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Introduction

We adopt for the most part the terminology and notation of [1]. A combinator is a term

with no free variables. A set of combinators which is both recursively enumerable and closed

under @ conversion is said to be Visseral ([5]). Given combinators F and G, the variety

defined hy Fx = Qx is the set of all combinators M such that FM = GM. Such a variety is

said to be normal if both F and G are normal. In this note we shall be principally

concerned with normal varieties..

Example I (Bohm and Dezani [2]): The normal variety defined by x* K = 1 consists of the

combinators X = Ax. JL <%...<% for some <&...<%.
a 1 n in

Clearly, a variety of combinators is always Visseral. We recall the following theorem

from [4].

Theorem JL For S a set of combinators, the following are equivalent

(1) S is Visseral

(2) S is a variety

(3) S is the variety defined by Fx = F, for some combinator F.

For normal varieties the situation is quite different. For example, the /3 closure of {fi} is

Visseral but not a normal variety ([1] pg 445). More generally, if F and G are distinct

normal forms then FQ f Gfi. Combinators with this property are said to be transcendental.

A transcendental is always order zero.

We shall proceed as follows. First, we shall discuss normal varieties of solvable

combinators. In this context, the pattern matching equation Fx = I plays a special role.

Among the Visseral sets of solvable combinators are the binary languages. We shall

characterize those binary languages which are normal varieties. From this characterization

follows the result that the collection of normal varieties is E« complete. Next, we shall

consider order zero solutions to normal equations. In this context, the fixed point equation

Fx = x plays a special role. We shall prove a number of results analogous to theorems from



classical algebra and number theory; such as, Hilbert's Nullstelllensatz and Lindemann's

theorem concerning the transcendence of e. We conclude with several open problems and

applications.

It will be useful to have some special terminology for terms. A typical term 3% has the

form

. . . x , v a r i a b l e
X x <%

other componeents
prefix a b s t r a c t i o n a r g u e m e n t

c o m p o n e n t
h e a d

matrix

A head normal combinator of order one all whose components are combinators is called a word.

M = Ax. x M, . . .M1 m

a typical word

A normal combinator of order one is called a deed

X E Xx.Xa&t . . . avi

a typical deed

Words and deeds with at least one component are said to be non—trivial.

Varieties of Solvable Combinators

We begin with the following.

Lemma L. Suppose S is a normal variety. Then one of the following holds.

(1) S = 0

(2) K" G S

(3) There exists a deed F such that E is contained in the variety defined by Fx = I



Proof. Suppose S is defined by Gx = Hx. The proof is by induction on the structure of G

and H, and its routine.

Remark 1 It is easy to see that the deed F in lemma 1 be assumed to be non-trivial.

Theorem 1 and lemma yield the following.
A

Proposition 1. Suppose that E is a set of solvable combinators. Then the following are

equivalent.

(1) E is a normal variety

(2) E is Visseral and there exists a non—trivial deed F such that X is contained in the

variety defined by Fx = I

Proof. (1) =* (2) by lemma 1 and remark 1. Suppose (2). By theorem 1 there is a combinator

G such that M e £ <=» Gfi = G. Let x ^ - - \ be the matrix of F. We "make G normal"

by replacing each redex (Ax <?fy p by x<5*j . . .<5? (Ax <?8) If. Set H^ = Ax [ Gx, Fx] and H2 =

Ax [G, I]. Then M e E « Hx M = H2 M.

Example 2i Suppose k and 1 are given and S is a set of combinators such that whenever M

G E there exist m < k, n < 1, i < m, and c^ , . . . <%! satisfying M = Ax. . . .x 0x. <^£. . .

<% . Then S is contained in the variety defined by Fx = I where F = Ax.

x ( K A ) . . . ( K A ) I...I

k /

A language is a Visseral set of combinators each of which (3 converts to a word. If S

is a set of combinators then S is the /? closure of the set of all non—trivial words with

components form E. Clearly, S is Visseral if and only if S is a language.

Proposition ^ Suppose that S is a ft closed set of solvable combinators. Then the following

are equivalent.

(1) S is a normal variety

(2) E is normal variety

The proof of proposition 3 requires two ideas that we shall need to refine for the proof of



theorem 2 below.

First, we consider the symbolic action of a deed on a word under head reduction. Let

2£ = Xx. xuj. . . un. Recall that ||F|| is the number of symbols in F.

Lemma 2 Suppose that k and n are given with n > o. Suppose that F is a normal

combinator with at least one component, and

(i) F has a prefix of length k+1, and

Then F U u1. . . u, has a normal form with an empty prefix and some u. at the head.
II J. Jv 1

Proof. By induction F.

To apply this to proposition 3, suppose that J is C the variety defined by Fx = I for F a

non—trivial deed. Then, for sufficiently large n, F(Xx x u . . . u) has a normal form U

n
with an empty prefix and u at the head. Thus for the deed Xn U}

we have M , e S =* (Xn % M = F (Ax xM. . . M) = I.
j3 0

n

Second we must take into consideration the fact that a combinator computes on a word

sequentially from left to right. Memory is added by concatenating on the right. Suppose that

F is a deed with k > o components and MeE=> FM = K. As in [1] 6.1 we can define a

fi
k+1

combinator G satisfying Gxyz = x (Xn IF Fu THEN G (Xv x(Kv) (K I )) (Aab
fi

a(yab)) z ELSE zxy. Let nnn be the n Church numeral, and suppose M = Ax.x M1 . . .
k+1

Mm e S. We have GM V z ^ G(Xx. xM2 . . . Mm (K I )) "Wl"1 z M2 . . . Mm =
P

k+1
. . . ^ G(Ax . x(Kk+1I) . . . (K I)) nn+nT z
m-2



k+1 k+1 k+1 k+1
KI ) . . . (K I ) M m (K I ). . . ( K j n . . . M 2 . . . . M =

m—1 m-2

m blocks

k+1 k+1
(Ax x(K I ) . . . (K I ))"1n+m"T. . .z

m
(m+1) .(m-1)

Now it is easy to construct a combinator P satisfying

k+1 , - (n+m) . (m-1)
P(Ax. x(K I ) . . . (Kk + 1I) ) nn+mn = K I

m

k+1 k+1
since the combinators Axx(K I ) . . . (K I ) form an adequate numeral system ([1]

m
6.4). We have that GM n l n P = I, but Gx "V P is not yet normal. We "make Gy ~V P

normal" as follows. Let 9 be the matrix of F with head variable x. Replace each redex (Ax

<?#) $( by ^(Ax Jty I ^ Let the result be f. Final set H = Ay y(Ax f). For M as above
M ^

we have HM =g M(Ax [M|y] f) ^ GM V P M2 . .. . Mm ^ I. This completes the proof of

proposition 3.
Thus, for our purposes, for sets of solvable combinators it suffices to study languages.

A language E is said to be binary if whenever

Ax . xM^ . . . Mm e E, for each i=l . . . m

I

unsolvable



e
Examples 2l For each e and k define combinators M, by

I if k G Wo

unsolvable else

as in [1] pg 179. Let £e = the fi closure of the set

{Ax. xM^ . . . M* : k=l, . . . }

A binary language E is said to be bounded away from J. if there is an infinite

recursively enumerable set 4f of positive integers such that whenever s € c£?

. . . M e £ and s < m we have M = I.

Theorem 2 Suppose that E is a binary language. Then the following equivalent

(1) E is a normal variety

(2) E is bounded away from JL

To prove theorem 2 we need to refine the two ideas in the proof of proposition 3. First,

we refine the "symbolic computation". For this we need a refinement of the standardization

theorem ([1]) pg. 318). A £ni of <% is a maximal applicative subterm of <% with a redex at

its head. The cuts of <% and the redexes of ^ are in one to one correspondence, and we

shall use notions defined for one freely for the other. The following notions will be used

exclusively when <% has a head redex. The major cut of ^ is the leftmost cut whose

abstraction term is in head normal form. The major variable of <?£ is the head variable of the



8

abstraction term of the major cut. The base of <^ is the matrix of the abstraction term of the

major cut. When the major variable of <%! is bound in the prefix of the abstraction term of a

cut, this cut is called the minor cut.

. . . w k .

y m ( . . . ( ( AEX ... z p

... r

base

major cut

minor cut

head cut

the major and minor cuts of a term

A reduction of <ffl is said to be solving if the redex contracted corresponds to the minor cut if

exists and the major cut otherwise.

Lemma 2 If <& is solvable then the solving reduction sequence beginning with <%! achieves a

head normal form.

Proof. Each solving reduction reduces the length of a head reduction to head normal form.

Suppose F is a deed. We symbolically calculate F 2 ^ as follows. Perform solving

reductions until some Uj is the major variable. Next, substitute I for this occurrence of u.

and repeat the process. The calculation terminates in I if and only if there is a binary word

M = Ax . xMĵ  M m s.t. FM = I. Let 1 < k < m, and suppose that i£m is the



abstraction term of the minor (= major) cut at some stage, say

• uk u k+l • • • um

From this stage on we trace the decendants ([3]) pg. 18) of <^ so long as they exist and

maintain the form J0 = <& \ + i • • • u
m ^ • • • ^i- Such an ^ is either

(a) an initial segment of the base with the major variable at the head of <%> , or
o'

(b) an initial segment of some cut with the abstraction term of the major cut contained in

<*„•
Now suppose for some binary word M = Xx. xML . . . M , FM = I. Since <%! has no

decendant in I, the form of <%f must change. Thus there is some stage at which <%f coincides

with the abstraction term of the minor cut if one exists or the major cut, with major variable

not one of the u ,̂ otherwise. At this stage we have the following

(*) If m—k exceeds the length of the prefix of <%f then some u., for k < i < m, is the major

variable at some later stage in the computation.

Since, if <^f is the abstraction term of the major cut with major variable not one of the u., no

minor cut exists, and m-k exceeds the number of A's in the prefix of <̂ f then um is a

component of the last term in the computation. The property (*) is just a refinement of lemma

2.

To prove (1) =4 (2), suppose that the computation beginning with F 2^ terminates in

I. Let k be larger than the number of symbols in the computation. Recall that we can

assume that F is non—trivial so U , i is the abstraction term of the minor cut at least once
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in the computation beginning with F U ,^. Consider the first time any one of the <?g

changes form. By choice of k the hypothesis of (*) is satisfied. Thus if the computation of F

U ,, terminates in I then there is some Uj for m < i < m+k which is the major variable

at some stage in the computation. Now it is easy to see that (1) =* (2).

Next, we need to refine the construction in the second part of the proof of proposition 3.

Changes are needed for the following reason. Not every M. is solvable, so in cycling through

them some must be skipped; this is where df is used. We sketch only the construction of G;

the rest is routine. Suppose that A is a total recursive function which enumerates an infinite

subset of 4f in increasing order, and H is combinator which represents ([1] 6.3) A on the

Church numerals. Suppose that P is a combinator which satisfies P

(Ax x K* . . . K* ) V = K n-(m- 1) i
P

m
Now construct G satisfying G u v w x =

P
IF (Zero, x) THEN ( u(Ay IF y K2 K* THENc

G {Xz u (Kz) K* ) (S c
+ v) (S+ w) (MinuS(. (H(J+ w)) (Hn))

ELSE P u v) ELSE G {Xz u(Kz) K* ) ( s t v) n
c

P x) (see [1] pg. 135). To understand the action of G it suffices to understand the function of
c

v,w, and x. v counts the total number of moves made by G, w is the number of the next

integer in <*% according to h, and x is the number of moves needed to get to Mw \. This

completes our sketch of the proof of theorems 3.

We obtain the following

Corollary 1̂  The collection of normal varieties is

E2 complete.
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Proof. So is a normal variety « W is confinite.c e

Example 2 (continued): Let Ae = the 0 closure of {Xx. xM^ . . . M^ : k =1 . . .}. Then A(

is a normal variety if and only if W is infinite.

Order Zero Solutions

If F is a deed we write F for its matrix; we shall always assume that x is the head
a

variable. For deed F, G, nd H the relation F >—> H holds if H is obtained from F by

" G
replacing one occurrence of x by G. If A is a set of deeds the relations >—T—>, >—*—»>,

and = are defined in the obvious way.
A

Example 4: F >—Q—»> the normal form of FoG. It is easy to see that >—n—»> is

Church—Rosser, upward Church—Rosser, and has unique upward normal forms (see [1] 3.5). If

F = H and M is any fixed point of G then FM = HM. A set A of deeds is called a behavior
G fi

if whenever F >-jr-* H and two of F, G, and H belongs to A then the third of F, G, and H

belongs to A

Example 5: The powers of F is the set { H: F) » H} U {I}. The powers of F form a
F

behavior

Suppose F = Xx1 . . . xk# Xj 3^ . . . <5̂  and G = Xx1 . . . xm # x. p1 . . . fn are

normal combinators and there is an order zero combinator a s.t. F a = G a. Note that k=m,

0
i=j, and # 1 => l=n. Symmetrically, assume 1 < n. We define a set i(E,G) of deeds as
follows.

p=l

S(F,G) =

I
{1} U U S ^ . . . xk 3f Xxx . . . x m f) if i

p l * r

• • * Xm Pn-

if i=l.
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Note that I G 6(F,G) and whenever H G 6(F,G) H is a subterm of F or G.

Lemma 4, If F and G are normal and a is an order zero combinator then F a = G a « V

H G 8{F,G) a=Ea.
0

Proof. B y i n d u c t i o n o n F a n d G .

E x a m p l e & If a i s a se t of o r d e r z e ro c o m b i n a t o r s l e t 6(di) = { F : V a G a a = F a a n d F
0

is a deed}. Then £(a) is a behavior, since whenever F, H G< (̂a) and F > » H we have
G

G 6 (

A behavior A is said to be non—trivial if there are order zero a and /? such that A C

6{a) but LfS{0)

The following is an analogue of Hilbert's Nullstellensatz.

Proposition 4, If a is a non empty set of order zero combinators then tf(a) is the set of all

powers of one of its members.

Proof. Let F be a shortest member of 5(a) —{I}. We show by induction on G G

<S(a) - {I}, that F > »> G. If F £ G then there is some H G £(F,G) - {I}. By lemma 4
G

H G £(a). Since F is shortest H is a proper subterm of G; so by induction hypothesis

F > >> H. There is some deed L s.t. L >-JJ-* G so L G tf(a) — {I}. Thus by induction

hypothesis F >-p-»> L. Hence F >-^ )G- This completes the proof.

Corollary 2L For any normal combinators F and G there exists a normal H such

that for all order zero combinators a

Fa=Ga^a=Ha

Proof. Let a = { a: F a = G a and a is order zero.}. If a = 0 put H = K. Otherwise £(a)
P

is the set of all powers of some H G £(a). We claim that this is the desired H. For suppose F

a = G a. Then a G a so a = H a. Conversely, if a = H a then, since 5(F,G) C £(a),
P P P
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whenever L 6 £(F,G) a = L a. Thus, by lemma 4, F a = Ga.
0

Corollary *L Every non trivial behavior is contained in the set of powers of some deed.

Remark 2.. We say G is an atom if whenever G is a power of F then F = G. It can be

proved that each deed is a power of a unique atom. This analogous to the fact from formal

language theory that whenever u n = v m both u and v are power of a common atom. We

shall not give the proof here because the result will not be used below.

An order zero combinator a is said to be algebraic if there are normal F and G

such that F f G and F a = G a.. Otherwise a is said to be transcendental. A set

{ a*, . . .. a, } of order zero combinators is said to be algebraically dependent if there exist

normal combinators F and G with F $ G such that F ^ . . . a = G a, . . . a.

Lemma 5 Suppose {a^ . . . ak } i s s e t of algebraically dependent combinators. Then there

exists an i, 1 < i < k, and a normal H i U. such that a. = H a , . . . a..
1 1 (3 x *

Proof. Suppose F and G are distinct normal combinators such that F a* . . . a* = G a1 . .

. a i . The proof is a routine induction on F and G.

Remark 2 In lemma 5, since each a. is order zero, H can be put in the form Xx^ . . . x.x.

(H^x^ . . . .x^) . . . (ELx^ . . . x ^ with each H normal.

Proposition 5 Suppose {a., . . . , a* } is a set of algebraically independent combinators. Then

there is an order zero combinator a* , ̂  such that {a*, . . ., c*t, a, , ̂ } is algebraically

independent.

Proof. Consider the equations:

(1) M = M ( H 1 a 1 . . . a k M ) . . . ( H ^ a 1 . . . a k M ) , O l

(2){ M = ^ ( H ^ ...akM)...(Eiai...akU)

(3). «. = M(H1a1 . . . akM) . . . ( H ^ . . . o^M)

(4).. a. = Oj (H l t t l . . . ak M) . . . (H^aj . . . akM)

where if i=j then L > 1. For each of the k2 + 2k + 1
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equations E(Hp . . . , H^, M) the set {M : 3 1 ^ . . . H^ normal

s.t. E(Hp. . . , H^, M)} is Visseral. For each of these sets the following are not members: (1)

fl, (2)j K00, (3)j K00, (4)j. a^ Thus each of the complements is co-Visseral and nonempty.

In addition, the set of order zero combinators is co—Visseral and non-empty. Hence, by [5] 2.5,

all these co—Visseral sets intersect, and any member of the intersection is the desired a^,^.

This completes the proof.

Proposition 5 allows the construction of many algebraically independent transcendentals.

However, a more direct construction of transcendentals can be achieved using proposition 4.

The following is an analogue of Lindemann's theorem.

Theorem 4 Suppose a is an order zero algebraic combinator. Then there are only finitely

many algebraic combinators /?, up to ft conversion, of the form P = F a, for F a deed.

P
Proof. First suppose a is order zero and a = a (F1a) . . . ( F a ) , P = a(G1o(J . . . (G # ,

P P
and p = P (B..P) . . . (HW?), where the F., G., and H* are all normal and n > 1, m > o, and k

Q K l i l

> 1 are as small as possible. Then a = /?(H../?) . . . (Hv /?), so, setting G = Ax. x(G-,x) . . .

(Gmx) and H~~ = Ax. x(Hjx) . . . (H, x), we have a = (H~~o G) a. Now if F is a deed

such that 6(a) coincides with the powers of F and F = Ax x<5^ . . . & let F. = Ax 3^. If

a is algebraic, we have n > 1 and n is as small as possible. Let J be the normal form of

G. If pf a then J f I and F > »> J. By inspection, there exists some r < n such
P P F

that Ax. x 5 j . . . & > - T T 4 > G so /? = (Ax. x ^ . . . < ? ) a. This completes the proof.

P
Applications and Open Problems

First we solve a problem of Bohm & Dezani

([2]) pg. 185)

Proposition fi It is undecidable whether Fx = I has a (normal) solution, for normal

combinators F.

Proof. For any combinator M, "make M normal" by replacing each redex (Ax <?#)
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by x (Ax c%) # and replace the result with M* = Ax. x o M o x. Observe that M^ I = M.

Now, if M* N = I then N is both right and left /? invertible, so by [1] 21.4.8, N = I. Hence

M ^ x = I has a (normal, solution if and only if e 6 W .
P e

Remark 4 A similar arguement works for Pi\ conversion.

Below we gave a stronger result for general normal equations.

Our next application concerns Hilbert's 10th problem. Suppose d is an adequate

numeral system ([1] pg. 139) with normal test for zero.

Proposition 1 Suppose E is the P closure of a recursively enumerable set of dfl. Then E is

normal variety.

Proof. It is easy to see that there is deed F s.t. for all n F d = 1

The next example shows that the condition of normality on the zero test is necessary.
2

Example 7 Let d° = Ax. x(Kn + 1 V ) and d ^ + 1 = Ax. xd^ fi . . . fl. We write dn

n
2 2

for dn. Construct F satisfying F = (Axy. y x) F. We have F d° = F (Kn + 1 V ) = K n

P P P
nn~\ By induction, F dm = Kn m # n ~ln~l, for m < n. Thus F d = ""n"1, and d is an

adequate numeral system. By the method of the proof of lemma 2, d is not a normal variety.

Despite Corollary 1 it may be possible to give a coherent solution to the following.

Open Problem Characterize the normal varieties
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