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Abstract : In this paper we obtain necessary and sufficient conditions for the existence of

Lipschitz minimizers of a functional of the type

J(u) := f h(det Vu(x)) dx - f f(x).u(x) dx,

where h is a convex function converging to zero at infinity and u is subjected to displacement

boundary conditions. We provide examples of body forces f for which the infimum of J() is not

attained.
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^INTRODUCTION.

During the past few years, the stability properties of solid crystals have been discussed

within the framework of a continuum theory proposed by ERICKSEN [7], [10]. In this model,

thermoelasticity is introduced via the Cauchy-Born hypothesis (see ERICKSEN [9]), relating

changes in atomic positions to macroscopic deformations. This assumption, together with

molecular considerations, yields the invariance of the energy density W with respect to an infinite

discrete group conjugate to a subgroup of GL(Z3). As noticed by FONSECA [12] and

KINDERLEHRER [14], the material symmetry renders the analysis of equilibria and stability

problems quite complicated

The stability of configurations held in a dead loading device and subjected to surface tractions

was studied by FONSECA [12]. It was shown that only residual stresses can provide (global)

minima of the total energy functional. CHIPOT & KINDERLEHRER [4] and FONSECA [13]

analyzed the role played by the sub-energy function 9 in the stability of unloaded crystals subjected

to homogeneous boundary conditions; they proved that

<p**(det F) = inf | ^7-- f W(Vu(x)) dx | u € W^Oi; IRn) u(x) = Fx on dCl\,
I meas(ti) Jo f J

where F is a nxn real valued matrix with det F > 0, Cl C IRn is an open bounded strongly lipschitz

domain, 9** is the lower convex envelope of sub-energy 9 given by (see ERICKSEN [8] and

FLORY[11])

9(t):=inf{W(F)|detF = t}.

Moreover, FONSECA [13] shows that

QW(F) = 9**(detF) (1.1)

for all F, where QW denotes the W^-quasiconvex envelope of W, recovering the characterization

of QW obtained by DACOROGNA [6] when W(F) is finite for all nxn real valued matrix F.
In this paper we are concerned with the existence of minimizers for the total energy

functional
E(u):= f W(Vu(x))dx- f f(x).u(x)dx

when displacement boundary conditions are prescribed In order to relax this problem, and
according to (1.1), we introduce the functional

J(u) := f 9**(det Vu(x)) dx - f f(x).u(x) dx.

In Section 2 we study the relation between

inf{E(u) I u € U Q + W ^ Q ; IRn)}

and

inf{J(u) I u € UQ+W^-CQ; IRn)}.



In Theorem 3.1 we obtain necessary and sufficient conditions for a deformation u to be a

minimizer of J(-) in uo+ W^-flQ; Rn). Furthermore, the necessary conditions hold also for the

mixed displacement - traction and pure traction problems (see Remark 3.16 (ii)). It turns out that

the characterization thus obtained can be useful to detect body forces f for which inf J() is not

attained; as an example, if

meas{x€ Q|det Vf(x) <0} > 0

then JC) does not admit minima (see Corollary 3.15 and Remark 3.16 (i)).

Finally, in Section 4 we provide an example where there is existence of minimizers for

strong materials in the presence of gravity-type forces. Also, we show that for "weak materials"

minimizers may fail to exist if the amplitude k of the external force f exceeds some critical value.

2. ELASTIC CRYSTALS. RELAXATION OF THE DISPLACEMENT

PROBLEM.

In the sequel, O+(n) is the proper orthogonal group, M°xn denotes the set of real nxn

M + ^ : = { F e M n x n | de tF>0}andG + :={Me M^IMjjC Z, i j«l , . . . ,n and

detF=l}.

According to ERICKSEN [7], [9], [10], the energy density per unit reference volume of a

(pure) solid crystal under isothermal conditions is given by a function W : M^1 1-^^ invariant

under change of lattice basis. This invariance is expressed by the relation

W(F)=W(FM) (2.1)

for all F € M^1""1 and M € AG+A"1, where A € M11™ is a fixed matrix describing the molecular

symmetry of the undeformed configuration. Furthermore, due to frame indifference, we have

W(F) = W(RF) (2.2)

for all F € M+
nxn and R € O+(n). As it is usual in nonlinear elasticity, we assume^n addition, that

W: M*™ -»IR u {-H>O} is continuous and bounded below, (2.3)

W(F) -»+~ when det F -» 0+ (2.4)

and

W(F) = 4~ifandonlyifdetF£0. (2.5)

For a detailed description of this model we refer the reader to ERICKSEN [7]-[10], FONSECA

[12], [13] and KINDERLEHRER [14].

Suppose that, in a fixed reference configuration, the crystal occupies an open bounded

strongly Lipschitz domain Q C Rn .Letu:Q-» IRn be a deformation of the lattice and let f : f t -»

(Rn represent the body force per unit volume in the undeformed configuration. The pure

displacement boundary value problem consists in finding a solution u € Q of



u = Uo on dQ,

where Q is a suitable class of admissible deformations and u0: dCl -> IRn is given. Here, we are

interested in the stable solutions, i.c., minimizers in Q of the total energy

E(u):= f W(Vu(x))dx- f f(x).u(x)dx

when

UQ € C(£2; IRn) is injective in il

and

Q :={ u € W^-OB; IRn) | det Vu > 0 a.e. in Q and u = u0 on dQ}.

As it was pointed out by ERICKSEN [10], FONSECA [12] and KINDERLEHRER [14],

the minimization of functionals of this type escape the methods of the calculus of variations . In

fact, due to the symmetry invariance (2.1), W remains bounded on some directions and the

functional

u -> f W(Vu(x)) dx

is not sequentially weakly * lower semicontinuous (s.w.*l.s.c). Since W^-quasiconvexity is a

necessary condition for s.w.*Ls. continuity (see BALL & MURAT [2] and MORREY [15]), in

order to "relax" the problem we introduce the new functional

u -» f QW(Vu(x)) dx,
JQ

where QW denotes the lower W^-quasiconvex envelope of W. FONSECA [13] proved that

QW(F) reduces to a function of the determinant of F, precisely

QW(F) = <p**(detF),

where <p** is the lower convex envelope of the sub-energy <p given by

q>(t):=inf{W(F)|detF = t}

for all t € IR. From (2.3) - (2.5) it follows that

<p** : IR -»IR u {+«>} is convex and bounded below,

<p**(t) -*+oo when t -> 0+ (2-6)

and

<p**(t) = +OP if and only if t £ 0.

Hence we are led to study the following problem: findue Q such that

J(u) = inf{J(v)|v€ Q} (2.7)
where

J(u):= f <p**(detVu(x))dx- f f(x).u(x)dx.



Naturally, we seek for relations between the solutions of (2.7) and the minimizers of E(). In what

follows, we use the notation

a := inf{E(u) | u e Q},

p:=inf{J(u)|ue Q},

a':= inf{E(u) | u e Q1}

p':= inf{J(u) | u e Q1}

where .?

Q1 := {u e Q | u is piecewise affine and inf det Vu(x) > 0}.

Proposition 2.8

Under the hypotheses (2.1) - (2.5), if f e L!(fl; IRn) then p < a < a1 = p\

Remark 2.9

(i) It was shown by CHIPOT & KINDERLEHRER [4] and by FONSECA [13] that

a = p
when f = 0 a. e. in Cl and u0 is an affine deformation, i. e.

inf I J^<p**(det(F + V^(x)))dx|^€ wj'~(a; IRn)|

= (measQ) <p**(det F) (2.10)

= inf| J W(F

It can be verified easily that (2.10) is still valid when the infima are taken over piecewise affine

functions.

(ii) In the general case, the equality a =p would follow from (2.10) if we could devise a density

argument allowing us to conclude that p '= p. However, due to the behaviour of <p** near zero (see

(2.6)), this question remains open.

Proof of Proposition 2.8. Without loss of generality, we can assume that W £ 0.

Clearly, it suffices to show that af < (J\ Let e > 0 and consider u € Q* such that

Q),

where sup IIFjH < + » and inf det F, > 0. Then, by (2.3) and (2.5), sup W(Fj) = M < +-»and so

W(Fi)dx:£Mmeas(O).

Let 1Q be such that



Cftj) W(Fj) < j .

By Remark 2.9 (i), for each i £ 1Q there exists us e W 1 - " ^ ; IRn) such that ut is piecewise affine,

Uj(x) = FjX + Cj on 9Qj

and

f W(Vui) dx £ meas(Qi) <p**(det Fj) + -^-.

Using VitalTs covering theorem, we can decompose Cl{ as a disjoint union of the type
DO

and measCAj) = 0. We define the function

u(x) + Cijfrii - u)[ '•* ifx iii and i ^ io

v(x):=
u(x) otherwise.

It is clear that v e Q'; moreover we obtain

f W(Vv(x)) dx - f f(x).v(x) dx <; ̂  + X S f w f v u / ^ i i ] l dx - f fGO.u(x) dx

+ f |f(x)||u(x)-v(x)|dx

- r + <P**(detVu(x))dx-

*(det Vu(x)) d x -

Given the arbitrariness of u e Q1 and e > 0 we conclude that a* < P'.

Q

f(x).u(x) dx.

3.NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE

OF MINIMIZERS.

Throughout this section we use the notation introduced in Section 2. The main result consists

on a set of necessary and sufficient conditions for the existence of minimizers for J(). In what

follows, the functional J() is given by

J(u) := J h(det Vu(x)) dx - J f(x).u(x) dx,

where f e Ll(Cl; IRn), h : IR -» IR u{+«»} is convex, bounded below, h(t) ->+oo as t -»0+ , and

h(t) = +oo if and only if t £ 0.



Theorem 3.1
Let u € Q be such that J(u) <

(N) If J(u) £ J(v) for all v € Q then
(a) VuTf = V\p for some y €
(b) (cyclic monotonicity)

N

for all N e IN, (pp...,pN) e (Cl \ Cl^, where Of is the Lebesgue set of f (measCfy) =0) and

PN+I= Pi'
(c) there is a convex function G: convex hull UQ(Q) —» IR such that

f G(u(x)) dx e IR
Ja

and
f(x) e dG(u(x)) a.e. X E Q ;

(d) if, in addition, there is a X e (0,1) such that

f h'CK det Vu(x)) det Vu(x) dx > - ~
Ja

then
V(x) + C1 = h(det Vu(x)) - h'(det Vu(x)) det Vu(x) = G(u(x)) + C2 a.e. x e Q

for some Cp C2 e IR.
(S)If

f h'( det Vu(x)) det Vu(x) dx > - ~

and if there is a convex function G: convex hull UQ(Q) —> IR such that
G(u(x)) =h(det Vu(x)) - h'(det Vu(x)) det Vu(x) a.e. x e Q

with
f(x) e 3G(u(x)) a.e. x e Q.

men
J(u)£J(v) f o r a l l v e Q

The cyclic monotonicity (N)(b) is a consequence of the following lemma.

Lemma 3.2
Let Cl C IRn be an open bounded strongly Lipschitz domain and let (pj, -.PN) € tiN» N €

IN. If p ^ pj for i * j , i, j = 1,...,N, then there exists EQ > 0 such that for all 0 < e < EQ there is a

sequence wk e C°(Q; IRn) verifying



detVwk(x) = l in 12

wk(x) = x on

and

wk(x) -> w(x) a.e. x € Q,

where

w(x) = x i fx€ Q \ . u ( p i + [-e,e]n),

and w(Pi + (-e, e)n) = pi+1+ (-e, e)n for 1 < i < N and px = p N + 1 .

BRENDBR [3] obtained a similar result The proof of Lemma 3.2 can be found in the

Appendix.

For completeness, before proving Theorem 3.1, we state Theorem 1 of BALL [1] (see

BALL [1], page 317).

Theorem 3.3

Let £1 C IRn be a nonenqrty bounded connected strongly lipschitz open set. Let UQ : Q -> IRn be

continuous in Q and one-to-one in Q. Let p > n and let u e W tP(Q) take values in IRn and satisfy
uldfli= uo'9ft> detVu(x) > 0 almost everywhere in £2. Then

(ii) u maps measurable sets in Q to measurable sets in UQ(12), and the change of variable formula

f f(u(x)) det Vu(x) dx = f f(v) dv (3.4)
JA JU(A)

holds for any measurable A C Q and any measurable function f: IRn -> 1R $ provided only that one of the

the integrals in (3.4) exists;

(iii) u is one-to-one almost everywhere; i.e. the set

S := {v € uo(Q): lf^Cv) contains more than one element}

has measure zero;

(iv) if v € UQ(Q) then u-1(v) is a continuum contained in Q, while if v € duo(Q) then each

connected component of u~*(v) intersects

Proof of Theorem 3.1. Without loss of generality, we can assume that h £ 0. If v e Q

by Theorem 3.3 (i), it follows that

J(v) 2> - f f(x).v(x) dx S - 1 | f HL1 II uo IL,
•to

and so J(-) is bounded below.



(S) (Sufficient condition) According to Theorem 3.3 (iii), define the function
(vT\y) i fyeuo(n)\S

u(y):=j
[ 0 otherwise,

where S :={y e u^Q)! #u"%) > 1}. Fix v e Q and let
w(x):=fi(v(x)).

By Theorem 3.3 we have ;;

meas S = 0, Q = v'^uoCii) \ S) u Bo and Q =u-1(v( v " 1 ^ ^ ) \ S))) u B^

where meas B0=0 and meas B1 =0. Due to the convexity of the functions h and G we obtain

J(v) = f , {h(det Vv(x)) - f(x).v(x)} dx

£ f , {h(det Vu(w(x))) + h*(det Vu(w(x))) (det Vv(x) - det Vu(w(x))) - f(x).v(x)} dx

= f , {G(u(w(x))) - f(x).v(x) + h'(det Vu(w(x))) det Vv(x)} dx
Jv-kuoODxs)

^ f , {G(u((x))) + f(x).(u(w(x)) - u(x) - v(x)) + h'(det Vu(w(x))) det Vv(x)} dx

= J(u) + f , {h'(det Vu(w(x))) det Vv(x) - h'(det Vu(x)) det Vu(x)} dx. (3.5)

Since u e WltOO(Q; IRn), h' is nondecreasing and

f h'(det Vu(x)) det Vu(x) dx >-«»«»,
Ja

we conclude that

f h'(det Vu(x)) det Vu(x) dx e K.

Thus, by Theorem 3.3 (ii),

f , h'(detVu(x))detVu(x)dx=f , , h'(detVu(x))detVu(x)

h'(detVu(u(y))dy

= f , h'(det Vu(w(x)) det Vv(x) dx,
Jv-kuottJ )̂))

which, together with (3.5), yields J(v) ̂  J(u).
(N) (Necessary conditions) Let u be a minimizer of J() in Q, J(u) < +•».
(a) It suffices to show that

for all k, m e {1,. . . , n}, or, equivalently,



(3.6)

for all q> e D(Q; IR) and for every A = -AT e M11™. Fix x0 e £2 and R > 0 such that B ^ , R) C

C Cl Given X e IR, let 6k e I)([0,R]) be a sequence of cut-off functions such that
X i f t e ( 0 , R )

Mm 6k(t) = <

. 0 otherwise.

Set

wk(x) := xo + e0^1* " ̂  A (x - XQ).

Clearly, det Vwk = 1 in £2 and wk = x on dQ, therefore

J(u)^J(uowk)

i. e., by Theorem 3.3 (ii),

f f(x).{u(wk(x))-u(x)}dx<0.
•to

Letting k —» +<», we obtain

f f(x).{u(x0 + e^(x - XQ)) - u(x)} dx <, 0

for all Xe IR. Differentiating with respect to X at X =0 we obtain

f fi(x) ^ k x ) A ^ (xm- xom) dx = 0. (3.7)
JB(x0, R) d x k

Finally, let <p € D(£2; IR) with supp q> = Q*CC Q and let 0 < e < distance^*; dQ). From (3.7) we

have

0= Km f <p(y) j ^ —- f fi(x) ~ - ( x ) A ^ ( x m - ym) dxl dy
8-^c*^* \meas({x|e<|x-y|<8}) Je<|x-y|<8 <«k J

= Urn f fj(x) Jp-(x) A^ j \ —-- f <p(y)(xm - ym) dy l dx
g _• e

 Jn axk [ meas({x | e < |x - y| < o}) ^ix-yKS J
f duj ff 1

= J fj(x) -5—(x) Akm 11 <p(y) (xm - ym) dS(y) V dx. (3.8)
As

I 9(y) (xm ~ ym) dS(y) = - ^ - ( x ) I yj ym dS(y) + CKe**2)
J|x-yN d ^ «nyl-e

:) e meas B(0, e) + CKe11*2),

dividing (3.8) by E**1, and letting e -» 0+ , we obtain (3.6).

(b) Let Of be the Lebesgue set of f (meas ftj=0) and let p lv . . , p^e Cl\ilf, p^p- for i * j . Let e0

> 0, w^E and wE, 0 < e < EQ, satisfy the conditions of Lemma 3.2. As
J(u) £ J(u«wM),

by Theorem 3.3 (ii), it follows that



J f(x).{u(x) - u(wM(x))} dx £ 0,

and so, by the dominated convergence theorem, we conclude that

f f(x).{u(x) - u(w£(x))} dx £ 0,

where

we(x) = x if x € u (p: + [-e, e]n)
i = 1 **

and

for all i € {1,..., N}, pN+1 s pr Hence,
N

w£|p. + (^ £)« (x) = pM + T]u(x) with || T^ ||L-(p. + (^ £)«) < e

0 <; lim

N

B f(x).{u(x) - u(Pi+1 + Tiu(x))} dx

(c) Let Qo : = f i f u S and, for y € IRn, define
fN- 1

G(y) := sup
i =

G is convex and lower semicontinuous; moreover, if x € Q \

by (b) we obtain
N - l

f(Pi).(u(pi+1) - u(pi» + f(pN).(u(x) -

€ IN, (Pl, ..., pN) € (Cl\ Oo)

and if (pp..., p^ € (Cl \

i= 1
N - l

f(x).(u(x)-u(Pl))
i= 1

thus

(3.9)0 S G(u(x)) ^ f(x).(u(x) . u(p2))

for all x, p2 € Q \ Qo. As, by Theorem 3.3,

u^Q) \ u^ C u(Q) \ u(Q0)« u(Q \ Q^, meas % » 0

and, by the Theorem of Invariance of Domain, UQ(£2) is an open, if y e uo(Q) then there are y2, y2

€ u(Q \ QQ) and a € [0,1] such that y = ay 1 + (l-a)y2. Therefore, by (3.9) and since G is

convex, we conclude that

G(y) € IR for all y € convex hull UQ(Q)

and

0 <: f G(u(x)) dx £ 21| u l^ || f ||Li(fl).

10



Let x e Q \ OQ and let y e IRn. If (plt..., p^) e (Q \ QQ)" then
N - l

i= 1

which implies

G(y) £ G(u(x)) + f(x).(y - u(x)),

and so

f(x) € 9G(u(x)) for all x e {M20.

(d) Let 9 € D(Q; IRn) and let 6Q > 0 be such that

for all x e £2, |e| < EQ. Setting

we(x) := x + e<p(x)

and

we have

or, by Theorem 3.3 (ii), the function

e -• J(u(w£)) = f h(gE(x) det Vu(x)) « 4 T dx - f f(x).u(wc(x)) dx (3.10)

has a minimum at e = 0. In order to differentiate under the integral sign, we want to find a function

F € L 1 ^ ) such that

1^1 h(ge(x) det Vu(x)) - ~ | | < F(x) a. e. x € Q (3.11)

for all |e| < £Q. AS

we have that

\4zl h(&(x) det Vu(x)) - 4 r l I ^ Const.ih^x) det Vu(x)) + Ih'CgcU) det Vu(x))| det Vu(x)},
* I 8eVx/ J

(3.12)

with, due to the convexity of h,
h(gE(x) det Vu(x)) <, h(det Vu(x)) + hXg^x) det Vu(x)) (ge(x) - 1) det Vu(x)

^ h(det Vu(x)) + Ih'^x) det Vu(x))| det Vu(x). (3.13)

Moreover, since h' is increasing,
h'(X det Vu(x)) det Vu(x) < h'(g£(x) det Vu(x)) det Vu(x) <, Const.

with, by hypothesis,

h'(X det Vu(x)) det Vu(x) e L^G).

Therefore, by (3.12), (3.13) and since J(u) < +«>, we obtain (3.11) which, together with (3.10),

implies that

n



i. e.,

f {h'(det Vu(x)) det Vu(x) - h(det Vu(x))} div <p(x) dx = f f:(x) ^ - ( x ) ^(x) dx.
Jn Jn d xk

Given the arbitrariness of <p, we obtain

^-{h(detVu(x))-h'(detVu(x))detVu(x)} = f i(x) |^(x) in £'(Q; IRn).dxk : dxk

Thus, by (a) there is a constant Cj such that
h(det Vu(x)) - h'(det Vu(x)) det Vu(x) = y(x) + c i

Also, by (c) we have

J {G(u(w£(x))) - G(u(x))} dx £ J f(x).(u(wE(x)) -u(x)) dx

which implies
0 = O!IE - ° { JQ(G ( u ( x ) ) iJxT ~ f ( x ) u ( w* ( x ) ) ) ^

= f [-G(u(x)) div q>(x) dx - fj(x) - ^ - ( x ) q^Cx)) dx,
Jn\ 0Xk J

and so, there is a constant Cj such that
Y(x) + C1= G(u(x)) + C2 a.e. x e Cl.

Corollary 3.14
Let f e L*(Q; IRn) and let u e Q be such that J(u) <+«> and

f h ' a det Vu(x)) det Vu(x) dx > - ~
Jn

for some X e (0,1). Then J(u) < J(v) for all v e Q if and only if there is a convex function
G: convex hull uo(ft) -> \R such that

f G(u(x)) dx e IR
Jn

and f(x) € dG(u(x)) a.e. xe Q..

Proof. It follows immediatly from Theorem 3.1. Note that, because h' is increasing and X

e (0,1),

f h'( det Vu(x)) det Vu(x) dx > - « .
Jn

Corollary 3.15
Let f e V(Cl; IRn) n W 1 - 1 ^^ ; IRn). If J() admits a minimizer in Q then det Vf(x) £ 0 a.e.

in £2.

12



Proof. Let u be a minimizcr of J(-) in Q From Theorem 3.1 (N)(a) we have

for all k, m € {1, •.., n}; as f e W ^ ^ Q ; IRn) we deduce that

VfT Vu is a symmetric matrix.

Furthermore, by Theorem 3.1 (N)(b),

(f(x) - f(y)). (u(x) - u(y)) * 0 a.e. x, y € Q

which implies

for all £ € IRn, i e . x e CL Hence, VfT Vu is a symmetric nonnegative matrix and so

detVf(x)detVu(x)>0

a.e. in CL Finally, since det Vu(x) > 0 a.e. x € Cl, we conclude that det Vf(x) > 0 a.e. x e Q.

Remark 3.16

(i) Corollary 3.15 may be useful to detect body forces f for wich J() does not admit a

minimizer. As an example, if n is odd and if f is a "compiessive force" of the type

f(x) = -ex, e > 0,

then inf J() is not attained.

(ii) The necessary conditions of Theorem 3.1 (N) were obtained regardless of the boundary

conditions. In fact, it is possible to generalize them to the case of mixed displacement - traction

boundary conditions as follows: let £2 be an open, bounded, strongly Lipschitz domain and let

h :(0,+o©) -> IR be convex, bounded below, and such that h(t) -» +<*> when t -* 0+. Let n < p <

+~, 1/p + 1/q = 1 and let f e V*(C1; 1RD), t € W ^ ^ ^ d ^ ; IRD), where dilx and 9Q2 form a

partition of dQ. Given u0 idQ.^ IRn, set

Qp := {u € W1>P(Q; (Rn) | det Vu > 0 a. e. in Q. and u|aQi = UQ}

and

Jp(v) := f h(det Vv(x)) dx - f f(x).v(x) dx - f t(x).v(x) dS(x).

Let u e Qp be such that Jp(u) < +«> and Jp(u) < Jp(v) whenever v € Qp and ||u - v||p < e. Suppose

further that there is ux € C(Q; IRn) one-to-one in Cl such that ulaQ = u ^ . Then

(a) VuT f = Vy for some y € Df(ft; IR);

(b) there is a convex function G: convex hull u^ft) -> IR such that

G(u(x)) dx € IRf
and

f(x) € dG(u(x)) a.e. x € Q;

13



(c) if, in addition,

-co < J hf(X dct Vu(x)) dct Vu(x) dx < J hX\i det Vu(x)) dct Vu(x) dx

for some 0 < X < 1 < ji, then there are constants Cx and C2 such that

V(x) + q = h(det Vu(x)) - hf(det Vu(x)) det Vu(x) = G(u(x)) + C^ a.e. xe Cl.

4. AN EXAMPLE: GRAVITY-TYPE EXTERNAL FORCES.

In this section we establish existence of minimizers of J() when the body force f is of the

gravity type and h grows sufficiently fast at infinity. Here {clf —,en} is the canonical basis of IRn.

Proposition 4.1

Let Q C IRn be an open, bounded, strongly Lipschitz domain and let f(x) = ken, k € IR. If

u0 = identity and if h :(0,+°©) —»[0,+°©) is a C2 convex function satisfying h(t) —» +°© when t —>

0+, h(t)/t -> +oo when t -» +«>, and h" > 0, then there exists u e Q such that J(u) = inf{J(v)| v e

Q}. Moreover, u* is anothw minimizer of J in Q if and only if there exists w € Wl*~(Cl; IR3) such

that u* = uow, where
det Vw(x) = 1 in Q

w(x) = x on i

We will use the following theorem due to BALL (see BALL [1], Theorem 2, page 320).

Theorem 4.2

Let the hypotheses of Theorem 3.3 hold, let uo(ft) satisfy the cone condition, and suppose

that for some q>n,

f IVu^tof1 det Vu(x) dx < +~.

Then u is a homeomorphism of 12 onto uo(Q), and the inverse function x(u) belongs to

W ^ U Q C Q ) ) . The matrix of weak derivatives of x() is given by

Vx(v) = Vu'^xCv)) almost everywhere in UQ(Q).

If, further, UQ(Q) is strongly Lipschitz, then u is a homeomorphism of Q onto

Proof of Proposition 4.1. Define

Clearly H1 £ 0; moreover, if t > 1 then

14



and so
lim

Also,
Km

In fact, if inf H = a > -oo, then

dtl t J t2
 s u

and so
r h(t)-oc . . h ( t ) - a ilim = inf <+<»

t->+~ t t > o t

which contradicts the hypothesis on the growth of h at infinity. Hence, it is possible to find an

increasing function F: IR -* (0,+<») such that F(t) -» 0 when t -» -<*>, F(t) -» +«> when t -» +<»,

and HoF = identity. Set

p(y):=F(kyn + C)

and

G(y):=kyn + C

where the constant C is determined by

I F(kyn + C) dy = meas(Q).

Qearly

G is convex and VG = f. (4.3)

Let v € W1'"^; IRn) be a solution of (see DACORCXJNA [5], MOSER [16] and TARTAR [17])
det Vv(y) = p(y) inQ

v(y) = y on

and set

p := inf{ F(kyn + C)| y € ft}, y := sup{F(kyn + C)| y € Q}.

For all q > n we obtain

f |Vv"1(y)|qdetVv(y)dy= f |adj Vv(y)|q det Vv(y)1"q dy

< Const p 1 ^ llVvltf0"0.
Thus, by Theorems 3.3 and 4.2,

satisfies

u = uo on 3Q and ||Vu|L = 1 1 * ^ 1L ̂  Const — ^ — .

We conclude that u € Q and

15



h(det Vu(x)) - h'(det Vu(x)) det Vu(x) = H(p(u(x)))

= H(F(kun(x)

= G(u(x)). (4.4)

Moreover, by Theorem 3.3,

and so,

and

J hf(det Vu(x)) det Vu(x) dx = J h'(p(y)) dy

meas(Q) min hf(t) >
te [l/y, l/p]

Thus, J(u) < +°© and by Theorem 3.1 (S), (4.3) and (4.4) it follows that u is a minimizer of J() .

Finally, let u* = uow where
fdetVw(x) = l in il

[ w(x) = x on d£2.

By Theorem 3.3 we have

J(u*) = J h(det Vu(w(x))) dx - J ken.u(w(x)) dx

= J h(det Vu(x)) dx - J kun(w(x)) dx

= J(u)

and so, u* is another minimizer for J. Conversely, let u* € Q and define

w := vou*.

It is clear that u* = uow in Q, and w(x) = x on dQ. If det Vw(x) * 1 in a set of positive measure,

then, by Theorem 3.3 and (4.4), we have

J(u*) = f h(det Vu(w(x)) det Vw(x)) dx - f kun(w(x)) dx

>J {h(det Vu(w(x))) + h*(det Vu(w(x))) det Vu(w(x)) (det Vw(x) - 1) - kun(w(x))} dx

{h'(det Vu(w(x))) det Vu(w(x)) det Vw(x) + C} dx
2

{h'(det Vu(x)) det Vu(x) + C} dx

{h(detVu(x))-kun(x)}dx

We conclude that, if u* is a minimizer of J(-), then det Vw = 1 a.e. in Q.
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The following proposition provides an example where, if the material is not "strong

enough", the infimum of J() is not attained Suppose, for simplicity, that n = 3 and define

g = center of gravity := 7^71 xdx,
* ^ meas(ft) JQ
6+:= sup {x^l x
9" := inf {x.e3| x € Q}.

As in Theorem 4.1, UQ = identity and f = ke3,ke IR.

Proposition 4.5

Leth(t) = at + |5/t,a,(5>Oandt€ (0,+~). There exists u € Q such that J(u) < J(v) for all

v e Q if and only if

Moreover, u is unique up to composition with a function w € W^CQ; IR3) such that
detVw(x) = l inQ

w(x) = x on d£2.

Proof. We divide the proof into two parts,

(i) Assume that

and let

C := 2p - kg3.
Qearly,

ky3 + C
d

fJ = meas(Q) and —r^-—>0 inii .

Therefore, (see DACOROGNA [5], MOSER [16] and TARTAR [17]), there exists v e
IR3) such that

v(y) = y on
Setting u := v"1 and G(y) := kyj + C, it can be shown that u is a (unique) minimizer of J() using
Theorem 3.1 (S) and following the proof of Theorem 4.1.
(ii) Suppose mat

2L
U3-9* g,-e"J

and assume that J() admits a minimizer u in Q.
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Since J(u) <+<*>, we have

J
which implies that

f h'Odet Vu(x)) det Vu(x) dx = f J a det Vu(x) - ——^ 1 dx >
J « M X2detVu(x)J

for all X € (0,1]. Hence, by Theorem 3.1 (N) (d) we obtain

T = k U ( x

for some constant C. Therefore, by Theorem 3.3 we deduce that
f ku3(x) + C

meas(G) = det Vu(x) * dx

C

and so,

C = 2p - kg3

which, together with (4.6) implies that

detVu(x) = — — , r a. e. inG (4.7)
2p + k(u3(x) - g3)

and

2p + k(y3 - g3) > 0 a.e. y € G. (4.8)

Finally, (4.8) and the assumption on k imply that
t.f_2Lt_2_i

Us-9* «s-9-J
which, by (4.7), yields

contradicting u € Q.

Remark 4.9

According to Proposition 4.5, inf{J(v)| v € Q} is not attained if |k| is too big. In fact, it is

possible to show that for

the infimum is reached when some upper (resp. lower) slice of G of the form GQ = {x € G| 9C <

x.e3 < 9"1"} (resp. Go« {x € G| 0" < x ^ < 0C}) is "crushed down": the limit configuration

reduces to

{x G G| x ^ < e c } (resp. {x € G| x ^ > Gc}).
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APPENDIX.

Lemma 3.2

Let ft C IRn be an open bounded strongly Lipschitz domain and let (P^-OPN) e ftN, N e

IN. If p t * p. for i * j , i, j = 1,...,N, then there exists EQ > 0 such that for all 0 < E < EQ there is a

sequence wk € C~(ft; Kn) verifying
detVwk(x) = l i n Q

wk(x) = x on

and

wk(x) —> w(x) a.e. x € ft,

where
N

w(x) = x if x € ft \ u (p ; + [-£, e]n),
i= 1

and w(Pi + (-E, E)n) = pi+1+ (-£, E)n for 1 < i < N and px = p N + 1 .

Proof. We divide this proof into three steps. For convenience of notation, we say that a

sequence wksatisfies the property P(Q; Qx, ~.,QN)> with Q j C C (2 mutually disjoint

parallelepipeds, if
det Vwk(x) = 1 in ft

wk(x) = x on

and

wk(x) -4 w(x) a.e. x € ft,

where
N -

w(x) = x i f xe ft\u Qj

andw(Q.) = Qi+1 for 1 < i

1. Suppose that the lemma is true for N = 2 and let (pv . . . , p,^) € ftN, p^+is pp N ^ 3. Then

there is an EQ > 0 such that for all 0 < E < EQ and for every i € {2,..., N} there exist wk
! satisfying

P(ft; pj + (-E, E)n, Pi + (-E, E)n) (see Fig. 1). It is clear that the sequence

wk := wk
N wk

3 • wk
2

verifies P(ft; p2 + (-E, E)n,..., p^ + («E, E)n).
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^ w3

Fig. 1

2. In order to prove the lemma for n = N - 2, we start by considering the following auxiliary result:

(i) Let Q := [-2, 2] x [-1,1] and define Q 7= (-2,0) x (-1,1), Q+ := (0,2) x (-1,1). Let U => 3 Q

be an open bounded strongly Lipschitz domain. We claim that there exist vk e C°°(U; IR2)

verifying P(U; Q+, Q-) such that (see Fig. 2)

v(x) := lim vk(x) = -x if x € Q U Q+.
*

1

-2
-X

-1

Fig. 2

Consider a sequence {Uk}such that Q CC Uk CC U and UkiQ. Choose q^e C°°(U; IR) verifying

= 1 if x e U
k, 0 for all x € Uk and (^(x) = (^(-x) if x e Q.

Let Wk=Wk(t,x) be the solution of
dWk

Wk(0, x) = x,

where

As

we conclude that the trajectory of Wk is contained in the level set l^ := {<pk = <pk(x)}. Let
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denote the period of Wk(-, x). Then ^ is a smooth function in Uk, ^ is constant on 1^ and

tj. —» -H*> on dUK.

Thus
^ ( W ^ X W H ^ X ) inUK, (A.1)

Wk( i^(x)/2, x) = -x if x e Q (A.2)

and

Wk( t, x) s x if x e Uk. (A.3)

Moreover, as

div Fk = 0,

we obtain

^ det VxWk = (det VxWk) (VxWk)"T. Vx(Fk(Wk))

= (detVxWk)(VxWkrT. VFkVxWk

= (detVxWk) divFk

= 0.

Therefore
detVxWk=l (A.4)

for all t Let T|k be a smooth function such that

I ift<k

. 0 ift£2k,
and set

vk(x) := W^G^x)) , x).
By (A.3) and (A.4) we have

vk(x) = x if x € Uk

and
vk(x) —» -x if x € Q.

Finally, due to (A.1) we obtain
d

which, together with (A.4), yields

det Vvk = det [~*j± . Ti'k(tk)Vtk + VxWkJ

- 1 .

(ii) It follows immediatly from (i) that, if Q+
e := {(x, -x(tan 6)/2 + y) | (x, y) e Q+}, -JC/2 < 6 <

JI/2, obtained by shearing Q+ (see Fig. 3), and if Q" u Q +
e CC U, then there exist vk e C°°(U;

IR2) satisfying P(U; Q", Q+
e) such that

vov(x) = x i f x « d Q ' u Q +
e , (A.5)
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where

-2

v := lim vk.

l

Q"

-1

i

2

Fig. 3

(iii) We prove the assertion of the lemma in the case N = n = 2. Given p, q e Q with p # q, it is

always possible to find an EQ > 0 such that for all 0 < E < EQ there is a piecewise linear path C in Q

joining p to q that can be covered by a justaposition of m parallelograms Qj C C Q, of the form r{ +

E Q+
ei, where {r2 = p - (£, 0), r2, ..., rm = q - (E, 0)} C C 6j = 6m= 0. The case m = 2 reduces

to parts (i), (ii). Suppose that m = 3. Let v !
k , v \ satisfy P(Q; Qv Q2) and P(Q; Q2, Q3)

respectively (see Fig. 4).

p r

k

2

2
V

V k

q

Fig. 4

Due to (A.5), we conclude that

k
2

o v k
!

wk :
!

o v k
2

o v k

verifies P(fi; Qlf Q3) and

w o w (x) = x a. e. (A.6)

where

w := lim wk. The proof is similar for arbitrary m.

3. Let N = 2 and n ̂  3. Given two distinct points in Q, p and q, it is possible to find an EQ > 0 such

that for all 0 < e < £Q there exist points pj= p , . . . , pm= q, such that for all 1

p. and pi+1 differ cm at most two coordinates,

^ + [-E, E]n C fi
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and

Pi + [-e,e]nn Pj + [-e,e]n = 0 i f i * j .

By 2 (iii), we can construct sequences wk* verifying P(£2; p{ + (-e, e)n, p i+1 + (-e, e)n), 1 £ i < m

- 1 . It is clear that, by (A.6), the sequence
wk := w£ • w£ wj1"2 o wj*"1 owj1"2 wk ow^

satisfies P(Q; p + (-e, e)n , q + (-e, e)n).
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