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1. INTRODUCTION.

In recent years the analysis of phase transitions for mixtures of two or more non-interacting

fluids has been successfully undertaken within the Van der Waals-Cahn-Hilliard gradient theory of

phase transitions (see BALDO [1], FONSECA & TARTAR [5], GURUN [9], KOHN &

STERNBERG [11], MODICA [12], OWEN [13], STERNBERG [15]). In the case where the

nonnegative Gibbs free energy W vanishes only at two points a and b, this theory permits to select

among all the minimizers of

W(v(x))dxf
with prescribed total mass

m = J v(x) dx = meas(£2)(0a + (1 - 0)b), with 9 € (0, 1),

those that have minimal interfacial area, i. e. it singles out those solutions v e {a, b} a. e. such that

the set {v = a} minimizes Pern(a>) among all subsets co of Q with meas(co) = 0 = meas({v = a}).

We consider an analogous situation in the context of nonlinear elasticity. Here the stored

energy density W is nonnegative and, due to frame indifference, W has two orbits of minima {RA |

R rotation} and {RB | R rotation} where A and B differ by a rank one matrix,

A = B + a®n.

It is clear that the problem

(Po) minimize

W(Vu(x)) dx,f
for u such that

J u(x) dx = m and J Vu(x) dx = meas(Q)(0A + (1 - 0)B)

where 6 € (0, 1) and m e K3 are fixed, admits infinitely many solutions. In particular, if E is a

subset of Cl layered normally to n and if meas(E) = 0 meas(Q) then there exists a solution u of (Po)

with

B + X E a®n. (1.1)

We search for a model that will select among all the solutions of (Po) those of the form (1.1) for

which E is a solution of

(P*o) minimize Per^(Ef), where FCQ is layered normally to n and meas(Ef) = 0 meas(Q).

In order to apply the gradient theory of phase transitions to this setting, we have to add to the



former problem the constraint curl v = 0 which renders the analysis very difficult (see FONSECA

& TARTAR [6]). In this paper we study a model in which the second deformation gradient is

replaced by a Radon measure penalizing the formation of interfaces and where the spinodal region

is removed as in GURTTN's theory for phase transitions for fluids (see GURTTN [8]). In Section 2

we discuss briefly some notions and results of the theory of functions of bounded variation. In

Proposition 2.16 we prove the converse of a result due to BALL & JAMES [3] characterizing the

Lipschitz deformations satisfying (1.1) (see Theorem 2.14). In Section 3 we introduce a model

accomodating the constraint curl v = 0. If we disregard the hypothesis of frame indifference, it can

be shown that a sequence of minimizers of the regularized problems admits a subsequence

converging weakly to a solution of the problem (Po) of the form (1.1) with minimal interfacial area

(see Theorem 3.2). In Section 4 we adapt a model proposed by GURTTN [8] for the analysis of

fluid phase transitions. Here the spinodal region is removed and we penalize directly the interface.

In Theorem 4.5 we obtain the analog of Theorem 3.2 for the sequence of penalizejd problems. In

order to handle the frame indifference hypothesis, we combine the models of Sections 3 and 4. In

Theorem 5.10 we show that a sequence of minimizers of the approximation problems admits a

subsequence converging weakly to a solution of the problem (PQ) of the form

= R(x)(B + XE a®n), (1.2)

where R(x) is a rotation, Vu, R and XE € BV(Q) n L~(Q). We conjecture that R = identity a. e.

and that E is a solution of (P*o)- We prove that the conjecture is confirmed if the set E is reasonably

smooth, precisely if E determines a partition of Q into countably many open, strongly Lipschitz,

connected domains (see Theorem 5.8). The rest of Section 5 is dedicated to finding results

asserting the required smoothness of E. In Proposition 5.19 we show that if a is parallel to B~Tn

then the outward unit normal to dEnft is parallel to n. In this case the set E is layered normally to n

and the conjecture is valid (see Corollary 5.20). If a is not parallel to B"Tn, we prove in Proposition

5.19 that the normal to 3E n Q is parallel either to n or to a known vector m, where m is a linear

combination of a and n. Moreover, it is possible to prove that 3 E n Q cannot have "corners11 (see

Lemma 5.5). We do not know if these properties imply the smoothness of E required by Theorem

5.8, in which case the conjecture would be confirmed.



2. STATEMENT OF THE PROBLEM AND PRELIMINARIES.

We discuss briefly some results of the theory of functions of bounded variation (see EVANS &

GARIEPY[4], GIUSTI [7]).

Let Q be an open bounded strongly Lipschitz domain of IRn.

Definition 2.1.

A function u e L2(Q) is said to be a function of bounded variation (u e B V(Q)) if

f |Vu(x)| dx := sup \ f u(x). div <p(x) dx | <p e cJ(Q; IRn), ||<p|L < 11 < +<».

It follows immediatly that if u£ -» u in L^Q) then

f |Vu(x)| dx < lim inf f |VuE(x)| dx. . (2.2)

It can be shown that the sets

u € l}(G) I J |u(x)| +1Vu(x)| dx < C < 4~ 1 (2.3)

are compact in L!(Q).

Proposition 2.4.

There exists a constant C > 0 such that for all f e BV(£2)
n-l

f (f ^ n f
f(x)dx = O=> I fCxJ^dx <C |Df(x)|dx.

JQ \JQ J JCI

Definition 2.5.

If A is a subset of lRn then the perimeter of A in Q is defined by

Pera(A) := J |V%A(x)| dx = sup J J div <p(x) dx | <p e qJ(Q; IRn), ||cp|L
n [ A

where %A denotes the characteristic function of A.

Proposition 2.6*

If f, g € L~(£2) n BV(i2) then f.g € L°°(ii) n BV(Q).



Clearly, if A C Q and if

( a if x e A

b i f x e Q X A

then u e BV(Q) if and only if Pern(A) < -H». Suppose that E is a set of finite perimeter in IR1

There exist a Radon measure ||d£|| and a ||dE|| - measurable function

vE:IRn->IRM|vE!| = l lldfEH a. c ,

such that

J div <p(x) dx = J q*x).vE(x) d||dE|| for all <p e cj( IRn; Kn).

Definition 2.7.

Let x e IRn. We say that x e d*E, the reduced boundary ofE, if

||8E|| (B(x^)) > 0 for all r > 0,

livE(x)||=l

and

(
J

B(x,e)

Theorem 2.8. (Blow-up of the reduced boundary)

I f x e 3*Ethen

( ) inlic ase-»0+,

where

H-(x) := {y e IRn| vE(x). (y - x) < 0}.

Theorem 2.9. (Generalized Gauss-Greeen Theorem)

JEdiv<pdx = J^E<p.vEdH0_1

forall9eCo(IRn;IRn).

Given f € BV(Q), we define



f \ r « \ • A . r meas(B(x>e)n{f>t» 1
Li(x):=aphmsupf(y) = inf-{ t hm = 0y-»x [ E-»O en J

-if \ v - *« \ \ i r meas(B(x,e)n{f<t»
X(x):=apluninff(y) = sup-{ t| lun

y -» x I e -» 0 gn

and

Let

denote the set of points at which f is not approximately continuous.

Theorem 2.10.

Assume that f e B V(£2). Then X and \i are Borcl measurable and

(i) meas(J) = 0;

(ii) -oo ̂  X(x) <, n(x) ̂  +oo in Q;

(in) hm ^ T — r r f(y) TT-— dy = O (2.11)
£ _»0+ meas (B(x, e)) JB(x, t) 2

for HJJ^ a. e. x € Q \ J;

(iv) for HJJ.J a. e. x e J there exists a unit vector v such that

lim
e -> o+ meas (B(x, i

and (2.12)
1

lim
o+ meas (B(x,

Consider a hyj>erelastic body that occupies in a reference configuration a bounded, simply

connected, strongly Lipschitz domain Q C K 3 , with meas (Q) = 1. Let W : M3x3 -» [0, +«>]

denote the stored energy density, and assume that

(HI) W(F) = +00 if and only if detF<0;

(H2)W(F) = 0ifandonlyifFe {RA,RB| Re O+(IR3)}, where A = B + a®n, ||n|| = 1, a*0 .

Here, and in what follows, M3x3 is the set of real 3x3 matrices and O+(IR3) denotes the set of

rotations of IR3, Let 6 e (0, 1) and me IR3 be fixed, and define the class of admissible

deformations



Q :={ u e W u ( « ; IR3) IJ u(x) dx = m, f Vu(x)dx = 6A + (1 - 9 )

In this paper, we study the variational problem

(Po) Minimize

f W(Vu(x))dx,

forue GQ.

Remark 2.13.

admits infinitely many solutions u such that Vu € BV(Q). In fact, let a be such that

meas {x e Cl\ x.n > a} = 8,
and define

C : = m - | Ax dx - | (Bx + aa) dx.
J{x € Q\ XJI > a} J{x e ft| x.n < a}

Setting

( Ax + C i fx .n>a

Bx + aa + C i fx .n<a,

it follows immediatly that u* is a solution of (Po). Similarly, an infinit set of Lipischitz solutions

with gradients taking only the values A and B can be found by layering Q by finitely many parallel
planes with normal n, in such a way that meas({ x € £2| Vu(x) = A}) = 6 (see Fig. 1).

Kg. 1

The following result is due to BALL & JAMES [3].

Theorem 2.14.

Let E C £2,0 < meas (E) < meas (fit), and let XE denote the characteristic function of E. If u



^ ; IR3) satisfies

X E C + ( l - X E ) D ,

then

C = D + b ®m

forsomebe IR3,me IR3, ||m|| = 1. Moreover, for all convex set FC £2, E n F a n d ( Q \ E ) n F

consist of parallel layers normal to m; precisely, there exists a Lipschitz function f with f e {0,1}

a. e. such that

E n r = { x e F |f(x.n) = l}.

We define the set

J& := { E C flt| meas (E) = G and for all convex set F C Q there exists a Lipschitz function f

with f e {0,1} a. e. such that E n F = {x e F | f (x.n) = 1}}.

Remark 2.15.
It is clear that the solutions u exhibited in Remark 2.13 verify

Vu = B + %E a ®n, with E € & and Vu e BV(&). (2.15)

We prove that the converse of Theorem 2.14 is also true.

Proposition 2.16.

If E € ^ then there exists u € W^°°(Q; IR3) n QQ such that

Proof. Suppose for simplicity that n = %. Let XQ € 12 be fixed, and define for x e Q the

function

6(x) := f X E <**3 = f XE(<*(S)) M s ) ds

where yx = (a(t) 11 € [0,1], a(0) = XQ, a(l) = x} is a piecewise C1 curve in Q joining XQ to x.



(i) 9 does not depend on the choice of the curve yx. Let a, |5: [0, 1] -> Q be piecewise C1

functions such that a(0) = (5(0) = x0, a(l) = |3(1) = x. As Q is a simply connected domain, there

exists a C1 function H: [0,1] x [0,1] -> Q such that H(0, t) = <x(t), H(l, t) = p(t). Define

f1 3
F(s) := J %E(H(s, t)) ̂ H 3 ( s , t) dt

We want to show that F(0) = F(l). Clearly, it suffices to prove that for all s0 € [0,1] there exists

e > 0 such that F(s) = F(s0) for all s e [0,1], |s - so| < e. Let s0 e [0,1] and let

H(s0, t) € u B(xi, e{) e f t for all t € [0, 1], where xN s x.
i=0i=0

As H is smooth, there exists e > 0 such that

H(s,t) e u BCxj, q) for |s - so| < e and for all t e [0,1].
1=0

Let fj be such that

X E(x) = fi'(x.n) for x e B(xj, e{). (2.17)

Define the open sets

©j := {t e IR | 3 x e B(xi>ei) n B(xj+1,ei+1) such that x.n = t}, i = 0,..., N-l.

As

f i = f i + i i n 0 V

we can assume without loss of generality that

f i = f i + 1 i n © . . (2.18)

Choose points a(tj), p(tj) such that 0 < tx <... < tN < 1 and

a(ti), p(tj) e B(xi.1,e. t) n B(xi,ei), for i = 1,..., N,

where a(t) := H(s0, t) and p(t) := H(s, t). By (2.17) and (2.18) we have

J.i 3

XE(H(so,t))^-H3(so,t)dt
= J l fo(c(i).n) af(t).n dt + ] £ f ' f i(a(t).n) af(t).n dt + J f N(a(t).n) o'(t).n dt

N-l

).n) - fo(xo.n) + j ^ [f^adi^.rO - fjCaC .̂n)] + fN(x.n) - fN(a(tN).n)
i = l



= fN(x.n) -

In a similar way, we obtain

F(s) = fN(x.n) - fo(xo.n).

(ii) 0 is a locally Iipschitz function. In fact, let B(x, e) C Q and let y e B(x, e). By (i) we have

|6(x) - 6(y)| £ | %E((1 - t)x + ty) (y-x).n dt|
JoJo

llx -

(iii) We prove that V9 = %E n in £)'(G). Let B(x, e) C C G and let

E n B(x, e) = {y e B(x, e) | f (y.n) = 1}.

By (i) we deduce that

-f1

Jo E

= J f((l-t)x + ty)(y-x).n dt

= f(y.n) - f(x.n).

Therefore, if <|> e D(B(x, e)) and if i = 1,2 we have

<^—, <p> = I [f(x.n) - f(y.n)] 3^-(y) dy

= 0

and

-, <p> = I [f(x.n) - f(y.n)] *p-(y) dy
( JB(X, e) dy3

f(y.n) <p(y) dy
B(x,e)

<p(y) dy.
E

(iv) Finally, set

u(x) := u0 + Bx + 6(x)a, with u0 such that

J u(x) dx = m.
a

Qearly, u e W^^G; K3) n QQ and

We search for a model that will select among all solutions of (Po) those of the form (2.15)



with minimal interfacial area, i. e. where E is a solution of the geometric variational problem:

(P%) Minimize Pern(Ef) with F € Z.

In Sections 3 and 4 we consider simplified models where W does not satisfy the hypothesis of

frame indifference,

3. REGULARIZATION.

Assume that W is continuous and verifies (HI) and

(H2')W(F) = 0ifandonlyifFe {A,B}.

A B

Fig. 2

In view of Remark 2.15, we define the class of admissible deformations

Qx := j u € Wu(£2; IR3) | Vu € BV(Q), f u(x) dx = m, J Vu(x) dx = GA + (1 - 6) B |

and for e > 0 we introduce the "regularized11 problem:

(Pe) Minimize in Ql

E£(u) := f W(Vu(x)) dx + e f |DVu(x)| dx.

Here and in what follows we use the notation
3

||DVu||Jj=JjDVu(x)|dx:= ]T J j D ^

Proposition 3.1.

For all e > 0, (Pe) admits a solution.

Proof. Let u* be as defined in Remark 2.13. Then

E£(u*) = e C* where C* := area {x € Q\ x.n = a } .

Let {Uj}be a minimizing sequence with j large enough so that

10



E£(Uj)<eC*+l.

Thus

{||DVuj||} is a bounded sequence

and so, by Proposition 2.4 and Poincar6's inequality, we deduce that

{Uj}is a bounded sequence in W!'3/2(£2)

and

{Vu.} is a bounded sequence in BV(£2).

By (2.3) we conclude that there exist u e GjO W1 '3 7 2^) and a subsequence {um} such that

u m " > u weakly in 1 3 2

and

Vum -» Vu strongly in

By Fatou's Lemma and (2.2) it follows that
E£(u) < lim inf Egdijn) = inf E£(.).

m—> oo Q

Theorem 3.2.

Let v€ be a sequence of minimizers of E£ in Q r There exist a solution u of (Po) and a

subsequence uE such that

and

ue --> u in W1*372 (Q; IR3) weak

%E a. e. infl,

where E e & is a solution of (P*o).

Proof. Considering u* as in the proof of Proposition 3.1, we have

E£(v£)<E£(u*) =

and so

dx<C*.f |DVv£(x)|

n



Thus, by Proposition 2.4 and Poincar6's inequality, we conclude that

{v£} is a bounded sequence in W1>3/2(Q)

and

{ Vv£} is a bounded sequence in B V(£2).

Hence, by (2.3) there exist u e GjO WlfifOrl(Cl) and a subsequence {u£} such that

u £ -»u weakly in

and

Vu£ -» Vu strongly in

By Fatou's Lemma it follows that

f W(Vu(x)) dx <: lim inf f W(Vu£(x)) dx
Jn e -> o JQ

<limeC*

= 0.

Therefore

Vu(x) e {A, B} a. e. x € Q

and so, by Theorem 2.14, we deduce that

Vu(x) = B + %E (x) a®n, where E e 2>.

Let Ef e & and, by Proposition 2.16, let v € W ^ Q ; IR3) n QQ be such that

Vv = B+ %E,a®n.

If PerQ(Ef) < +oo then v e Qx and so

E£(v) = ef pVv(x)|dx

^e f |DVu£(x)|dx.

Hence, by (2.2) we obtain

f PVV(X)| dx > lim inf f |DVu£(x)| dx

£ f |DVu(x)|dx,

12



and so we conclude that

C Per^flE') > C

where

4. DIRECT PENALIZATION OF THE INTERFACE. REMOVAL OF THE
SPINODAL REGION.

Here, we adapt to our present setting a model proposed by GURTIN [8] for phase transitions

in the case of a mixture of two fluids. Let Dj and D2 be closed, convex, bounded subsets of {F €

M3x3| det F > 0}, with A e int Dv B € int D2 and Dj n D2 = 0 . Assume that W satisfies (HI),

(H21) and

(H3) (polyconvexity) there exist convex functions G|: M3x3 x M3x3 x (0, -H*>) -* [0, +<»), i = 1,

2, such that

W(F) = Gj (F, adj F, detF)forallFe D i$detF> 0,i= 1, 2.

A

D

B

Fig. 3

Let

Q2 := I u e Wu(fl

and consider the problem:

(P,,) Minimize in Q2

W(Vu(x)) dx.

DiUl>2a.e., f u(x)dx = m, | Vu(x)dx = 9A + (1 - 9 ) B L

f
Ja

13



Ifue Q2 we define

li^u) := {x e O\ Vu(x)

and

We introduce the family of penalized problems:

(Pe) Minimize in Q2

Ee(u) := f W(Vu(x)) dx + e I(u).

Proposition 4.1.

For all e > 0, (P£) admits a solution.

Proof. Let {Uj} be a minimizing sequence. By Poincar6fs inequality we have

IIUJ - m||L2(a) < Const. liVujH^) < Const. ||VUJ|L,

and so, as {HVUJHOO} is a bounded sequence, there exist u e H^fi) and a subsequence {um}such

that

um "^ u

um —> u strongly in L2(£2)

and (see BALL [2])

(Vum, adj Vum, det Vum) -> (Vu, adj Vu, det Vu) in L°°(Q) weak *.

Moreover, with u* as in Proposition 3.1, for m sufficiently large we have

el(um) < Ee(u*) + 1 = ePern({x e Q | x.n ^ a}) + 1,

thus the sequence
{Xnfoj} is bounded in BV(i2).

By (2.2) and (2.3) there exists a subsequence {uk} and a subset 05 of ft such that

Xflj^) -» Xco inL^Q) strong

and
Pern(co) < lim inf I(uk). (4.2)

14



Hence, as Dj is a closed convex set, and since

Xf l^u^k e Dj a. e.

and

XojCu^k -* X«>Vu in L~(Q) weak *,

it follows that

XQJ VU e D2 a. e.

and, in a similar way,

e D 2 a . e .

Therefore we conclude that

u e Q2.

Let

gl(F,H,5):=
, H, 6) if (F, H, 8) e M3x3 x M3x3 x (0,

.+«», otherwise.

As gj is a nonnegative, convex and lower semicontinuous function, there exists an increasing

sequence of piecewise affine convex nonnegative functions g ^ such that
gi = sup g1>n.

n
Since

0 ^ X Q ^ ) g i , n ( v ^ adj Vuk, det Vuk) < Cn < +00 a. e.

there is a subsequence { u ^ } such that

and so

Xco gl^i(Vuk^i» adj V u M' d e t Vutn^ "* hn ^ L°°(Q) w c a k *•
On the other hand, since

(VuM , adj Vu M , det Vu tn) -» (Vu, adj Vu, det Vu) in L°°(Q) weak *

and gl n is a convex nonnegative function, we have that, after extracting a subsequence of {u^n},

g i ^ V u ^ , adj Vu t n , det VuKn) -^ 1^ ̂  gi,n(Vu, adj Vu, det Vu) in L°°(Q) weak •.

Therefore

hn = X r o Ln ^ %m g1>n(Vu, adj Vu, det Vu) a. e. in £1

We conclude that

15



f Xcog^CV^adjV^dctV^dx^Iiminf f W(Vuk)dx

and so, by Lebesgue's monotone convergence theorem,

f g l(Vu,adjVu,detVu)dx<liminf f W(Vuk)dx (4.3)

and, in a similar way,

f g2 (Vu, adj Vu, det Vu) dx < lim inf f W(Vuk) dx. (4.4)
Jn\<o Jo^jCu^

Therefore, det Vu > 0 a. e. in Q and (4.2), (4.3) and (4.4) yield
E£(u)<liminfE£(uk).

Theorem 4.5.

Let v£ be a sequence of minimizers of E£ in Q2. There exist a solution u. of (Po) and a

subsequence ue such that

u£ -> u in W1'00 (£2; IR3) weak *,

and

V B % ® a. e. inQ,

where E e Z is a solution of (P*Q)-

Proof. Let u* be as in Remark 2.13. Since Vve e D2u D2 a. e. and

e I(v£) < E£(v£) < E£(u*) = e Const, (4.6)

as in the proof of Proposition 4.1 we deduce that there is a function u € H 1 ^ ) a subsequence {u£}

such that

u£ -» u weakly in

u £ -»u strongly in L2(£2),

Vu£ -» Vu weakly * in L~(Q),

XfljCup -> Xa> inL!(Q) strong,
PerQ(co) < lim inf Kxig) (4.7)

and

16



f W(Vu(x)) dx < lim inf f W(Vu£(x)) dx, (4.8)

where

u e Q2, X r o Vu € Dx a. e. and (1 -%&) Vu e D2 a. e.

By (4.6) and (4.8) we have

W(Vu(x)) = 0 a. e. in £2

and so

Vu(x) = B + Xflto a®n a. e. x € Q

and, by Theorem 2.14, 05 € Z. Let Ef € >8 and, by Proposition 2.16, let v e W ^ Q ; IR3) n QQ

be such that

+ XE .a®n.

f) < +©© then v e Q2 and

Ee(v) = 6 Pera(E
f) > Ee(u£) > e

Therefore, by (4.7) we conclude that
PerQ(El) ^ lim inf I(u£)

5. REGULARIZATION AND DIRECT PENALIZATION OF THE
INTERFACES.

Suppose that W satisfies the hypotheses (HI) and (H2) and consider (Po) and (Pe) as in

Section 3. In a similar way, we obtain existence of solutions v£ of the problem (Pe), with

ue -» u in W1'372 (Q; IR3) weak,

where {u£}is a subsequence of {v£} and u is a solution (Po). Thus, u e Qv Vu e BV(£2) and, by

(H2),

Vu(x) = R(x) (B + XE(x) a ®n) a. e. in Q, where R(x) e O+(K3).

We search for a model implying that

Vu € {A, B} a. e. in Q and E is a solution of (Po*). (5.1)

We show that (5.1) is valid if E is a sufficiently smmoth set Assume that E determines a partition

of Q into countably many strongly Iipschitz connected subdomains Q^ Then

17



Vu = ^ Ri (B + Xa.nE a (8>n)>with R i constant rotations.
i

Here, we used the following result (see RESHETNYAK [14] and Appendix Proposition A. 1).

Proposition 5.2.

Let Q. be an open bounded connected domain of IRn and let u € W1'00 (fit; IRn) be such that

Vu € O+(IRn) a. e. in Cl. Then u is an affine function.

By Theorem 2.14, if ft. and Qj are such that int ( ^ u Qj u (3 Qj n d ftp) is a connected

set, then

Vu = % ̂  RjB + X a j Rj (B + a ®n) in Q t

with the interface between ^ and Q^ planar and

Rj (B + a ®n) = RjB + b ®m, (5.3)

for some b e IR3,m€ IR3,||m|| = l.

JAMES [10] studied the condition (5.3) in the context of elastic crystals. As a consequence

of his analysis, we have the following result (see Appendix Lemma AS)

Lemma 5.4 (JAMES [10])

Given a and n e [R3, a.n > -1 , a * 0 and ||n|| = 1, let R e O+([R3), b e IR3, m e IR3, ||m|| =

1, satisfy the equation

R( l + a ® n ) = 1 +b®m.

Then

(i) R = I and m is parallel to n if a is parallel to n;

(ii) If a is not parallel to n, either R = H and m is parallel to n, or R2 * t and R = (1 + b ®m) (£

+ a ®n)"! where b ®m is uniquely defined, b e Span {a, n} and

Hall2n
||a||2n|f

Clearly, (5.3) is equivalent to
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H + a ®B"Tn) = H + R.T b ® B~Tm.

First case: a is parallel to B~Tn.

By Lemma 5.4 we conclude that m is parallel to n and Rj = Rj. Thus, there is a fixed rotation R

such that

Vu(x) = R (B + %E(x) a ®n) a. e. in 12,

and so, by Theorem 2.14 and due to the constraint

f Vu(x)dx = eA + (l-e)B,

we conclude that E e J& and R = 1. Hence

Vu € {A, B} a. e. in Q,

and (see Theorem 3.2) E is a solution of (Po*).

Second case: a is not parallel to B n.

By Lemma 5.4, either Rj = R- and m is parallel to n, or

VRiQ,
where

Q := (1 + bf <8> B~Tm) (11 + a ̂ B ^ n ) - 1

with bf € Span {a, B~Tn} uniquely defined and

2BTa-f»a|l2n

Hence, locally eitherE is layered normally to n or E is layered normally to m* In the next lemma we

prove that the boundary of E in Cl cannot have "corners".

Lemma 5.5.
CO

dEnQ = m u Ki u K\,

where, for some p., x. e IR, TC. is a connected component of il n {x.n = p.}, %\ is a connected

component of Q n {x.m = x.} and Hx( ic. n TĈ ) = 0.

Proof. Suppose that there exist XQ e ft, e > 0, p and x such that either
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or

(i) B(XQ, e) n E = {x e B(x0, e)| (x - xo).n < p and (x - xo).m < x} (see Fig. 4)

(ii) B(XQ, e) n E = {x e B(XQ, e)| [(x - xo).n - p ] . [(x - xo).m - x] > 0} (see Fig. 5).

Fig. 4 Fig. 5

In case (i) we have, using the notation of Fig. 4,

Vu =
R,B

and so, there exist b, b' e 1R3 such that

and

R2 + b®B"Tn = : a®B~Tn)

R2 + b'®B~Tm = a®B~Tn) (5.6)2

Since two rotations cannot differ by a nonzero rank one matrix, (5.6)2 implies that Rj = Rj and so

by (5.6)2 we have that m is parallel to n, in which case there are no corners. If (ii) holds then
RjB in (Ox

Vu =
R2(B + a®n) in

R3B in ©3

inco4.

The necessary compatibility conditions imply that there exist b, b1, c, c1 e IR3 such that

R2 + b®B"Tm = R2(l + a®B"Tn),

R3 + c®B"Tn = R2(H + a®B~Tn),

"T "TR3 + b'®B"Tm = R4(l + a®B"Tn)

and

Rx + c'®B-Tn = R4(H + a®B~Tn).

From (5.7)2 and (5.7)4 we have

(5.7)2

(5.7)3

(5.7)4
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R2= R3 and Rj = R^

which, together with (5.7)1 and (5.7)3 and Lemma 5.4, yield

R 1
T R 2 andR 2

T R 1 e {1 ,Q}.

If m is not parallel to n then Rx * R2 and so

which implies that

Q 2= 11,

contradicting Lemma 5.4 (ii). We deduce that, as in case (i), m and n are parallel and dEnCl does

not have any "corners".

We conclude the proof of the second case (a is not parallel to B~Tn). By Lemma 5.5 we deduce

that there is a constant rotation R such that
Vu € {RQkB, RQk(B + a®n), RQkTB, RQkT(B + a®n) | k e [No},

with

] £ ak RQkB + ft, RQ^B + a®n) + ̂  RQkTB + Tik RQkT(B + a®n) = B+
k = 0

where

k, Pk, Yk, Tlk ^ 0, £ ( 0 C k + Pk + Yk + Tlk)
k=0

and
y. + T|i = O=»Yj + Tij = O forallj^i.

Suppose that a2 + P2 > 0 and let x.n = 0, x 9fc 0. Then

(ak + ft,) QkBx + (7k+ Tlk) Q
kTBx|| < J ) (ak + ft, + ^ + T]k) ||

k=0 k=0

and so, as aQ + Po, ax + p2 > 0, we have

QBx = Bx for all x such that x.n = 0.

As det Q = 1 we conclude that Q = H which contradicts Lemma 5.4. Therefore we have

a i + p. = 0 f o r a l l i > l
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and, in a similar way,

y . + T|. = Oforalli> 1.

Finally, we conclude that

Vu(x) = R (B + XE00 a ®n) a. e. in Q,

reducing this case to the first case.

The result that we proved can be stated as follows.

Theorem 5.8.

Letue Ql be such that

Vu(x) = R(x) (B + %E(x) a ®n) a. e. in ft, where R(x) e O+(K3).

If the set E determines a partition of Q into countably many strongly Lipschitz connected

subdomains then

Vu e {A, B} a. e. in Q and E € & is a solution of (Po*).

Next, we try the same approach as in Section 4, with the hypothesis (H2) replaced by

(H2") if F e Dx then W(F) = 0 if and only if F € {RA| R e O+(IR3)} n D x ,

i f F e D 2 then W(F) = 0if and only i f F e {RB|Re O+([R3)}nD2.

As in Theorem 4.5 we obtain the existence of a subsequence {u£} of solutions of (P£) such that

u£ -* u in W1'00 (Q; K3) weak *

and
I(u)<liminfl(u£).

£-»0+

where u is a solution (PQ). By (H2ff) we have

Vu(x) = R(x) (B + %E(x) a ®n) a. e. in Q, where R(x) e O+([R3) and XE e BV(Q).

In order to be able to conclude (5.1) using Theorem 5.8, we neeed to obtain more information

regarding the set E. As we will see, this is possible if we consider a model that combines the

approaches undertaken in Sections 3 and 4.

Let Dx and D2 be closed subsets of {Fe M3x3| det F £ 0}, with A e in tD^Be intD2and
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D2 n D 2 = 0 . Assume that W is continuous and satisfies (HI) and (H2tf). We define the class of

admissible deformations

Q - !u e V/l'l(Q; IR3) | Vu € DjUD2 a. e., Vu € BV(Q), f u dx = m, f Vu dx = B + 0a®nl.
I JQ JQ, J

Consider the approximating problems

(P£) minimize in Q

Ee(u) := J W(Vu(x)) dx + ef |DVu(x)| dx + eI(u).

Proposition 5.9.

(P£) admits a solution.

Proof. Let {u:} be a minimizing sequence such that

E f e (u j )£E e (u*)+l=eC*+l forallj,

where u* is the particular defonnation intnxiuced in Remark 2.13. As

I |DViij|dx andPerftOfyGij)) are bounded

by Proposition 2.4 we have

{Uj}is bounded in W1'372,

{Vu.}is bounded in BV(Q)

and
Cû } is bounded in BV(Q).

Hence, there is a subsequence {um}and there exists u G W1>3/2 such that

um —> u weakly in W1>3/2,

um —» u strongly in L3/2,

Vum -» Vu strongly in L1, Vu G BV(il)

and
strongly in L1, with X© € BV(Q).

Therefore, and since

- XcoVu| dx < J^ X J V l ^ - Vu| dx + J j Xft^uJ - X J I VuJ dx
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'IL Vum|3/2dx

it follows that
»X«B

 v u strongly inL1

which implies that

%<DVU e D t a. e.

and, in a similar way,

e D 2 a . e .

We conclude that u e Q and, by (2.2) and Fatou's Lemma,

Theorem 5.10.

Let v£ be a sequence of minimizers of Ee in Q. There is a subsequence u£ converging weakly

in W ^ C Q ; IR3) to a solution u of (PQ) such that

Vu(x) = R(x) (B + XE(x) a <8>n) a. e. in Q.

Moreover, u e W ^ Q ; IR3) and Vu, R,%E e BV(i2).

Proof. Since

E£(vE)<E£(u*) =eC*,

as in the proof of Proposition 5.9 we can extract a subsequence {u£} and there exists u e Q such

mat

u£ -* u weakly in W1>3/2,

u£ —» u strongly in L3/2,

Vu£ -» Vu strongly in L1, Vu e BV(Q),

XQ,(Ue) ~ » X E strongly inL1, with %E e BV(Q)

XEVu e Dj a. e. and (1 -%E)Vu e D2 a. e.

Since, by Fatou's Lemma,
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J W(Vu(x)) dx < lim inf f W(Vu£(x)) dx = 0,

we deduce that

Vu(x) = R(x) (B + %E(x)a®n) a.e.in£2.

Moreover, as

Vu and %E e L~ n BV(Q),

by Proposition 2.6 we conclude that

ReL~nBV(Q) .

Note that, since Q, is a strongly Lipschitz domain and as Perft(E) < +«% E is a set of finite

perimeter in IR3. Also, by Theorem 2.10, to each entrie R^ of the rotation R it correspond a set Jy

and functions X.., ̂ .., v.. with || v.. || = 1, for which (2.11) and (2.12) hold.

Proposition 5.11.
3

For H2 a. e. x € Q*E \ u J^) n Q, vE(x) is parallel to n.

3
Proof. By (2.11), forH2a. e. XQ€ 0 * E \ . U Jy) n 12 we have

Z? TT f
B(xQ,e)) J

o meas(B(xQ,e))

where F(XQ) is the matrix with entries
+ ^ii

dx = 0 (5.12)

For e > 0 sufficiently small, define the difference quotient
u(xo-f£(x~xo))-u(xo)

v€(x) := for y € B(XQ, 1).

As
Vve(x) = R(xo + e(x - xo)) (B + X- + f l f i 00 a®n),

e

it follows that {v€} is bounded in W1>OO(B(XQ, 1)), and so it admits a subsequence converging in

W1»oo(B(x0,1)) weak * to a function v. By (5.12) and Theorem 2.8, we have

Vv(x) = F(xo) (B + XH-(xo)(*)a®n) (5.13)

where
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{x€ IR3 |vE(x0Mx-x0)<0}.

We claim that

F(XQ) is a rotation. (5.14)

Indeed, by (5.12)

0= Km f |R(xo+e(x-xo))-F(xo)|dx

= lim f 11 - R(xo+ e(x - xo))T F(xo)| dx

and so

( lim [ R(xo+e(x - xn)) dx I F(x0) = meas(B(xo,

which implies that

F T (x 0 )F(x 0 )= l .

Finally, by (5.13) and (5.14) we conclude that n is parallel to vE(x0).

Proposition 5.15.

For H^ a. e. x e 3*E n Ĵ , v..(x) is parallel to v£(x).

Proof. By (2.12), for H^ a. e. x0 € 9*E n J{- and for all k, 1 e {1, 2, 3} we have

Rkl(x0 + e(x - xo)) -> X H ^ <X> Mki^) + XiQUo) W ^ICXQ) strongly in L1

where

H+ki(x0) = {x e 1R3| vkl(x0).(x - x0) > 0}

and

H"kl(x0) = {xe IR3| v^XoMx - xj < 0}.

Suppose that v..(x0) is not parallel to VE(XQ). AS B(XQ, 1) n H+(XQ) is sliced by the planes through

x0 with normal vkl(x0), let CD be the union of the two adjacent slices G>+ and CD" with common

boundary the portion of the plane with normal v i(x0). For e > 0 sufficiently small consider the

difference quotient
u(xo-he(x-xo))-u(xo)

vc(x) := for x € B(XQ, 1).

26



As in the proof of Proposition 5.11, {vE}admits a subsequence converging in W1>oo(B(x0,1)) weak

* to a function v, where, by Theorem 2,8 and (2.12),
Vv(x) = S(x) (B + XH-(xo)(x)a®n) in BCXQ, 1)

and
Su(x) =XH

+
U(xo) <X) M * O ) + XH^XO) <X) M*O>-

Therefore
fS+B inco+

Vv(x) = j
U~B in co" (5.16)

where
Su = M*o)> Su = M x o) and Sy<Sj. (5.17)

We claim that

S+ and S" are rotations. (5.18)

Indeed

0= Km f JR(xo + e(x-xo))-S+ |dx

= lim f |11-RT(x0 + e(x-x0))S+|dx
c^0jB(x0,l)no)+

and so

lim I R(xo+e(x - xn)) dx S+=meas(B(x0, lnGJ+)ll
^-»OJ B (xo , l>n<D + )

i. e.

(S+)T S"1" = H and, in a similar way (S")T S" = H.

Finally, by (5.16) and (5.17) we conclude that S+ and S" differ by a nonzero rank one matrix

which contradicts (5.18).

Proposition 5.19.

(i) If a is parallel to B"Tn then v£(x) is parallel to n for 1^ a. e. x € 9*E n 12.

(ii) If a is not parallel to B"Tn, then v£(x) is either parallel to n or to m for H2 a. e. x e 9*E n £2.

3
Proof. By Proposition 5.11, for H2 a. e. XQ e 0*E \ m u Jy) n Q we have v^ix0) parallel to n. On

the other hand, by Proposition 5.15 and (5.18), for H2 a. e. XQ e d*E n( u Jy) there exist rotations S+

and S" such that S+ ^ S" and
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R(xo + e(x - XQ)) -> S+ strongly in L^BCXQ, OnH* (x0))

and
R(XQ + e(x - xo» -> S" strongly in L ^

Therefore, setting
uUp+eCxxp^uCxp)

v£(x) := for x € BCXQ, 1),

{vE}admits a subsequence converging in W^OBCxg, 1)) weak * to a function v such that

S+B ifvE(xo).(x-xo)>O

S~(B + a®n) if vE(xo). (x - XQ) > 0.

Thus, there exists b € IR3 such that

ST(ll + a®B""Tn) = S+

and so, by Lemma 5.4. either a is parallel to B"Tn and then v£(x) is parallel to n for J^ a. e. x e

3*E n Q and S + = S" (i. e. H2 a. e. x € d*E is a point of approximate continuity of R) or a is not

parallel to B"Tn and then v£(x) is either parallel to n or to m for H2 a. e. x e 3*E n Q..

Corollary 5.20.

If a is parallel to B"Tn, then

Vu = B + X £ a ®n a. e. in £2,

where E e >8 is a solution of (Po*).

Proof. By Proposition 5.19, v£(x) is parallel to n for 1^ a. e. x € 9*E n Q. We can

suppose, without loss of generality, that n = %. Hence, by the Generalized Gauss-Green Theorem

and so,

X E a^j) = ^ ( 5 k j + * E ak»j) for aU k, i, j € {1, 2, 3}.

Therefore, there exists v e W1*00^; IR3) such that

Vv =1 + %E a ®n a. e. in a
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and, by Theorem 2.14, E is layered normally to n. As Per^(E) < +©© and Q is a strongly lipschitz

domain, if we set

:= {x e Q, | dist(x, dCl) > 1/k},

then E n fl^ is formed by finitely many slices normal to n. By Proposition 5.2 in each one of these

slices either

Vu = RB

or

Vu = R(B+ a®n),

with R a constant rotation. Due to the necessary jump condition of Vu across an interface, for any

two adjoint slices we have

R(B + a ®n) = R'B + b €>n

for some b € IR3. As a is parallel to B~Tn, from Lemma 5.4 we obtain

R = R\

Using induction in k, with k -» +©©, we obtain

Vu(x) = R (B + %E(x) a ®n) a. e. in Q,

for some fixed rotation R, and so (see proof of Theorem 5.8, first case) we conclude that E e J& is

a solution of (Po*) and R = 1.

Final comments. We conjecture that the solutions obtained in Theorem 5.10 satisfy (5.1).

However, we were able to confirm the conjecture only in the case where a is parallel to B"Tn (see

Corollary 5.20). If a is not parallel to B"Tn, by Theorem 5.8 the conjecture remains valid if E is

sufficiently smmoth. By Lemma 5.5, Theorem 5.10 and Proposition 5.19 we know that the set E

has finite perimeter, the direction of the normal to d*E is either n or m, and, due to kinematic

compatibility conditions, there cannot be either "corners" or "intersections" (see Fig. 3 and 4). Is it

possible to infer that E is under the hypothesis of Theorem 5.8, namely that E determines a partition

of Q into countably many strongly Lipschitz connected domains?
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APPENDIX.
For completeness, in this appendix we prove Proposition 5.2 (see also RESHETNYAK

[14]) and Lemma 5.4 (see JAMES [10]).

Proposition A.I.

Let Q be an open bounded connected domain of IRn and let u e W1-00 (Q; IRn) be such that

Vu e O+(IRn) a. e. in Q. Then u is an affine function.

Proof. Let

R:=

Since
R =

we have

Au

= Vue

adjR

I = div >

= (adj

O+(IRn) a. e. in Q and = Vuf, i = 1,..., n.

= 0 in£>'(Q).

Therefore u e C~(Q; IRn) and so

R e C~(Q; IRn). (A.2)
Set

C ^ R 7 ! ^ fork=l, ...,n.oxk

As

RTR=ll,

by (A.2) we have

C^ + C ^ O . (A.3)
Since

9XJ 3xk dxk 3XJ '
we obtain

R i jk = Ri,kj

i. e.
Rim Cmj = Ris C4> for all i, j , k e {1,..., n}
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and so

Qnj = ^mk- (A.4)

Finally, (A3) and (A.4) yield
(~* — / ~ 0 — i~$ — f ^ m mmm ^ » m mmm /"dc mmm / ~ i k
Mnj - Mnk - ~ Mm - "" *-kj - <~jk "" Hm "" ""^mj

therefore

Ck = 0 for a l ike {l ,~. ,n}

and we conclude that

R(x) is constant in ft.

Lemma A.5 (JAMES [10])

Given a and n e IR3, a.n > -1 , a * 0 and ||n|| = 1, let R e O+(IR3), b e K3, m e IR3, ||m|| =

1, satisfy the equation

R( l + a ®n) = 11 + b ®m.

Then

(i) R = 11 and m is parallel to n if a is parallel to n;

(ii) If a is not parallel to n, either R = 11 and m is parallel to n, or R2 * I and R = (11 + b ®m) (1

+ a ®n)"x where b ®m is uniquely defined, b e Span {a, n} and

m _ ± 2a+Ha|l2n
l|2a + ||a||2n|r

Proof. Suppose that

R(ll + a ®n) = 11 + b ®m. (A.6)

(i) If a = an for some a e IR, by (A.6) we have

(2a + a2) n®n = b®m + m®b + Hbll^^m.

Therefore

m is parallel to n

and since a rotation cannot differ from the identity by a nonzero rank one matrix, we conclude that

R = l l .

(ii) Assume that R ^ 11. Then

m is not parallel to n and Ra is not parallel to b, (A.7)

and so, if e is a unit vector on the axis of rotation of R, i. e.
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Re = e = RTe,

we have

Ra(n.e) - b(m.e) = 0

and

n(a.e) - m(b.e) = 0,

which, together with (A.7) imply

m.c = 0,n.e = 0,a.e = 0 and b.e = 0. (A.8)

By part (i), a is not parallel to n and b is not parallel to m, thus we may set

e := -n IT-
l|aAn||

Since

a®n + n®a + HalfaStoi = b®m + m®b + ||b||2m®m,

we obtain

a + (a.n) n + l|al|2n = b(m.n) + m(b.n) + ||b||2 (m.n)m

and

za.

which, together with (A.8), implies that m has the direction of the vector
2a.n 2

n(a. nAe) = b (m. nAe) + m (b. nAe) + WbWha (m. nAe).

Thus, we deduce that

2 a.n + ||a||2 = 2(b.n)(m.n) + ||b||2 (m.n)2 (A. 10^

a. nAe = (b .nAe) (nui) + (m .nAe) (b.n) + ||b||2 (m.n) (m .nAe) (A.10)2

and

0 = 2 (b .nAe) (m .nAe) + ||b||2(m .nAe)2. (A.10)3

By (A.7) and (A.8),

m .nAe * 0

and so, by (A. 10^ - (A.10)3 we have
x/% .. ..2\ (ni, nAe)m.n = (2a.n+ a z) \ '

2a. nAe ||nAe|| *

Finally, by (A.9) we conclude that

2a + Hall2nm-± —.

IPa + llalfnll

Suppose that R2 = 1 and let Rf be the restriction of R to Span {n, nAe}. Then R1 is a rotation on a
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two dimensional vector space and Rf2 = 1, therefore

R'=± II.

As we are assuming that R * 1, we have

R ' - l .

By (A.7) and (A.8) we have

n £ Span{m, e},

thus it is possible to choose x € DR3 such that

m.x = 0, x.e = 0 and n.x * 0.

As

R = -n®n - nAe 0nAe + e®e,

by (A.6) and (A.8) we obtain

-x - (n.x) a = x

which implies that

m.a = 0

or

a.n = -2,

contradicting the hypothesis

a.n > -1.

We conclude that
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