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1. INTRODUCTION.

In recent years the analysis of phase transitions for mixtures of two or more non-interacting
fluids has been successfully undertaken within the Van der Waals-Cahn-Hilliard gradient theory of
phase transitions (see BALDO [1], FONSECA & TARTAR [5], GURTIN [9], KOHN &
STERNBERG [11], MODICA [12], OWEN [13], STERNBERG [15]). In the case where the
nonnegative Gibbs free energy W vanishes only at two points a and b, this theory permits to select
among all the minimizers of

LW(v(x» dx
with prescribed total mass
m= Lv(x) dx = meas(Q)(©a + (1 — O)b), with 6 € (0, 1),

those that have minimal interfacial area, i. e. it singles out those solutions v € {a, b} a. e. such that

the set {v = a} minimizes Pery(w) among all subsets @ of Q with meas(w) = 0 = meas({v = a}).

We consider an analogous situation in the context of nonlinear elasticity. Here the stored
energy density W is nonnegative and, due to frame indifference, W has two orbits of minima {RA |
R rotation} and {RB | R rotation} where A and B differ by a rank one matrix,

A =B + a®n.
It is clear that the problem

(P,) minimize
I W(Vu(x)) dx,
Q
for u such that
J' u(x) dx =m andj Vu(x) dx = meas(Q)(OA + (1 — 6)B)
Q Q

where 0 € (0,1)and m e R3 are fixed, admits infinitely many solutions. In particular, if E is a
subset of 2 layered normally to n and if meas(E) = 0 meas(£2) then there exists a solution u of (P)
with

Vu=B+ Xy a®n. (1.1

We search for a model that will select among all the solutions of (Pg) those of the form (1.1) for

which E is a solution of

(P*,) minimize Pergy(E'), where E'CQ is layered normally to n and meas(E’) = 6 meas(Q2).
In order to apply the gradient theory of phase transitions to this setting, we have to add to the
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former problem the constraint curl v = 0 which renders the analysis very difficult (see FONSECA
& TARTAR [6]). In this paper we study a model in which the second deformation gradient is
replaced by a Radon measure penalizing the formation of interfaces and where the spinodal region
is removed as in GURTIN's theory for phase transitions for fluids (see GURTIN [8]). In Section 2
we discuss briefly some notions and results of the theory of functions of bounded variation. In
Proposition 2.16 we prove the converse of a result due to BALL & JAMES [3] characterizing the
Lipschitz deformations satisfying (1.1) (see Theorem 2.14). In Section 3 we introduce a model
accomodating the constraint curl v = 0. If we disregard the hypothesis of frame indifference, it can
be shown that a sequence of minimizers of the regularized problems admits a subsequence
converging weakly to a solution of the problem (P,) of the form (1.1) with minimal interfacial area
(see Theorem 3.2). In Section 4 we adapt a model proposed by GURTIN [8] for the analysis of
fluid phase transitions. Here the spinodal region is removed and we penalize directly the interface.
In Theorem 4.5 we obtain the analog of Theorem 3.2 for the sequence of penalized problems. In
order to handle the frame indifference hypothesis, we combine the models of Sections 3 and 4. In
Theorem 5.10 we show that a sequence of minimizers of the approximation problems admits a

subsequence converging weakly to a solution of the problem (Py) of the form
Vu=R(x)B + X a®n), (1.2)

where R(x) is a rotation, Vu, R and Xg € BV(Q) "nL=(Q). We conjecture that R = identity a. e.

and that E is a solution of (P*;). We prove that the conjecture is confirmed if the set E is reasonably

smooth, precisely if E determines a partition of Q into countably many open, strongly Lipschitz,
connected domains (see Theorem 5.8). The rest of Section 5 is dedicated to finding results
asserting the required smoothness of E. In Proposition 5.19 we show that if a is parallel to BTn

then the outward unit normal to dENQ is parallel to n. In this case the set E is layered normally ton
and the conjecture is valid (see Corollary 5.20). If a is not parallel to B 'n, we prove in Proposition
5.19 that the normal to dE M Q is parallel either to n or to a known vector m, where m is a linear

combination of a and n. Moreover, it is possible to prove that dE N Q cannot have "corners" (see

Lemma 5.5). We do not know if these properties imply the smoothness of E required by Theorem
5.8, in which case the conjecture would be confirmed.



2. STATEMENT OF THE PROBLEM AND PRELIMINARIES.
We discuss briefly some results of the theory of functions of bounded variation (see EVANS &
GARIEPY[4], GIUSTI [7)).

Let Q be an open bounded strongly Lipschitz domain of R™.

Definition 2.1.
A function u € L1(Q) is said to be a function of bounded variation (u € BV(Q)) if
J'QIVu(x)I dx :=sup { J.ﬂu(x). dive(x)dx |pe C(l)(Q; RY, llgll. < 1} < 400,

It follows immediatly that if u_ — u in L(Q) then

J' [Vu(x)| dx < lim i%f I [Vug(x)| dx. . 2.2)
Q 203
It can be shown that the sets
{u e LY(Q)] J' u()] + |Vux)| dx < C < +oo} (2.3)
Q
are compact in L1(Q).

Proposition 2.4.

There exists a constant C > 0 such that for all f e BV(Q)

n-1

J f(x) dx =0 = ( I It dx) "< cj IDf(x)| dx.
Q Q Q

Definition 2.5.
If A is a subset of R then the perimeter of A in 2 is defined by

Per(A) := I [Vxa(x)| dx = sup { I divp(x)dx| e C&(Q; R, lloll. < 1} ,
Q A
where X A denotes the characteristic function of A.

Proposition 2.6.

Iff, g e L™(Q) N BV(Q) then f.g € L™(Q2) " BV(Q).



Clearly, if A C Q and if

a ifxeA
ux) = {

b ifxe Q\A

then u € BV(Q) if and only if Perg(A) < +oo. Suppose that E is a set of finite perimeter in R™,
There exist a Radon measure ||0E|| and a ||0E|| - measurable function
vg: R > R I vgll=1 |9E]|a. e,
such that
jdiv o(x) dx = f o(x).vg(x) dIFE|| for all p & CY(R™;R).
E R®

Definition 2.7.

Let x € R™. We say that x € 0*E, the reduced boundary of E, if
IIPE|| (B(x,r)) >0 forallr>O0,

Ivg®li=1

and
. 1
‘h'glo IOE||(B(x,€£)) J Ve(y) d|I9E|| = vg(x).
B(x,)
Theorem 2.8. (Blow-up of the reduced boundary)

If x € 0*E then
Xxs+ EX2 = Xy inLigc ase— 0%,
€

where

H(x) := {y e R"| Ve(x). (¥ - x) < 0}.

Theorem 2.9. (Generalized Gauss-Greeen Theorem)
divpdx= J. RY
J'E P g O VE dH,_,
for all ¢ € Cy(R™; R™).

Given f € BV(Q), we define



£\ _ «\_o A . meas(B(x-e)r{ f>t» _
Ll(x).—apF])r/n_sgg)(ffy) = |nf'-%[t i Iér_r\» é‘»

and
-if\ vV - *«\ \ir meas(B(x,e)n{f<t» -0
X (x):=apluninff(y) :sup-{lt| lun I
Yy -» X | e-»0 g"
Let

J:={xe Q| AX) < ux)}
denote the set of points at which f is not approximately continuous.

Theorem 2.10.

Assumethat f e BV(£2). Then X and \i are Borcl measurable and
(1) meas(J) = 0;
(i) -007 X(X) €,n(X) ™ +00 in Q;

(in) hm AT—rr = if(y)
¢_»t meas (B(x, €)) Jg(x, t)

TT—  dy=0 (2.11)

for HIr a.e. X € Q\J;

(iv) for HJJ a. e. x e Jthereexistsaunit vector v such that

: 1 n/n~1
lim fy)-px)" dy=0
e->0" meas (B(x, iE)NH) JB(MJ““Z

and (2.12)

. 1 n/o—}
| Ify) - Ax){ " dy=0.
E-I—IT*]O+ meas (B(x, E)H,) IB(XM v : ¢

Consider a hyj>erdadic body that occupies in a reference configuration a bounded, smply

connected, strongly Lipschitz domain Q CK 2, with meas (Q) = 1. Let W : M*2 -» [0, +¢]
denote the stored energy density, and assume that
(HI) W(F) = +00if and only ifdet F<O0;

(H2)W(F) = OifandonlyifFe {RA,RB| Re O*(IR%}, where A =B + a®n, ||| = 1, a*0.
Here, and in what follows, M ®*? is the set of real 3x3 matrices and O*(IR®) denotes the set of

rotations of IR® Let 6 e (0, 1) and me IR® be fixed, and define the class of admissible
deformations



a, ;={ ue Wh(Q; RY)| J' u(x) dx =m, LVu(x) dx =BA + (1 - 8) B} .
Q
In this paper, we study the variational problem
(P,) Minimize
j W(Vu(x)) dx,
Q

forue GO.

Remark 2.13.

(P,) admits infinitely many solutions u such that Vu € BV(£2). In fact, let o be such that

meas {x € Q|xn>a} =06,
and define
C:=m—-j Ax dx — (Bx + aa) dx.
{xe Q xn>a} {xe Qxn<a}

Setting
Ax+C ifxn>a
u*(x) := {

Bx+aa+C ifxn<a,
it follows immediatly that u* is a solution of (Py). Similarly, an infinit set of Lipischitz solutions
with gradients taking only the values A and B can be found by layering €2 by finitely many parallel

planes with normal n, in such a way that meas({ x € Q| Vu(x) = A}) = 0 (see Fig. 1).
y il
VA —

A

Fig. 1
The following result is due to BALL & JAMES [3].

Theorem 2.14.

LetE C Q, 0 < meas (E) < meas (2), and let X E denote the characteristic function of E. If u
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€ W1’°°(Q; R3) satisfies

Vu= Xg C+(- XE)D,
then

C=D+bH®m
forsomebe R3, me R3, |jm|| = 1. Moreover, for all convex set ' C Q, ENT and Q\E)nT

consist of parallel layers normal to m; precisely, there exists a Lipschitz function f with f' € {0, 1}
a. e. such that

ENnC={xeT |f(xn)=1}.

We define the set
& := { E C Q| meas (E) = 0 and for all convex set I' C Q there exists a Lipschitz function f

withf'e {0,1}a. e.suchthat ENT'={xe I |f(x.n)=1}}.

Remark 2.15.
It is clear that the solutions u exhibited in Remark 2.13 verify

Vu=B+ Xg a®n, withEe R and Vu e BV(Q). (2.15)

We prove that the converse of Theorem 2.14 is also true.

Proposition 2.16.

IfE e 3 then there exists u € W1’°°(Q; R» N Go such that

Vu=B+XEa®n.

Proof. Suppose for simplicity that n = ;. Let x; € £ be fixed, and define for x € Q the
function

1
00 :=[ Xg dx3=j ¥ p(0(s)) 0(s) dis
Yx 0

where Y, = {o(t) | te [0, 1], a(0) = x5, a(1) = x} is a piecewise C! curve in Q joining Xg to x.



(i) © does not depend on the choice of the curve v,. Let a, B: [0, 1] = Q be piecewise C!
functions such that a(0) = B(0) = x, a(1) = B(1) = x. As Q is a simply connected domain, there
exists a C! function H : [0, 1] x [0, 1] — Q such that H(O, t) = a(t), H(1, t) = B(t). Define

! d
F(s) = J; Xe(Hs, 0) S-H(s, 0 dt

We want to show that F(0) = F(1). Clearly, it suffices to prove that for all s, € [0, 1] there exists

€ > 0 such that F(s) = F(sy) for all s € [0, 1], Is - syl < €. Let sy € [0, 1] and let

N
H(sg, t) € Y B(x;, &) c Q forall te [0, 1], where xy=x.
i=

As H is smooth, there exists € > 0 such that
N
H(s,t) e 9 B(x;, &) for|s—sgl <€ andforallte [0, 1].

Let f, be such that
X e(x) =f{'(x.n) for x € B(x;, €). 2.17)
Define the open sets

o,:={te R| 3 xe B(xpe) N B(x;,1,€,,,) such that xn =t},i=0, ..., N-1.
As

fi=f, inw,
we can assume without loss of generality that

fi=1f,, ino, (2.18)
Choose points o(t,), p(t,) such that 0 < t; <... <tyy < 1 and

o(t), B(t) € B(x; ,€, ) N B(x;€), fori=1, .., N,
where o(t) := H(sy, t) and p(t) := H(s, t). By (2.17) and (2.18) we have

1 )
F(sg) =.[0 X e Hlso, 0) S-H(so, 0 de

t N-1 tyy 1
=J fo(o(t).n) o'(t).n dt + z I fi(o(t).n) o'(t).n dt + j f'y(o(t).n) o'(t).n dt
0 i=1"4 t
N-1
= fo(o(t)).n) — fy(xg.n) + 2 [fi(o(t;11).n) - fi(o(t;).n)] + fy(x.n) — fiy(o(ty).n)

i=1



= fN(x.n) - fo(Xo.n).
In a similar way, we obtain
F(s) = fiy(x.n) - f(x4.n).
(ii) O is a locally Lipschitz function. In fact, let B(x, €) C Q and let y € B(x, €). By (i) we have
1
10(x) — 8(y)| < |J; X (1 —x +ty) (y=x)n dt]
<|kx-yll.
(iii) We prove that VO = X pn in D'(Q). Let B(x,€) C C Q and let
ENnB(x,€) ={y € B(x,&) | f(y.n)=1}.
By (i) we deduce that
1
0(y) =J'0 Xe((1 =x + ty) (y—x).n dt

1
=.L f((1 - t)x + ty) (y—x).n dt

= f(y.n) - f(x.n).
Thcrcforg, if e DB(x,€)) and ifi= 1, 2 we have
9 e _ i)
<3 0> jm {fen) — fy.0)] 520) dy
=0
and 20 a9
-— > = f(x.n) — f(y.n)] =—
<ax3 o> Ia(x, s)[ (x.n) - f(y.n)] 3, (y) dy
=I f'(y.n) o(y) dy
B(x, £)
= [ o ay.
E
(iv) Finally, set

u(x) := uy + Bx + 6(x)a, with u,, such that
I u(x) dx =m.
[o)

Clearly,u e wl=@; R3) A @, and

Vu=B+‘X,Ea®n.

We search for a model that will select among all solutions of (P,) those of the form (2.15)
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with minimal interfacial area, i. e. where E is a solution of the geometric variational problem:

(P*y) Minimize Per(E) with E'e 3.
In Sections 3 and 4 we consider simplified models where W does not satisfy the hypothesis of
frame indifference.

3. REGULARIZATION.
Assume that W is continuous and verifies (H1) and

(H2") W(F) =0 if and only if F € {A, B}.

A B
Fig. 2

In view of Remark 2.15, we define the class of admissible deformations
a, :={ ve WH(Q; RY) | Vue BV@), j u(x) dx = m,j Vu(x) dx = 0A + (1 - 0) B}
Q Q
and for € > 0 we introduce the "regularized" problem:
(P¢) Minimize in Gl |
E(u) = IQW(Vu(x)) dx+e Lu)vu(x); dx.
Here and in what follows we use the notation

3
Ju:
|[DVu]| =IQ|DVu(x)I dx = 2 IQDa—::(x)I dx.
j

Lj=1
Proposition 3.1.

For all € > 0, (P¢) admits a solution.

Proof. Let u* be as defined in Remark 2.13. Then
E (u*) = € C* where C* :=area {x € Q| xn=a}.

Let {uj}be a minimizing sequence with j large enough so that
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Ee(uj) <eC* +1.
Thus

{IlDVujII} is a bounded sequence
and so, by Proposition 2.4 and Poincaré's inequality, we deduce that

{v;}is a bounded sequence in W!%(Q)

and
{Vuj} is a bounded sequence in BV(Q).

By (2.3) we conclude that there exist u € G, W1*2(Q) and a subsequence {u_} such that
u, - u weakly in Wi32(Q)

and

Vu_, — Vu strongly in LY(Q).

By Fatou's Lemma and (2.2) it follows that
E(u) < limnf E(uy) = inf E().

Theorem 3.2.

Let v, be a sequence of minimizers of E, in Q 1 There exist a solution u of (Py) and a
subsequence u, such that

u, = uin W32 (Q; R?) weak
and

Vu=B + Xga®n a.e.inQ,
where E € 3 is a solution of (P*;).

Proof. Considering u* as in the proof of Proposition 3.1, we have
E(v) <E(u*)=eC*

and so

JQIDVve(x)I dx <C*.

11



Thus, by Proposition 2.4 and Poincar6's inequality, we conclude that

{v¢} is abounded sequencein W¥¥4(Q)

and

{Vv¢} isabounded sequencein BV(£2).
Hence, by (2.3) there exist u e GjO W"™"(Cl) and a subsequence {u¢} such that

ug-»u  weakly in W32(Q)

and

Vug -» Vu grongly in LI().
By Fatou's Lemmai it follows that
jnW(Vu(x)) dx < (Igrg | ngfQ W(Vug(X)) dx

<limeC*
=0.
Therefore

Vux) e {A,Blaex€Q
and so, by Theorem 2.14, we deduce that

Vu(x) =B + %¢e (X) a®n, whereE e 2>.
Let E' e & and, by Proposition 2.16, leevE W~ Q; IR} n Qq be such that
Vv = B+ %g,a®n.

If PerQ(E") < +o0 then v e Q, and so

Eg(v) = ef pVv(X)|dx

2 Eg(up)
"e f DV dx.
e ng ug(x)[dx

Hence, by (2.2) we abtain
f Pvvx)dxzliminf f [DVug(x)| dx

£ f |[DVu(x)|dx,

12



and so we conclude that
C Perqy(E") 2 C Pery(E)

where

3
C= D, laj Ibj.

Lbj=1

4. DIRECT PENALIZATION OF THE INTERFACE. REMOVAL OF THE
SPINODAL REGION.
Here, we adapt to our present setting a model proposed by GURTIN [8] for phase transitions

in the case of a mixture of two fluids. Let D, and D, be closed, convex, bounded subsets of {F €
M?3%3| det F 2 0}, with A € int D, B € int D,and D, N\ D, = . Assume that W satisfies (H1),
(H2") and

(H3) (polyconvexity) there exist convex functions G;: M3%3 x M3 x (0, +e) = [0, +e0),i = 1,
2, such that

‘W(F) =G, (F,adjF,detF) forallFe D;,detF > 0,i=1, 2.

- -
v - - - ro-
P R
- - - - rw--ao

A B
<—D1 —> <—D2—>

Fig. 3

Let
Q, = { ue W(Q; R%) | Vue DyUD, ae., Inu(x) dx=m, IQVu(x) dx=06A+(1-6) B} ,

and consider the problem:
(Py) Minimize in G,
J. W(Vu(x)) dx.
Q

13



Ifue 02 we define

Q,() := {x e Q| Vu(x) € D;}
and
I(u) := Pergy(Q;(u)).
We introduce the family of penalized problems:

(P,) Minimize in @,
E,(u) = j W(Va(x)) dx + € ().
Q

Proposition 4.1.

For all € > 0, (Pg) admits a solution.

Proof. Let {uj} be a minimizing sequence. By Poincaré's inequality we have

llu; — mlly 2(qy) < Const. ||Vl 2q) < Const. ||Vl

and so, as {IIVujIIw} is a bounded sequence, there exist u € H!(Q) and a subsequence {uy}such
that

u, —>u weakly in H(Q),

u, —u strongly in LX(Q)
and (see BALL [2])
(Vup, adj Vu_, det Vu_ ) — (Vu, adj Vu, det Vu) in L*(Q) weak *.
Moreover, with u* as in Proposition 3.1, for m sufficiently large we have
€l(u,) <E(u*)+ 1= €Perg({xe Q|xn2a})+1,

thus the sequence
{)(,Ql(u m)} is bounded in BV(Q2).

By (2.2) and (2.3) there exists a subsequence {u, } and a subset @ of Q such that
an(“k) — A iIn LI(Q) strong

and
Perg(@) < lim inf I(u,). (4.2)
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Hence, as D, is a closed convex set, and since
an(nk)vuk € Dl a.c.

and
X,V = XoVu in L7(Q) weak *,

it follows that
X Vu e D,a.e.

and, in a similar way,
(1 'Xm) Vll € Dz a. .
Therefore we conclude that

ue G2.

Let
G,(F, H, ) if (F, H,35)e M™ x M** x (0, +c)
g](Fs H’ 8) =
+oo, otherwise.

As g, is a nonnegative, convex and lower semicontinuous function, there exists an increasing

sequence of piecewise affine convex nonnegative functions g, . Such that
81 = SUP 81,n-

Since
0< Xg @ g1.2(Vuy, adj Vu, det Vu ) SC <40 a.e.

there is a subsequence {u o} such that
X 0y, ) 81,0(VUk 0 adj Vuy g, det Vuy ;) — hy in L7(Q) weak *

and so
X(D 81 ,n(Vuk'n, adj Vuhn, det Vuk'n) o 4 hn in L"(Q) weak *.

On the other hand, since
(Vuk’n, adj Vuk.n, det Vuhn) — (Vu, adj Vu, det Vu) in L*(Q) weak *
and g, , is a convex nonnegative function, we have that, after extracting a subsequence of {u; .},
81.0(Vuy p, adj Vuy ;, det Vu, ) — L, 2 g; ,(Vu, adj Vu, det Vu) in L™(Q) weak *.
Therefore
h, = Xglh2 Xg gl,n(Vu, adj Vu, det Vu) a. e. in Q.
We conclude that

15



J X o 1.0 (Vu, adj Vu, det Vu) dx < lim inf W(Vuy) dx
Q ’ Q,(u)

and so, by Lebesgue's monotone convergence theorem,

I g; (Vu, adj Vu, det Vu) dx <lim inf I W(Vu,) dx 4.3)
() Q,(u)
and, in a similar way,
J' g, (Vu, adj Vu, det Vu) dx < lim inf W(Vuy) dx. 4.4)
Q\w QQ,(u)

Therefore, det Vu > 0 a. e. in Q and (4.2), (4.3) and (4.4) yield
E (u) < lim inf E.(u,).
Theorem 4.5.
Let v, be a sequence of minimizers of E_ in Gz' There exist a solution u, of (Py) and a
subsequence u, such that

u, - u in Wh(Q; R3) weak ,

and

Vu=B+ Xga®n a.e. inQ,

where E € 3 is a solution of (P*)).

Proof. Let u* be as in Remark 2.13. Since Vv, € D,U D, a. e. and
e I(vy) SE(vy) <E.(u*) = € Const,, (4.6)
as in the proof of Proposition 4.1 we deduce that there is a function u € H(Q) a subsequence {u.}
such that

u, > u weakly in H(Q),
u. > u strongly in L%(Q),

Vu, — Vu weakly * in L=(Q),

Xo@) = Xe in LYQ) strong,
Perg(m) < lim inf I(uy) @.7)

and
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| weva(o) ax < tim nf LW(VuE(x)) x, 4.8)
where

ue Gz' XmVu € Da e and(1-Xg) Vu e Dya.e.
By (4.6) and (4.8) we have

WMVu(x))=0a.e.in Q
and so

Vu(x)=B + XgX) a®n a.e.xe Q
and, by Theorem 2.14, e R.LetE'e R and, by Proposition 2.16, let ve W1=(Q; R3) Go
be such that

Vv=B + Xpa®n.

If Perp(E") < +eo then v € G, and
E(v) = € Perg(E") 2 E¢(u;) 2 € I(uy).

Therefore, by (4.7) we conclude that
Per(E') 2 lim inf I(ug) 2 Perg(w).

S. REGULARIZATION AND DIRECT PENALIZATION OF THE
INTERFACES.

Suppose that W satisfies the hypotheses (H1) and (H2) and consider (Py) and (Pg) as in

Section 3. In a similar way, we obtain existence of solutions v, of the problem (Pg), with
u, - uin W32 (Q; R?) weak,

where {u_}is a subsequence of {v.} and u is a solution (Py). Thus, u € Q P Vu e BV(Q) and, by
(H2),

Vu(x) =R(x) (B + X.(x)a®n) a.e. in Q, where R(x) € O*(R?).
We search for a model implying that

Vu e {A, B} a. e. in Q and E is a solution of (Py*). (5.1)
We show that (5.1) is valid if E is a sufficiently smmoth set. Assume that E determines a partition
of Q into countably many strongly Lipschitz connected subdomains €2,. Then
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Vu= 2 R;B+ X QNE a®n), with R; constant rotations.
i

Here, we used the following result (see RESHETNYAK [14] and Appendix Proposition A.1).

Proposition 5.2.
Let Q be an open bounded connected domain of R and letu € W= (Q; R®) be such that

Vu € O*(R™) a. e. in Q. Then u is an affine function.

By Theorem 2.14, if Q, and Qj are such that int (€2, U Ql v (@ QN3 Qj)) is a connected
set, then

Vu= X g RiB + ngRj(B+a®n)inQiqu
with the interface between Q.iandQ.jplanar and
Rj(B+a®n)=RiB+b®m, (5.3)

forsomebe R3, me R3,|m| =1.

JAMES [10] studied the condition (5.3) in the context of elastic crystals. As a consequence
of his analysis, we have the following result (see Appendix Lemma A.5)

Lemma 5.4 (JAMES [10])

Givenaandne R3 an>-1,a#0and|n]=1,letRe O*(R3),be R, me R, |m||=
1, satisfy the equation

R(1 +a®n)=1 +b®m.
Then

(i) R = 1 and m is parallel to n if a is parallel to n;
(ii) If a is not parallel to n, either R = 1 and m is parallel ton,or R2# 1 and R = (1 + b ®m) (1

+a ®n)! where b ®m is uniquely defined, b € Span {a, n} and
2a + |lal’n

=% >
(122 + |{al "]

Clearly, (5.3) is equivalent to
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RTR;(H +a®B"'n)=H +R."b®B~'m.

First case: ais parallel to B~'n.
By Lemma 5.4 we conclude that mis parallel ton and Rj = Rj. Thus, thereis afixed rotation R
such that
Vu(x) =R (B + %g(x)a®n) a e.in 12,
and so, by Theorem 2.14 and due to the constraint

f Vux)dx=eA +(1-e)B,

weconcludethatEe J& andR= 1. Hence

Vu€ {A,B} aeinQ,

and (see Theorem 3.2) E is a solution of (P,*).

Second case: aisnot parallel toB™=n.
By Lemmab.4, either Rj = Ry and misparallel ton, or

VRIQ,
where

Q:=(1+b'<8>B~"m) (11 +a~B"n)-*

with b’ € Span {a, B~"n} uniquely defined and
2B a-f»all’n
m= T >
2B "a + ||af| "=l
Hence, locally eitherE islayered normally to n or E islayered normally to m* In the next lemmawe
prove that the boundary of E in Cl cannot have "corners'.

Lemma 5.5.
dEnQ:p_c_alKi u K\,

where, for some p,, X, € IR, TC is a connected component of il n {x.n = p.}, %\is a connected

component of Q n {x.m =x.} and Hy(ic.n TC") = 0.

Proof. Suppose that there exist XQ e ft, e >0, p and x such that either
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(i) B(xq, &) N E = {x € B(xg, €)| (x — x¢).n < p and (x — xo).m < 1} (see Fig. 4)

or
(ii) B(xg, €) N E = {x € B(xg, €)| [(x — x¢).n — p] . [(x — xp).m — 1] > 0} (see Fig. 5).

(O]
1
n
2
© X
’ 4 0
(0]
m

Fig. 4 Fig. 5
In case (i) we have, using the notation of Fig. 4,
{ Rl (B + a®n) in (O]

Vu=
R2B in 0,

and so, there exist b, b' € R3 such that v

R,+ b®B Tn=R,(1 +a®B 'n) (5.6);
and

R, + b'®B 'm =R,(1 + a®B 'n) (5.6)2
Since two rotations cannot differ by a nonzero rank one matrix, (5.6), implies that R, =R, and so
by (5.6), we have that m is parallel to n, in which case there are no corners. If (i) holds then
[ RlB in (0]

Vu =1
R3B in 0)3

The necessary compatibility conditions imply that there exist b, b', ¢, ¢' € R> such that

R, + b®B Tm = Ry(1 + a®B Tn), (5.7,

R, + c®B Tn = Ry(1 + a®BTn), (5.7),

Ry + b'®B"m = R,(1 + a®B Tn) (5.7)
and

R, + ¢'®B Tn = Ry(1 + a®B Tn). (5.7)

From (5.7), and (5.7), we have
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which, together with (5.7), and (5.7); and Lemma 5.4, yield

R;TR, and R,TR, € {1, Q}.
If m is not parallel to n thenR; # R, and so

RTR,= RTR;=Q
which implies that

contradicting Lemma 5.4 (ii). We deduce that, as in case (i), m and n are parallel and JE N Q does

not have any "corners".

We conclude the proof of the second case (a is not parallel to B'Tn). By Lemma 5.5 we deduce

that there is a constant rotation R such that
Vu e {RQ*B, RQY(B + a®n), RQY"'B, RQ*(B + a®n) | k € Ny},

with
)" 0y RQ"B + B, RQ (B + a®n) + 1, RQ“"B + ny RQ“(B + a®n) = B+ 6a®n,
=0
wherek
%, Bes Yio N 20, z(ak"' B+ %+ =1,
ai+[3i=o=>a::(;3j=o forall j 2 i
and

‘Yi+1’1i=0=$’yj+‘nj=0 foralljZi.

Suppose that o, + 8, > 0 and let x.n = 0, x # 0. Then
Bl =11 Y, (0 + By) QBx+ (i + ) Q7B < Y, (o + By + Y + M) IBxl = (1Bl

k=0 k=0

and so, as o, + B, o, + B, > 0, we have
QBx = Bx for all x such that xn =0. ,
As det Q = 1 we conclude that Q = 1 which contradicts Lemma 5.4. Therefore we have

o, +P,=0foralli21
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and, in a similar way,
Y,+M;=0foralli>1.
Finally, we conclude that
Vux)=R (B + Xg(x)a®n) a.e. in Q,

reducing this case to the first case.
The result that we proved can be stated as follows.

Theorem 5.8.
Letue Gl be such that

Vu(x) =R(x) (B + X(x)a®n) a.e. in Q, where R(x) € O*(R?).

If the set E determines a partition of Q into countably many strongly Lipschitz connected
subdomains then

Vue {A,B}a.e.inQand E € R is a solution of (Py*).

Next, we try the same approach as in Section 4, with the hypothesis (H2) replaced by
(H2")if Fe D, then W(F) =0if and only if Fe {RA|R € O"’([R3)} ND,,

if Fe D, then W(F) = 0 if and only if F € {RB|Re O*(R%*} N D,.
As in Theorem 4.5 we obtain the existence of a subsequence {u,} of solutions of (Pg) such that

u, > uin Wh=(Q; R3) weak «
and
I(u) <lim inf I(u).

€e—-0

where u is a solution (Py). By (H2") we have

Vu(x) =R(x) (B + Xg(x) a®n) a.e.inQ, where R(x) € O*(R3) and Xg € BV(Q).

In order to be able to conclude (5.1) using Theorem 5.8, we neeed to obtain more information
regarding the set E. As we will see, this is possible if we consider a model that combines the
approaches undertaken in Sections 3 and 4.

Let D, and D, be closed subsets of {F € M3*3| det F 2 0}, with A € int D, B € int D, and
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D, "D, = @. Assume that W is continuous and satisfies (H1) and (H2"). We define the class of

admissible deformations
Q= {u e W@ RY)|Vue D,UD, a. e., Vu e BV(Q), J udx=m, J' Vudx=B + Ga®n}.
Q Q

Consider the approximating problems

(P,) minimize in Q

E,() = LW(Vu(x)) dx + sIQIDVu(x)I dx + & I(w).

Proposition 5.9.

(P, ) admits a solution.

Proof. Let {uj} be a minimizing sequence such that

Es(uj) SE(u¥*)+1=€eC*+1 forallj,
where u* is the particular deformation introduced in Remark 2.13. As
J‘ [DVu;l dx and Perq(€2;(u;)) are bounded
Q
by Proposition 2.4 we have
{u;}is bounded in wi3z,
{Vuj}is bounded in BV(Q2)

and
{ X{)l(uj)} is bounded in BV(Q).

Hence, there is a subsequence {u_ }and there exists u € W12 such that
u, — u weakly in W1372,
u, — ustrongly in L32,

Vu_ — Vustrongly in L1, Vu € BV(Q)

and
Xa,u,) =X strongly in L, with X € BV(Q).

Therefore, and since

[ 10,0V~ XoVul x5 | XolVig - Vul ax+ [ 1 X0, = ol Vil

23



213

173
SI IVuy, — Vu|dx + U 'Xﬂl(um) - X(,,Idx) U IVuml:VZ dx) ,
Q Q Q
it follows that
X o) Vy; 5K g Vu strongly inL!
which implies that
‘x,mVu €D, ace

and, in a similar way,

1 -‘)(,w)Vu € D,a.e.

We conclude that u € Q and, by (2.2) and Fatou's Lemma,
E,(u) < lim inf E(u,).

Theorem 5.10.

Let v, be a sequence of minimizers of E, in Q. There is a subsequence u, converging weakly
in W1¥2(Q; R3) to a solution u of (P,) such that
Vu(x) =R(x) (B + Xg(x)a®n) a e in Q.

Moreover, u € WL=(Q; R3) and Vu, R, X.. € BV(Q).
E

Proof. Since

E(vy) SE (u*) =eC*,

as in the proof of Proposition 5.9 we can extract a subsequence {u,} and there exists u € @ such
that

u, — u weakly in wi3z2,
u, — u strongly in L372,

Vu, — Vu strongly in L1, Vu € BV(Q),
Xau) — X strongly inL', with Xg € BV(Q)

XEVu € D;a.e.and (1 -XE)Vu €D,ae.
Since, by Fatou's Lemma,
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LW(vu(x)) dx < lim inf LW(Vue(x)) dx =0,
we deduce that

Vu(x) =R(x) (B + X g(x) a ®n) a.e.in Q.

Moreover, as

Vu and Xg € L™ NBV(Q),
by Proposition 2.6 we conclude that

Re L*NBV(Q).

Note that, since L2 is a strongly Lipschitz domain and as Per(E) < +oo, E is a set of finite
perimeter in R3. Also, by Theorem 2.10, to each entrie Rij of the rotation R it correspond a set Jij
and functions Kij, My Vi with || Vi || = 1, for which (2.11) and (2.12) hold.

Proposition §.11.
3
ForH,a.e.xe (0*E\ Y J5) N Q, vg(x) is parallel to n.
ij=

3
Proof. By (2.11), for H, a. e. xg € (0*E\ Y Jip) N Q we have
i

1
HEm
e - 0 meas(B(xg,€)) B(x,,€)

IR(x) - F(xg)? dx =0 (5.12)

where F(xp) is the matrix with entries

A+ Hii
F(xo)ij - 1) 5 11.

For € > 0 sufficiently small, define the difference quotient
ulxg+ e(x — xg)) — ulxg)
€

fory € B(xy, 1).

Ve(x) =

As
Vve(x) =R(xg + &(x —x0)) (B + X + E~% (x) a®n),

€

it follows that {v.} is bounded in Wl’”(B(xo, 1)), and so it admits a subsequence converging in

W1'°°(B(x0, 1)) weak * to a function v. By (5.12) and Theorem 2.8, we have
Vv(x) =F(xg) (B + X gixy(x)a®n) (5.13)

where
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H (xp) = {X€ IR*|VE(XoMX-X0)<0}.
We claim that
F(XQ)isarotation.
Indeed, by (5.12)
0= Km f |R(x0+e(X-x0))-F(Xo)|dx
= lim f 11 - R(Xs+ & - X0))" F(x0)| dx
and so

, - T
( lim [ R(Xot+e(Xx - xn)) dx \I F(Xo) =measB(xo, 1)1

which implies that
FT(x0)F(x0)=I.

Finally, by (5.13) and (5.14) we conclude that n is parallel to veg(Xo).

Proposition 5.15.

ForHa e. xe 3*EnJ", v.lj(x) is parallel to vg(X).

Proof. By (2.12), for H* a. e. xo € 9*E nJ{-J andfordl k, 1 e {1, 2, 3} we have
Ria(Xo + &(X - X0)) -> X H ~ <> Mki*) + XiQUo) W ~icxQ) strongly in L*

where

H*ki(Xo) = {x & IR Via(Xo).(X - Xo) > O}
and

H"(Xo) = {xe IR} vAXoMx - Xj < 0}.

(5.14)

Suppose that vyy(Xo) is not parallel to Ve(XQ). AS B(XQ, 1) nH"(XQ) is sliced by the planes through

Xo With normal vy (Xo), let CD be the union of the two adjacent slices G>" and (D' with common

boundary the portion of the plane with normal vi{x,). For e > O sufficiently small consider the

difference quotient
u(xo-he(x-xo))-u(xo)

a for x € B(XQ, 1).

Ve(X) =

26



As in the proof of Proposition 5.11, {v }admits a subsequence converging in W1'°°(B(x0, 1)) weak

* to a function v, where, by Theorem 2.8 and (2.12),
Vv(x) = S(x) (B + X p(x)(x)a®n) in B(xg, 1)

and
St =X 1t tx B a0+ Xtz 0 M)
Therefore
S'B inow'
Vv(x) =
SB inw (5.16)
where
Si1= M), Si=Ay(xg) and Sj < S (5.17)
We claim that
St and S~ are rotations. (5.18)
Indeed '
0= l’:li_r’nO J'B(xo’l)hm+ IR(xg + &(x — xp)) — S*| dx
. T, +
= lim_ J’B%I)Mﬂ ~ RT(xg+ e(x — x¢) S¥ dx
and so
T
( sﬁglo J‘B(xo'l)m+R(xo+ e(x — xg)) dx) S* =meas(B(xq, 1n®")1
ie.

(SHT S* = 1 and, in a similar way (S7)T S = 1.
Finally, by (5.16) and (5.17) we conclude that S* and S" differ by a nonzero rank one matrix
which contradicts (5.18).

Proposition S§.19.

(i) If a is parallel to B™'n then v(x) is parallel ton for Hy a. e. x € *EN Q.

(ii) If a is not parallel to B-Tn, then Vg(x) is either parallel to n or tom forHya.e.xe 0*ENQ.

3
Proof. By Proposition 5.11, for H, a. €. xg € (0*E\ Y J;;) N Q we have vg(xo) parallel to n. On
. ij=

3
the other hand, by Proposition 5.15 and (5.18), for H, a. e. x5 € 0*E N( Y J;;) there exist rotations st
ij=
and S” such that S* # S™ and
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R(xg + €(x — xg)) = S* strongly in L'(B(xg, 1)NH"(xg))
and
R(xg+&(x — x)) = S~ strongly in L'(B(xg, )H (xg)).

Therefore, setting
u(xgt e(x — xg)) — ulxg)
£

for x € B(xg, 1),

ve(x) =

{v}admits a subsequence converging in W1'°°(B(xo, 1)) weak * to a function v such that

S'B if vg(xg). (x — x9) >0
Vv(x) =

S(B +a®n) if vg(xg). (x —xg) > 0.

Thus, there exists b € R> such that
S7(1 + a®B Tn) = S* + b®B Tvg(xy)

and so, by Lemma 5.4. either a is parallel to B"Tn and then Vg(x) is parallel to n forHya.e.xe
*ENQand ST =5 (i. e. H, a. e. x € 9*E is a point of approximate continuity of R) or a is not

parallel to B-Tn and then Vg(x) is either parallel tonortom forHya.e. x€ *ENQ.

Corollary 5.20.
If a is parallel to B*"n, then

Vu=B + 'X,Ea®n a.e. inQ,

where E € 3 is a solution of (Py*).

Proof. By Proposition 5.19, v,(x) is parallel to n for H, a. €. x € *E N Q. We can

suppose, without loss of generality, that n = e,. Hence, by the Generalized Gauss-Green Theorem

2.9,
N
axl -

and so,a 5
a_XJ(Sh-'- XE akni) = K(skj"‘ XE aknj) for all k, l,] € {1, 2, 3}

IXg ,
0=-§;2— in D'(Q)

Therefore, there exists v € W1’°°(Q; [R3) such that
Vv=1+ Xga®n ae.inQ
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and, by Theorem 2.14, E is layered normally to n. As Per(E) < +oo and Q is a strongly Lipschitz

domain, if we set

Qp :={x e Q| dist(x, Q) > 1/k},

then E N €, is formed by finitely many slices normal to n. By Proposition 5.2 in each one of these

slices either

Vu=RB

or
Vu=RB + a®n),

with R a constant rotation. Due to the necessary jump condition of Vu across an interface, for any
two adjoint slices we have

RB+ a®n)=RB+ b®n

forsomebe R3. Asais parallel to B Th, from Lemma 5.4 we obtain
R =R

Using induction in k, with k — +eo, we obtain

Vux)=R (B + Xg(x)a®n) a.e.inQ,

for some fixed rotation R, and so (see proof of Theorem 5.8, first case) we conclude thatE € 3 is

a solution of (Py*) andR = 1.

Final comments. We conjecture that the solutions obtained in Theorem 5.10 satisfy (5.1).
However, we were able to confirm the conjecture only in the case where a is parallel to B Tn (see
Corollary 5.20). If a is not parallel to B Tn, by Theorem 5.8 the conjecture remains valid if E is
sufficiently smmoth. By Lemma 5.5, Theorem 5.10 and Proposition 5.19 we know that the set E
has finite perimeter, the direction of the normal to 0*E is either n or m, and, due to kinematic
compatibility conditions, there cannot be either "corners" or "intersections” (see Fig. 3 and 4). Is it
possible to infer that E is under the hypothesis of Theorem 5.8, namely that E determines a partition
of Q into countably many strongly Lipschitz connected domains?
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APPENDIX.

For completeness, in this appendix we prove Proposition 5.2 (see also RESHETNYAK

[14]) and Lemma 5.4 (see JAMES [10]).

Proposition A.l.

Let Q be an open bounded connected domain of R™ and letu € W= (Q; R™) be such that

Vu e O*(R™) a. e. in Q. Then u is an affine function.

Proof. Let

R:=Vue O*(R" a.e.inQand w;:=Vuy,,i=

Since
R=adjR
we have
Ay, =divw;
= (adj V“)ij J
=0 in D'(Q).

Therefore u € C=(Q; R®) and so

R e C=(Q; RD).
Set

ct:=RT 95 fork =1,
As

RTR=1,
by (A.2) we have

C + k=0,
Since

o%y; 0%y,

ox; Oxy ~ Oxg ox; ’
we obtain

Rijk = Riyj
ie.

Rip Oy = Ry Gy, foralli, j ke {1,.

.., N}
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and so

Cpj = Chy. (A.4)
Fmally, (A 3) and (A.4) yield
= Cly = - Gl =- Cff = Clt = G, = —Cy
thcrcforc
Ck=0 forallke {1, ..,n}
and we conclude that
R(x) is constant in Q.

Lemma A.S (JAMES [10))

Givenaandne R3,an>-1,a#0and|n]|=1,letR € O*(R3},be R3 me R3, |m||=
1, satisfy the equation

R(1 +a®n)=1 +b®Sm.
Then
(i) R = 1 and m is parallel to n if a is parallel to n;
(ii) If a is not parallel to n, either R = 1 and m is parallel ton,or R2# 1 and R = (1 + b ®m) (1
+ a ®n)! where b ®m is uniquely defined, b € Span {a, n} and

2a + |jaf’n

=% >
122 + [lal["nl]

Proof. Suppose that
R(1 +a®n)=1 +b®m. (A.6)
(i) If a= an for some a € R, by (A.6) we have

(2o + o?) n®n = b®m + m®b + ||b|2Pm®m.
Therefore

m is parallel ton
and since a rotation cannot differ from the identity by a nonzero rank one matrix, we conclude that

R=1.

(ii) Assume that R # 1. Then
m is not parallel to n and Ra is not parallel to b, (A7)
and so, if e is a unit vector on the axis of rotation of R, 1. e.
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Re =e =RTe,
we have
Ra(n.e) - b(m.e) =0
and
n(a.e) - m(b.e) =0,
which, together with (A.7) imply
me=0,ne=0,ae=0 and be=0.

By part (i), a is not parallel to n and b is not parallel to m, thus we may set

o m 2N
llan]|

Since

a®n + n®a + ||a|’n®n = b®m + m®b + ||b|*m®m,
we obtain

a + (a.n) n + [|a)*n = b(m.n) + m(b.n) + ||b||? (in.n)m
and

n(a. nAe) = b (m. nae) + m (b. nAe) + [|b]2m (m. nAe).
Thus, we deduce that

2 a.n + ||a]|2 = 2(b.n)(m.n) + ||b]|2 (m.n)2,

a. nae = (b .nAe) (m.n) + (m .nAe) (b.n) + ||b|| (m.n) (m .nAe)

and

0 =2 (b .nAe) (m .nAe) + |b2(m .nae)2.

By (A.7) and (A.8),

manaez0

and so, by (A.10), - (A.10); we have
(m. nae)

m.n=(2an+ ||a||2) m

which, together with (A.8), implies that m has the direction of the vector

2a.n + [laf? nae

Zanre " Torel
Finally, by (A.9) we conclude that
2a + |ja’n

II2a + ljalPn]]

m==

(A.8)

(A.9)

(A.10),

(A.10),

(A.10),

Suppose that RZ = 1 and let R’ be the restriction of R to Span {n, nae}. Then R’ is a rotation on a
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two dimensional vector space and R™ = 1, therefore
R'==% Il.
Aswe are assuming that R * 1, we have

R'-1.
By (A.7) and (A.8) we have

n £ Span{m, e},

thusit ispossibleto choosex € DR such that
mx =0,x.e=0and nx * 0.
As

R = -n®n - nAe OnAe + e®g,
by (A.6) and (A.8) we obtain
-X - (n.X) a=Xx
which implies that
ma=>0
or
an=-2,
contradicting the hypothesis
an>-1.
We conclude that

RZ2z#1.
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