
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



PROBABILISTIC ANALYSIS OF THE
GENERALISED ASSIGNMENT

PROBLEM

by

Martin Dyer
School of Computer Studies

University of Leeds
Leeds, U.K.

and
Alan Frieze

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 89-58,
Cf'

September 1989



PROBABILISTIC ANALYSIS OF THE
GENERALISED ASSIGNMENT

PROBLEM

Martin Dyer*
School of Computer Studies, University of Leeds, Leeds, U.K.

Alan Frieze*
Department of Mathematics, Carnegie-Mellon University,

Pittsburgh, U.S.A.

September 6, 1989

Abstract

We analyse the generalised assignment problem under the assump-
tion that all coefficients are drawn uniformly and independently from
[0,1]. We show that such problems can be solved exactly with high
probability, in a well-defined sense. The results are closely related
to earlier work of Lueker, Goldberg and Marchetti-Spaccamela and
ourselves.

* Supported by NATO grant RG0088/89
^Supported by NSF grant CCR-8900112 and NATO grant RG0088/89



1 Introduction

We are concerned here with the generalised assignment problem:

Maximise z = Y^ILi E j = i Cij%ij

subject to ]Cj=i ctijXij < b{ = fan (i = 1,2,.. . , m)

and all :r2i G {0,1}.

This problem has applications in machine scheduling and elsewhere. See,

for example, [1, 5, 8]. Here we give a probabilistic analysis of (1), under the

assumption that all atj,c,j are independently and uniformly distributed in

[0,1]. We examine the asymptotic behaviour as n —> oo, while m and the fa

remain fixed. (The assumption that m is constant while n —> oo is realistic,

for example, in the machine-scheduling application.) We assume m > 1,

since otherwise the problem is obviously trivial.

We have chosen the maximising form for (1). All our results apply equally

well to the minimising form, since the constraints imply that the objective

function

z = n-

and (1 — Cij) has precisely the same distribution as ctj.

The work presented here is closely related to, and in part rests on, our earlier

paper [2] on the multidimensional knapsack problem. (This was itself an

extension of work of Lueker [6] and Goldberg and Marchetti-Spaccamela [3].)

As in that paper, the main technique here is to relate the solution of the

integer program (1) to its linear programming (LP) relaxation:

(1) with Xij € {0,1} replaced by x{j > 0. (2)



As in [2], we use strongly the fact that the only conditioning on the data

imposed by the solution of (2) arises from satisfying the primal and dual

feasibility conditions (which are simply linear inequalities). We make use of

well-known ideas from LP theory throughout the paper without comment.

We use similarly standard methods from probability theory, in particular

certain probability inequalities. See [7] for a useful survey of many such

inequalities.

However, although our methods are similar to those of [2], extending a prob-

abilistic analysis to an apparently similar problem is not straightforward,

since changed structure produces different conditioning. Nevertheless, we

will show that in this case the difficulties can be successfully negotiated.

There is one proviso. For technical reasons, we must assume the following

condition on the /?t- holds. Consider the vector f3 as a point in m . Let the

set T be (the convex set of) those /? for which (2) remains feasible with

probability tending to 1 as n —• oo. We clearly need (3 € T in order that

the feasibility of (1) does not dominate the analysis. We assume something

stronger, however. Let T{r\) be the set of /3 such that (2) remains feasible

(with probability tending to 1) when the fa are (all) reduced to /?t- — 77, for

given 77 > 0. If /? G ̂ F{vi)-> we will call (1) (or (2)) rj-feasible. We require

^-feasibility for some 77 > 0. It is clear that int^7 = U^o^O?)- Thus, in a

certain sense, our analysis covers "almost all" /?'s of interest.

From an algorithmic viewpoint, we do not require conditions for 77-feasibility

(for some 77 > 0). However, various simple sufficient conditions can be de-

rived. For example,

77 = min ^ ——-r > 0,
i<t<m m(m+l)



is such a condition. To see this, consider the solution to (2) given by setting

Xij = 1 in column j for the i which gives the minimum a^ in that column.

Since this minimum is l / ( m + 1) in expectation (the minimum of m uniform

[0,l]'s), and will occur in each row with probability 1/ra, the sufficiency of

the condition follows easily from the law of large numbers.

The results we prove are specifically as follows. The first relates the objective

values of (1) and (2). (Natural logarithms are used throughout.)

Theorem 1 Let (1) be feasible for some rj > 0, and ZIP, ZLP be the optimal

values for (1), (2) respectively. Then there exist constants 0 < p(m) < 1 and

a(m, rj) > 0 such that, for large n,

Pr(zLP-zIP>ta(logn)2/n) < p\ (t = 1,2,..., [n/(logn)2J),

and E(zLP-zIP) < (2a/(l - p)2)(hgn)2/n.

Moreover, if J\f is the number of variables whose values differ in the two

optimal solutions, then there exists a(my rj) such that

E(Af) < a log n

D

The second shows that, with any specified probability of error, (1) can be

solved in polynomial time.

Theorem 2 Let (1) be ^-feasible for some 77 > 0, and r > 0 a probability.

Then there exists a constant J(m, 7/,r); such that a proven optimal solution

can be obtained by a branch-and-bound search algorithm in time O(nd) with

probability at least (1 — r ) . •



The plan of the paper is as follows. In §2 we give some preliminary results on

the linear programming (LP) relaxation of (1). In §3 we prove Theorem 1 and

in §4 we prove Theorem 2. Finally §5 gives some brief concluding remarks.

2 Linear Programming Preliminaries

We show here some simple properties of the LP problem (2) and its dual:

Minimise ££=i biUi + £?=! vj

subject to dijiii + Vj > Cij (Vi,j) (3)

Ui > 0 (Vi).

Lemma 3 below has been given by Benders and Vannunen [1], with a different

proof and a slightly weaker conclusion.

Lemma 3 Let {xB} be any basic feasible solution to the system

subject to D j = 1 dijXij < b{ (i = 1,2,... , m)

2Zi* t f = 1 (i = l , 2 , . . . , n ) (4)

and all Xij > 0.

and let FB = {(x,j) : 0 < sg < 1},EB = {j : 3(*,j) € FB). Then

(a) \EB\ < m, and (b) \FB\ < 2m.

Proof Any basic feasible solution to (4) is an optimal solution for some

objective function
n n

Maximise z =



In such a solution, for each j , there is an i*(j) such that X{*j > 0. We use

the constraints E£Li x^ = 1 to eliminate the x^j. This will give an LP:

Maximise z = E/=i E#;* c\jxij

subject to EjU E#t* aijkxij < bk (fc = 1,2,..., rn)
(5)

£*,-•*« < 1 (j = l ,2, . . . ,n)
and all xtj > 0.

Now in the LP (5), all constraints E^t* xij 5: 1 a r e non-binding at the

optimum, and hence redundant. Thus the solution will be the same as that

to
Maximise z = Ej=i E#i* c'ijXij

subject to Ej=i E^t* ofiikxa < b'k (k = 1,2,..., rn) (6)

and all x^ > 0.

Let F = {(^i) • ^tj > 0 in the optimal solution to (5)} and E = {j :

3(i,i) € JF}. Clearly (E1! < |F|, and since there is an optimal basic so-

lution, \F\ < m. Now xw < 1 if and only if j G E. Thus EB = .B,

proving (a). Also FB = FU {(i*,i) : j € £} , and since the union is disjoint

\FB\ = \F\ + \E\ < 2m, proving (b). D

Lemma 4 Any basic feasible solution io (3) can be completely specified by

giving EB C {l ,2, . . . ,n} with \EB\ < m, and FB C {(ij) : j 6 EB} with

\FB\ < 2m.

Proof Consider the dual (3). We assume, without loss of generality, that

it is non-degenerate. If the set FB is as defined in Lemma 3, then the set of

equations

aijUi + VJ = Cj (ij) e FB



will uniquely determine the non-zero uf-. The remaining Vj can now be de-

termined by Vj = maxt{ctj — atjtzt}. This completely specifies the dual basic

feasible solution, and the primal solution can be recovered by complementary

slackness. D

The method of specifying a dual basic feasible solution implied by Lemma 4 is

central to our arguments below. It has the following important consequence.

Corollary 5 (Assuming non-degeneracy) there are less than (6m)mnm basic

feasible solutions to (3).

Proof There are clearly at most

< (en/m)m(em2/2rn)2m = (e3mn/4)m < (6mn)m

\mj \2mJ

ways of selecting EB then FB. •

The non-degeneracy assumption holds with probability 1 in our model. Thus,

as n —> oo with m fixed, we will have O(nm) (i.e. a polynomial number of)

dual basic feasible solutions to consider. This should be contrasted with the

mn (i.e. an exponential number of) potential primal basic feasible solutions.

We now show that the ^-feasibility condition discussed in §1 implies a bound

on the optimal dual variables in (2). For ease of notation let us write (2) in

"matrix form", i.e.

LP(b) : ZLp(b) = maxz

subject to z = c#, Ax < 6, Ex < en, x > 0.

where, in particular, en denotes an n-vector of l's.



Lemma 6 Let rj > 0. If (2) is 77-feasible and Ui(i = 1, . . . , m) are the dual

variables in its optimal solution, then

Proof Let x be any feasible solution to LP(b — nrjem). Clearly ex > 0.

The optimal dual variables for LP{b) satisfy

uA + vE > c, u > 0, ub + ven < n, (7)

the last inequality following from the duality theorem and the obvious upper

bound on the primal objective function. Hence

n > ub + ven

> u(Ax + 7]nem) + ven

= uAx + 7]nuem + vEx

= (uA + vE)x + rjnuem

> ex + rjnuem

> 7]nuem.

Thus uem < I/77, as required. D

The last result in this section relates the optimal solution of (2) to "nearly

optimal" solutions when the right hand sides are changed.

Lemma 7 Let y' be an optimum basic feasible solution to LP(bf) and x =

y'+0 any feasible solution to LP(b). Let u > 0 be the optimum dual variables

for the inequalities in LP{bf) and c > 0 the reduced costs associated with the

nonbasic variables in y'. Then

ex < ZLPQ)) + c9 + u(b — Ax)



Proof From the objective row of the basis associated with y' we have

ex = ex + u(b' — Ax) + eyf.

Let y > 0 solve LP(6), so

ZLp{b) = ey=cy + u(bf - Ay) + cyf

Thus

ex — ey = c(y' + #) — q/ + u(Ay — Ax)

= c0 — cy + u(Ay — Ax) (cyf = 0)

< c^ + u(Aj/ - Ax) (c > 0, y > 0)

< e6 + u(b - Ax) (Ay <b,u>0)

D

3 Proof of Theorem 1

Assume 1 > 7/ > 0 is given, and that (1) is 77-feasible. Let K = ^m27/logn,

k = [18m2 log n j , M = 2m+9/7/2 and c = 80m3M log n/n.

Now, for i = 1 , . . . , m, let b[ = 6t- — /i". Let a:5 solve LP{bf). From Lemma 6

the dual variables U{ for LP(bf) satisfy

for all n large enough. So U{ < 2/77, for all i.

Let JBB , F B be as defined in §2. For each j = 1 , . . . , n define i*(j) as follows.

For j g EB, let i*(j) be the (unique) i such that xf^ = 1. For j G EB, choose



z*(j) arbitrarily from {i : (z, j ) G FB}. We define a "rounded" zero-one

solution £B by

fg = 1 if and only if (t, j ) = (**, j ) .

Now let

= K otherwise

Then, since 0 < atJ- < 1,

K - m < Af < K + m. (8)

We now wish to "fill the deficits" Af by changing only the values (in £B) of

variables with small reduced costs. Then we will use Lemma 7 to show that

the solution £ so constructed is close to optimal. We change the £B by making

cyclic changes within chosen blocks of m columns. To this end, we make the

following definitions. Let s be any integer. We define an s-good block to be a

set of m columns j , as follows. For ease of notation, let us assume the block

comprises columns 1,2, . . . , m , and that subscript arithmetic is modulo m.

Let us write C{j = ctj —uta,j. Then the block must be such that, for 1,2,.. . , m

(a) £ff = 1 . (The changes we intend to make are £tt- = 0, &-i,t = 1-)

(b) an < 7//20, at-|t-+1 G [at-t-,aif. + 7//20].

(c) Cji < | , j ^ i, % - 1, | < cu < | , and

These imply, by straightforward calculations, the following conditions for

column i in the block,

10



(i) Cki < Cki < j for fc =^ t, i — 1. (The LP solution must not pick xki.)

(ii) cu > | — ~ = |. (The LP solution must pick xn.)

(iii) (5 — l)e < ct_ljt- — ct-it- < se. (The LP solution picks xtt-, but a^-i,;

is "nearly as good". Observe also that conditions (i)-(iii) imply that

£tf = Zij - cu for all ij.)

(iv) at?t+i — an is uniform in [0,?//20] independently, even conditional on an.

(We need this since we wish to argue relative to the optimal bctsis for

LP(bf), and an is then conditioned by feasibility of the solution.)

(v) [en + Ui^cti-u - se.cn + ut-_iai_ift- - (5 - l)e] C [0,1] for s < l/2e =

fi(n/logn). (We require that the probability that ct-_1?t- falls in this

range depends only on its width, and not its location.)

Now the probability that a given column j can be the ith column in an s-good

block is clearly a priori at least

©• X - x [ ^ r ) x e
o

independently of i or j.

Suppose now that, for any dual feasible basis D, we try to construct s-good

blocks. The determination of the U{ conditions only m columns, by Lemma 4.

We now scan the remaining (n — m) columns from left to right, attempting to

form good blocks one column at a time. There is one problem. The circularity

of our conditions for the columns of the blocks implies that we cannot test

column 1 in the block until column m is known. For this reason we have to

proceed slightly more carefully, as follows. We denote the elements of the

11



columns as in the above conditions, but the reader should observe that we are

in fact examining a general column j for potential addition to the current

incomplete block. We scan to select the first column, checking conditions

(a)-(c). However, instead of checking condition (b) on at_iT; (i.e. aml) (since

this is currently impossible) we merely check the necessary condition that

ami < 77/IO. Note that we also check condition (c) involving ami , but the

choice of our ranges implies that this does not further condition am l . It

merely locates the point (cm l , aml) in a small parallelogram whose projection

is uniform on the ami-axis. Having chosen column 1 we scan to add columns

2, . . . ,??7 — 1, in each case checking conditions (a)-(c). There is no difficulty

since the required quantities are all known at the time of checking. We now

select column m. First we check all conditions except that in (b) involving

aTOl. We will check condition (c) involving amm, but this does not condition

it further than amm < 77/2O, by the same argument used for am i . Let us

call a "block" which has passed all tests up to this point a candidate block.

Now the point TT = (a m m , a m l ) is uniformly distributed in the rectangle n =

[0,77/20] x [0,77/10]. We now test condition (b) on ami. This requires that

the point TT lies in a parallelogram whose area is half that of n . Thus the

probability that a candidate block is s-good is | . If the candidate block is not

good, we reject it completely and start afresh. This may appear drastic, but

to do otherwise introduces extra conditioning, and the above line of argument

fails.

Note that, as we form candidate blocks, the probability of a given column

being successfully added is still (independently) at least e/M, since we check

some subset of (a)-(c). However some candidate blocks will not be good.

Now the expected number of successful additions is (n — m)e/M > 4mk for

12



large n. Thus

Pr(Under 3A; candidates formed) = Pr(Under 3km successful additions)

< e

< *

for large n, using HoefFding's inequality [4, 7]. Then, since each candidate is

good with probability | .

Pr(Under k s-good blocks formed) < e~k/ls + rC2™*

for large n, again using Hoeffding's inequaUty.

Now, since there are less than n possible values of s, and only 0(nm) dual

feasible bases D to consider, we see that for large n,

Pr(3 D,3 : less than k s-good blocks exist) < n~*m .

For a given 5-good block, let 8{ = at->f-_i—an for i = 1,2,.. . , m. These give the

changes in the left hand sides of the constraints in (1) when the cyclic changes

6« = 0, £i_i,i = 1 are made to the variables in the block. If we have k s-

good blocks we denote the corresponding values by 8{r for r = 1,2,... , k. By

construction the 8{r are distributed uniformly and independently in [0,r//20].

Let

Zir is uniform in [—A/3, +\/3] with mean 0, variance 1. Thus

. _ 5.
tr 40

13



k

tin

where I\- = Af - (&7//40) = If - (A;7//40) + 0(1) = (9(1), using (8) and the

definitions of k,K. Let <&t = 4Qy/3Ti/ri. Now we use the following Lemma,

which is a (modified) restatement of Lemma 3.4 of [2].

Lemma 8 Let Z{r, i = l , . . . , m , r — l , . . . ,fc 6e bounded i.i.d. random

variables with bounded density, expectation 0 and variance 1. Let 7t = [$; —

^e m ^nierva^s- Let

qm = 7= ; and /e£ 5 ie an arbitrary subset of {1 ,2 , . . . , k} with
2(1 + (2/v3)m)

D

Applying this to our situation, we see that with probability at least qm we

can choose [k/2\ s-good blocks to change which will leave the deficit in each

left hand side in (1) at most 7]9/A0\/3. Substituting for fc, this is less than

(say) ra~1Om, for large n. Now apply Lemma 7. By using only s-good blocks,

with probability at least qm we can construct an integer solution £ to (1)

with objective value ZIP satisfying

0 < zLP - ZIP < kse + 2mn-1Om/7) < sa(log nf/n, (9)

for large n, with a = 2m+2Om5/rj2
y say. Now we try the s-good sets for

s = 1,2,.. . , £, seeking to find s so that (9) is satisfied. (Note that t can be

as large as n/(logn)2.) Let p = 1 — qm. Each "trial" is independent (since

14



it involves only the £tr). The probability that we fail t times is thus at most

p*, as required. This proves the first statement of Theorem 1. The second is

derived from it as follows.

Let t = [21ogn/log(l/p)], say. Using a simple bound on expectation, and

the fact that z^p — zjp < n always, we have

0 < E{zLP-zIP) < (a( logn) 2 /n)ELi^ s" 1 + V

< (a/(l-p)2)(logn)2 /n + l /n (10)

< (2a/(l-p)2)(log n)2/n,

for large enough n. The final statement of Theorem 1 follows from this and

Lemma 9 below. Let

Ci = {(*,i) : * ; € (0,2 log n/n]}.

It is shown in Lemma 9 that

£(|Ci|)<4m2logn. (11)

Now, there are at most 2m fractional bcisic variables by Lemma 3. Thus

clearly

2 log n/n
Taking expectations of both sides in this inequality, the theorem now follows

using (10) and (11). •

4 Proof of Theorem 2

Let 7} > 0 be given, and let 0 < r < 1 be the required failure probability.

Assume n is large enough that

Pr( (1) is 77-feasible) > 1 - r/2.

15



Now consider the following algorithm.

Algorithm OPTT

(1) t«-pog(r/2)/logj>l.

(2) Solve LP(b) giving xB. Modify this to £B.

(3) Let T = {(ij) : ^ = 0,0 < cy < ta(logn)2/n}, where c{j are the

reduced costs for xB.

(4) Compute minc£s, for all S and £s such that

(a) there is at most one (i, j) G 5 for all j .

(b)

(c) ^5 is feasible in (1), where £5 is obtained from £B by &j <— 1,

6i <r-0 (k ^ i), for each (i,j) G 5.

The minimising 5 at termination (if defined), gives an optimal solution £0 =

£5 to (1). This follows directly, since the search accounts for all feasible

integer solutions having objective value at most ZLP + ta(logn)2/n. Failure

because (1) is not 7/-feasible has probability at most r/2. The probability

that S is undefined is, by Theorem 1, less than p*, which is at most r/2 by

choice of t. Thus it remains to analyse the running time of OPTT.

Fix any dual feasible basis D, and let

Ji = (2(1- 1) log n/n, 2/ log n/n j ,

Ci = {( ; , j ) :c , ;eJ ,} .

{C\ has already been used in §3.)

16



Lemma 9 Pr(|C,| > 4m2logn) < n~2m2/3.

Proof For any column j not determining the U{y we have

^(number of (i, j) G C/) < ^(number of pairs i,r : ctj — Cj.j 6 J/)

< m(ro- ^ P r ^ e [A,A + 21og n/n]),

for A = U\CL\j + C2j — 1*2^2j>

< 2m2 log n/n.

Hence, using HoefFding's inequality,

2 logn) < e^10^3 = n~2m2'3Pr(|C/| > 4m2 logn) < = n

Since there 0(nm) dual feasible bases, and we are interested in only O(log n)

values of /, it follows from Lemma 9 that we may assume \Ci\ < 4m2logn

for all / in the optimal basis. We examine the search in OPTr relative to

the sets C\. To these we have only to add the (less than 2m by Lemma 3)

fractional variables which have been rounded down. The argument is now

similar to that in [2].

2 r - l

Thus let Rr = [J C\ (r = 1,2,...). We clearly need only consider S for

which
1 ta(logn)2/n I I fa logn 1 _l J L J "l(2--2)log»/»J L(FT2)J ""

say, if r > 1. Note that pr = 0 for all large enough r. Thus, with probability

1 — o(l), we need to check at most N sets 5, where
CO

AlN = 2 2 m x 2 4 m 2 l o g n x I J JV,
r=2

17



sets 5, where

r=0

tot
Now define r0 = max{r : — > m22r""x}, and note that r0 is independent

£ z*

of n. For all r, clearly iVr < 24 m 2 l o g n 2 r"1 . However, for r > r0, using well-

known bounds on binomial coefficients, we have the better bound

after a straightforward calculation, for large n and suitably chosen 7 (inde-

pendent of n and r). Hence

for a suitable d. Since each set S takes 0(n) time to process, the theorem

follows. •

5 Remarks

(1) For convenience in the development, we have stated all our results for

large n, but obviously they can be modified to hold for all n (simply

by enlarging the constants if necessary).

(2) We claim only that our results hold for constant m, but it would appear

that generally they can be modified to remain true if m grows slowly

enough with n. However, the running time is (at least) fi(Cm2logn), for

some constant C. Thus the algorithm is not provably polynomial time

for non-constant m.

18



(3) The approach we have developed here appears to be applicable to

some related problems, for example the multiple-choice multidimen-

sional knapsack problem.
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