.

Then the initial-value problem (3.3) has a unique local solution (£,v,9 ) on a maximal

time interval [0, to), to > 0, with

e, v e C ([0, to); H3(IR)) n C1 ([0, to); H2(IR)),

9 €C([O,to);H3([R)) n C1 ([0, to); HJ(IR))

(3.8) e(x,t)>- 1, 9(x,t)>-T • V x e K, t e [0, t©).

Moreover, if

(3.9) sup ({ | ex | + | et | +| 9X | +| 9x t | +| 9X
-«o < X < oo

0 < t < t0



(3.10) inf e(x,t)>-l, inf 9(x,t) > -T,
-«©<X<<» -<»<X<oo

0 < t < t0 0 < t < t0

then tQ = oo.

Remark 3.1 : If (3.1), (3.2), (3.5), (3.6) hold and e0, v0, 0O e W2>1([R) then the local

solution (e,v,0) of (3.3) also satisfies

(3.11) e,v,e € C t f O . t ^ W 2 ' 1 ^ ) ) .

(See Theorem 2 of [12] and Section 2 of [13].)

Remark 3.2: Under suitable assumptions on a, e, and q, an analogous result on local

existence holds for general constitutive equations of the form (2.3). In this case, a bound

stronger than (3.9) is needed to continue the solution globally in time.

Remark 3.3: It follows from the results of [7], [13] that if (3 * 0, (3.6) holds, and

is sufficiently small, then the initial value problem (3.3) has a globally defined smooth

solution. ( See Remark 2 of [ 7].)

Theorem : Assume that (3.1), (32), (3.11) hold and that p"(0) > 0. Let y, L, J > 0

be given. Then there exist 8, M > 0 ( depending on y, L, J) with the following property

For eache0, v0 , 0O e H3(CR) n W2>1([R) satisfying (3.6),

(3.12) | eo(x) | < 81/2, | vo(x) | < 81/2, | 60(x) | < 8, V X G R ,

(3.13) J (eo
2(x)+vo

2(x)+e0
2(x) + ie0(x)|)dx<52 ,



(3.14) min {vo'(x) + p'(eo(x))1/2 eo ' (x)}
-oo < X <

+ min {vo'(x) - p'(eo(x))1/2 e o ' (x)}>-J ,
-oo < X < oo

and

(3.15) max {vo'(x) + p !(e0(x))1/2 eo '(x)}
-oo < X < oo

+ max {vo'(x)- p"(eo(x))1/2 eo '(x)}> M,
-oo < X < oo

the length tg of the maximal interval of existence of a smooth solution ( e, v, 0 ) of (33) is

less than ( or equal to ) L; moreover the local solution satisfies

(3.16) | e(x,t) | < y, | v(x,t) | < y, | 0(x,t) | < y, V x e IR, t e [0, to).

Remark 3.4 : It is not difficult to show that for every 8, J, M > 0 there exist e0, v0, 60 e

H3([R) n W2)1([R) satisfying (3.12) through (3.15).

Remark 3.5 : An analogous theorem holds if the assumption pn(0) > 0 is replaced by pM(0) < 0.

4. Proof of the Theorem.

The first part of the proof consists of establishing a priori estimates for the local solution

of (3.3). After the estimates are obtained, we establish the formation of singularities in finite

time by analyzing a differential inequality.

Let t* G (0, 1] and 5, J > 0 be given. Assume that (3.12), (3.13), (3.14) hold and that

(3.3) has a solution (e,v,0) onK x [0, t*] satisfying

e, v e C ([0, t*] ; H3(CR) n W2>1(IR)) n C1 ([0, t*] ; H2([R))
(4.1)

9 G C ([0, t*]; H3(IR) n W24(IR)) n C1 ([0, t*]; H*([R))

and



(4.2) | e(x,t) | < I 19(x,t) \<} V x e I R , t e [ O , t*].

We shall derive several a priori bounds for (e, v, 6) in terms of the constant 5 appearing in

(3.12), (3.13). Throughout this section we use T to denote a generic positive constant that

depends only on p*, c, K, T, J, and properties of the function p.

Lemma 4.1 : There exists a constant Y ( which depends only on c, T, K, and the maximum

and the minimum ofp' on[--, -] ) such that

(4.3) I {e2+ v2 + 62 }(x,t) dx + I I 9Y(x,s) dx ds < T 6 V t e [0, t*].

Proof. It follows from (2.12) that

(4.4) 0Tit
 = - - = qx-

( T + 9 )

Using (2.2)l9 (2.2)2, (2.10), and (4.4) we conclude that

9
(4.5) ^ q x ( q )

(T + 9) dx (T+9)

We integrate (4.5) over IR x [0, t] and use (2.13), (2.16), and (2.17) to obtain

(4.6) J {P(e) + \ v2 - cf log(l + = - ) + c9 }(x,t) dx +

I — r 9x(x,s) dx ds = {P(e0) + j v0
2 - cTlog(l + ^) + c90}(x) dx.

o •'.^ (TH- ' *

9

9 ) ' " ^ - " * " "T

It is straightforward to verify that

1 T

(4.7)

10



( 4 . 8 ) ^ - ^ 2 < - c T l ( l i ) ^ < i ^ 2 V $ [

where

(4.9) nij : = min pf(^), m2 : = max

Consequently (4.6) yields the inequality (4.3). a

Following Dafermos and Hsiao [5] we use the method of Alikakos [1] to obtain a

pointwise bound for 0 in terms of 8.

Lemma 4.2 : The temperature 0 obeys the estimate

(4.10) | 0(x,t) | < T 5 V x e IR, t e [0, t*].

Proof. The idea of the proof is to put

(4.11) An:= max I G ^ t ) dx, n = 1,2,3,.-
-oo

0<t<t*

and show that

(4.12) A n < ( r 8 ) 2 n , n= 1,2,3,... .

The desired conclusion then follows by raising (4.12) to the 2"n power and letting n tend to

infinity.

To establish (4.12), we multiply (3.3)3 by 2n 0 " , and integrate with respect to x, using

integration by parts, to obtain

d r 9n
 K (°° 9 -̂1

(4.13) -T; 02 (x,t) dx = - 4 (1 - 2"n) - Vd32 (x,t)]2 dx

11



- 2-2n ?- I O e 2 " ~\x,t) e2" \x,t) v(x,t)} dx + 2n T 2- I G2" '\x,t) VX (x,t) dx .
C J C ;

We note that (4.13) is similar to (2.9) of [ 5] except for the term

f°° 2n-l
I 9 (x,t) vx (x,t) dx which can be handled as follows :

(4.14) \J e2n"1(x,t)vx(x,t)dx| = ( 2 n - l ) | J 9 x (x , t )0 2 n" 2 (x , t )v(x, t )dx |

< (2n - 1)J |0x(x,t) 0 2 n ' 2(x,t) v(x,t) | dx + ( 2 n - 1)J |0x(x,t) 02D" 2(x,t) v(x,it) I dx

/»OO i»C

( 2 n - 1) a2"" 2 j | 9 x (x , t ) v(x, t) | d x + ( 2 n - l ) 8 ~ 1 J | 6 x (x , t ) e 2 " ! (x , t ) v(x , t ) | d x
x(

< (2 n -1) 8 2° -2 {2 j 6x(x,t)2dx + 2 J v(x,t)2 dx}

• l 2 - ( n - D | "211 -1) 8"' 2"v""" j 1 axe
2D" \x,t) e 2 n ^ t ) v(x,o 1 dx

1 C°° 1 **-

2 (2 n- l )8 2 n" 2J 9x(x,t)2dx+ 2-r(2n-
-00

+ 2 m a x 6 (x>0 I v 2 ( x
? 0 d x }

-oo

<j (2n-l)82 D-2 f ex(x,t)2dx + i r ( 2 n - l ) 8 2 D

-oo

+ —= 2 (1 - 2-n ) I OO2" (x,t))2 dx + — r ( 2n - 1) max 62ll(x,t),
BT / _ x

 K

12



where F is the constant in (4.3).

Next we observe that

(4.15) i J axe
2D \,t) e2D \,t) v(x,t).

4 - ^ f <3xe
2n" \x,t))2 dx + \ ^- j (v(x2 p2n -L 2 K -L

y - ^ - I 0xe2D" (x,t))2 dx + y ^ - m a x e2D(x,t) I v2(x,t) dx.
2 p2n ^ 2

 K i

By combining (4.13) through (4.15) we find that

,t) I

(4.16) ^ J 82(x,t)dx<--J Ox9
2 (x,t))2dx

2-2 n \ £ A max e2(x,t) | v^x.t) dx
1

t r

2 - 2 1 9 1 n 2P-*- n 2 "I

I Ov(x,t) dx + ^ F ( 2 -1 )6 + — F ( 2 - 1) max 6 (x,t)/.
J .. X 2 K

c l 2 v

For every \> > 0 we have

(4.17) max 62 (x,t) < 2 I 02 (x,t) 19 62 (x,t) | dx

1

(x,t))2dx
f

v>'1J

I Ox0 (x,t) )2dx + D" x max 0 (x,t) I 6 (x,t) dx

13



< 0) I (ax02 (x,t) )2dx + ~ max 9Z (x,t) + j - v \j 9 (x,t) dx) ,

and consequently

(4.18) max e2D(x,t) < 2v I Oxe2" (x,t) )2dx + v" 2(J e2" (x,t) dx)2.

By using (4.3), (4.16), and (4.18) ( with i) sufficiently small) we conclude that

(4.19) £ I e2 ( x ,odx<2 6 n r ( I e2 (x,t) dx) + r 2 2 n - l 8

L x

where r is a constant that depends on p, c, K, and T. Integrating (4.19) with respect to time

and using (3.12), (3.13), and (4.3) we find that

(4.20) A n < 8 + 2 6 n r ( A n . 1 ) 2 + r 2 2 n ' 1 8 + T2 2 1 1 ' 1 8 .

We choose T such that T 1 / 2 > max {214 T, 16, T }. Using Lemma 4.1 and (4.21) we

obtain

(4.21) A n < r 6 n r - 1 / 2 ( r S ) 2 \ n = l , 2 , 3 , ...

by induction. In particular (4.12) holds and the proof is complete. •

We now proceed to obtain pointwise bounds for e and v. For this purpose we introduce

J
re(x,t) ft(x,t)

I p'(£)1/2d£, s(x,t): = v(x,t) - I v'(t)l/2dt
0 ^0

and the differential operators

14



(4.23) : = - - p'(e(x,t))1/2 — , : = - + p'(e(x,t))1/2 —.
dt 3x at dx

A straightforward calculation yields

(4.24) rv=pex, s7 = pex .

In order to express 9X in a convinient form, we define

(4.25) x(x,t): = J {P(e(y,t)) + c0(y,t) + ~-V2 (y,t)}dy.

We note that by virtue of (3.3)3,0 admits the representation

(4.26) G(x,t) =
(47CKt)

(x-y)2

(4JCKC) ' " ' - 4K t-x

Integrating (4.26) with respect to x, using Lemma 4.1, and integrating by parts, we

conclude that

(4.27) \f e(y,t)dy|<r8, Vxe IR, t e [0, t*]

and consequently

(4.28) | x(x,t) | < T5, V x e IR, t e [0, t*].

By virtue of (2.2)j and (2.2)2, the equation of balance of energy, (2.2)3, can be expressed

in the form

(4.29) ( e + y v 2 ) , + qx = (ov)x .

We integrate (4.29) with respect to x over (-°o, x) and use (2.13), (4.25) to obtain

15



)1 '2 (P() 9

(4.30) K9x = x t

= %V + P'(e)1'2 (P(e) + c9 + 5- v 2) - (p(e) + p9 + P T) v,

= X7 - p'(e)1/2(P(e) + c9 + 5-v2) - (p(e) + p9 + pT)v.

Therefore, by setting

(4.31) * : = r - - ( X - X n ) . Y : = s - - ( % -
K ° K

we get

(4.32) OV = 5- p'(e)1/2 (P(e) + c9 + 1 v 2) - (p(e) + p9 + p T) v + A p'(e)1/2 dxX
K Z K °

(4.33) ¥7= --5-p'(e)1/2 (P(e) + c9 + 1 v2) - (p(e) + p9 + PT)v + S.p'(e)1/29X%
K Z K °

The right-hand sides of (4.32), (4.33) can be expressed in terms of O and *¥ through the

relations

(4.34) e = E-1(O-¥), v = 5-(O + ¥)+£(x-X f t),

where

(4.35) E(z):=/ZpU)1/2dS Vze IR.
• Z

'0

Lemma 4.3 : For every X>0 there is a 8* > 0 such that if 8 < 5* then

(4.36) I e(x,t) I < X, I v(x,t) | < X, V x e IR, t e [0, t*].

Proof. By virtue of (4.34), (4.35), and (4.28), it suffices to show that given X > 0 there

is a 8 > 0 such that if 8 < 8 then

(4.37) I O(x,t) I < X, I ¥ ( x , t ) I < X, V x e R , t e [ 0 , t * ] .

16



Following Dafermos and Hsiao [5], we define the nonnegative Lipschitz functions O* and *F* by

(4.38) <D*(t): = max | O(x,t) |, *F*(t): = max | ¥(x,t) | V t e [0, t*].
X X

(The maxima in (4.38) exist because O(x,t) and *F(x,t) tend to zero as x tends to ±©o.)

V

We fix t e (0, t*] and choose x and x such that

V

(4.39) <D*(t) = | <D(x,t) |, *F*(t) = | *F(x,t) |.

Then for every h e (0, t], we have

<D*(t - h) > | O(x + h p'(e(x,t))1/2, t - h) |,
(4.40)

¥*(t - h) > | >F(x - h p'(e(x,t))1/2, t - h) |.

We subtract (4.40) from (4.39), divide the resulting inequalities by h, and let h X 0, to conclude

that

(4.41) D" <D*(t) < | <D (x,t) |, D" *F*(t) < | ^ ^x.t) |.

It follows from (2.14), (4.34), (4.35), (4.10) and (4.28) that

(4.42) | ± - p'(e)1/2 (P(e) + c0 + y v 2) - (p(e) +pe +p T) v + -2- p'(e)1 /2 dxr \
K K °

<:r{[ |<D|+ | ^ | ] 2 + [ | < D | + | ^ | ] + 8 } .

By combining (4.41), (4.32), (4.33), (4.38) and (4.42) we find that

(4.43) ^ [ O*(t) + W*(t) ] < T { [ <D*(t) + T*(t) ] 2 + [ O*(t) + T*(t) ] + 5 },

for almost all t € [0, t*]. Moreover, by virtue of (4.38), (4.31), (4.28), (4.22), and (3.13), we

have

17



(4.44) o*(0) <rs 1 / 2 , o*(0) < r s 1 / 2 .

Consequently if 8 is sufficiently small, (4.43), (4.44) yield

(4.45) <X>*(t) + *F*(t) <X, V t G [0, t*],

which implies (4.37). D

Our next task is to estimate the partial derivatives of e, v, and 9. For this purpose we

define

(4.46) w : = rx, co : = sx,

and note that

(4.47) 8X = y pf(e) "1/2 (w - co ), vx = y (w + co ).

A simple computation yields

(4.48) E =co, e =w.

Differentiation of (4.24) with respect to x gives

(4.49) dt rx - p'(e)1/2 rxx - \ p'(e) "1/2 p"(e) ex rx = p 6XX,

(4.50) dt sx + p'(e)1/2 sxx + 2 p'(e) ~m p"(e) ex sx = p 9XX.

We substitute exfrom (4.47) into (4.49), (4.50), use (4.48) to obtain

(4.51) wV + i p ' (e ) 4 p"(e) £V w - \ p '(e)A p"(e) w2 = p 9XX,

(4.52) co7 + ̂  p'(e) -1 p"(e) z w - i p1 (e)"1 p"(e) co2 = p 9XX.

and multiply (4.51), (4.52) by p'(e)1/4 to arrive at

(4.53) (p'(e)1 / 4 w )V - 1 p'(e) "5/4 p"(e) (p'(8) 1/4w )2 = p p'(e) 1 / 4 0 x x ,

18



(4.54) (p'(e) 1 / 4 o ) / -Ip '(e)-5 / 4
P"(e) (p'(e) 1/4co)2 = pp'(e) 1 / 4 0 x x .

We then define

(4.55) f: = p'(e)1/4(w - J * e), g : = pf(e)1/4(o) - ̂  0).
K K

By using (4.47) through (4.54) and

(4.56) 9XX = ^ O t - i
K K

= - 0 + -p 1 ( e ) 1 / 2 6 x - — ( 9 + T) (w + co)
K K 2K

= - G - - p'(e)1/28 - i (6 + T) (w + co)
K K 2K

we find that

2

(4.57) fV = i p'(e)-5/4p"(e)f2 + ^ pt(e)'1p"(e)e(2f-g)--6-e(f+g)
4 4K 2K

fcp.(e)3/4ex.^Lp.(e)i/4e
2. P ! T P.(e)^ ( f + g ) . f L T e ,

K 2K 2 K 2K

2

(4.58) g '= j p'(er 5/4p"(e) g2 + -^- p'(e)- 1p"(e)e (2g - f) - — 0 (f + g)
4 4K 2K

- ^ T p.(e)iM

2
p X E ) e p ( e ) (f+ g )

2 K 2 K 2

In order to state our final estimate it is convinient to introduce

(4.59) F(t): = max |f(x,t) |, G(t): = max I g(x,t) | V t e [0, t*].
X X
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Lemma 4.4 : The temperature 6 obeys the estimate

(4.60) |0y(x,t)|< T+ T(8 + T) I I77~d x V t e [0, t*].
J° (t-t)

Proof. By using (4.26) and substituting for vx in terms of f, g, and 6, differentiation of

(4.26) with respect to x yields

(4.61) 0x(x,t) =

/.'£
(4,Kt)1/2 J~ 4 *

9

(x -y)
4 K ^

The assertion of the lemma follows easily from (4.61). •

We are now ready to establish the formation of singularity in finite time. Let L e (0, 1],

M > 0, and e0, v0, 0O e H3([R) n W2>1(tR) satisfying (3.6) and (3.12) through (3.15) be given.

Consider the solution (e,v,0) given by the proposition of Section 3. We shall show that if 8 is

sufficiently small and M is sufficiently large then to ̂  L, where to is the length of the maximal

interval. For the purpose of obtaining a contradiction, we assume that t<> > L. By virtue of

Lemmas 4.2 and 4.3 we may choose 8 small enough so that for every t* e (0, L] such that (4.2)

holds, the sharper bound

(4.62) | e(x,t) | < I | 0(x,t) | < I V x e IR , t e [0, t*]

also holds. Consequently, by continuity, if 8 is sufficiently small then

(4.63) | e(x,t) | < ~ | 0(x,t) | < j V x e IR , t e [0, L].
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For the remainder of the proof, we assume that 5 is small enough so that (4.63) holds. We

define, as in [5], the nonnegative Lipschitz functions

F+(t) = max f(x,t), G+(t) = max g(x,t),
(4.64) x x

F" (t) = - min f(x,t), G"(t) = - min g(x,t) V t e [0, L],
X X

where f and g are given by (4.55), and note that

(4.65) F(t) < F+(t) + F"(t), G(t) < G+(t) + G'(t) V t e [0, L].

We fix t € [0, L) with F+(t) > 0 and / or G+(t) > 0 and choose x and x such that

(4.66) F+(t) = f(x,t) and/or G+(t) = g(x,t).

For every h e (0, L -1] we then have

F+(t+h) > f(x - h p'(e(x,t))1/2, t + h),

(4.67)
, v v 1/9

G+(t+h) > g(x+ h p'(e(x,t))1/2, t + h).

Subtracting (4.66) from (4.67), dividing through by h, and letting h 10, we obtain

(4.68) D + F + ( t )> f (x,t) and/or D+G+(t)>g7(x,t).

/s V

Next we fix t e [0, L) with F "(t) > 0 and / or G"(t) > 0 and choose y and y such that

(4.69) F"(t) = -f(y,t) and/or G"(t) = - g(y,t).

For every h e (0, t] we then have

F"(t+h) > - f<y i h p'(e(y,t))1/2, t - h),

(4.70) v ^
G"(t+h) > - g(y- h pf(e(y,t))1/2, t - h).

Subtracting (4.70) from (4.69), dividing through by h, and letting h i 0, we obtain
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(4.71) D 'F( t )< - f (y,t) and /or D'G'(t) < - g (y,t).

Since p"(0) > 0 we may choose constants av Oj s u c n m a t

(4.72) p"($) £ ax V % G [-a2, a2].

By virtue of Lemma 4.3 we may choose 8 small enough so that

(4.73) | e(x,t) | < a 2 V x e IR , t e [0, L].

Thus there is a constant a such that

(4.74) I p'(e(x,t))"5/4 p"(e(x,t)) > 2oc > 0 V x e R . t e [0, L].

Therefore, by combining the inequalities above, we get estimates of the form:

75) ^ [ F+(t) + G+(t)] => a [ F+(t) + G+(t)]2 - T (8 + T)[ F+(t) + G+(t)]

fF"(x)+G'(t)_ (l F+(x)+G+(x) _ C
-r(5 + T)[F(t) + G-(t)]-r(8 + T)l 1^—dt-r(8 + T)

0 (t-t) J° (t-x)

(4.76) ^ [F" (t) + G'(t)] < T (8 + T)[ F+(t) + G+(t)] + T (8 + T )[F" (t) + G'(t)]

o _ fl F+(x)+G+(x) _ (l F'(x)+G"(x)

+ r (8 + T)J — * — ^ d x + r(8 + T) d r
0 ( t ) J°

0 (t-x) J° (t-x)

for almost all t e [0,L].

In view of (4.55), (4.64), (4.10), (3.14), and Lemma 4.3, (4.76) yields

(4.77) [F- (t) + G"(t)] < r + T (8 + T) I K (t -x) [ F+(t) + G+(t)] dx,
•'o

where K e L (0, L). Finally by combining (4.75) with (4.77), we obtain the inequality

(4.78) ^ [ F+(t) + G+(t)] > a [ F+(t) + G+(t)]2 - T (8 + T)[ F+(t) + G+(t)]

•'o
-r(8 + T) Z(t-x)[F+(t) + G+(t)]dx-r,
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where Z e L (0, L). By virtue of Lemmas 4.2 and 4.3 it follows that when M (in (3.15)) is

sufficiently large then [F + + G+] blows up in a finite time t+ < L, which contradicts the

assumption that to > L. This completes the proof. •
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